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Monte Carlo simulation of epitaxial growth
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A Monte Carlo —based method for simulation of epitaxial crystal growth is reported. The improve-
ment of our method, in comparison with simulations based on the solid-on-solid model, is the possibility
of simulating crystal growth without the assumption of a discrete crystal-lattice structure. Our model

requires only the specification of a Hamiltonian. The method is used for studying growth in a two-

dimensional cross section through the substrate and the epilayer up to a width of 80 atoms. Two
different potentials have been chosen for the simulations: (a) the Lennard-Jones potential and (b) a direc-
tional Lennard-Jones potential to describe covalent systems. The epitaxial growth of strained layers was

simulated to study the incorporation of dislocations at the interface, and island and layer growth in the
nucleation stage were investigated.

I. INTRODUCTION

Advances in crystal-growth technologies, in particular
in the field of epitaxial growth from the vapor phase, '

have stimulated the search for realistic theoretica1 models
of crystal growth. With the aid of modern computer
technology, it has become possible to perform ab initio
calculations with realistic interaction potentials.

In a number of computer simulations, the growth of
lattice-matched crystals is described by an Ising mod-
el. These models are based on a predefined lattice
structure, and have been used successfully to study the
surface roughening with increasing temperature, the
transition between island and layer growth, and the
propagation of spira1 dislocations. Recently, more so-
phisticated simulations have been published which allow
the simulation of lattice-mismatched structures.

However, calculations using a continuous space for the
simulation are quite rare. ' Due to the complexity of
continuous-space models, their application has to be re-
stricted to very small three-dimensional crystals or two-
dimensional cross sections of crystals. Continuous-space
models using molecular-dynamics (MD) and Monte Carlo
(MC) methods provide some advantages in comparison to
discrete-space models, because the assumption of the
Hamiltonian is sufBcient to describe the physical behav-
ior of the system.

The most often used potential for the simulation of
crystal growth is of Lennard-Jones (LJ) type, which has
been used for MC (Ref. 9) and MD (Ref. 10) simulations.
The LJ potential has been selected for our calculations,
because it saves a 1ot of CPU time, due to its short-range
nature. We used a directional LJ (DLJ) potential in two

dimensions, where the particles are characterized by their
locations and the orientation of the bonds. "

At present, there is no general rule for the choice of the
simulation model. With the model presented in this pa-
per it is, in principle, possible to tackle the problem of
lattice mismatch, substrate orientation, substrate temper-
ature dependence, surface morphology, incorporation of
dislocations, and the transition from island to layer
growth for heteroepitaxy, including the growth of binary
and ternary compounds on binary substrates.

II. DESCRIPTION OF THE MODEL

We use a continuous-space MC method to simulate ep-
itaxial crystal growth in a two-dimensional cross section
through the substrate and the epilayer parallel to a (001)
plane of a zinc-blende structure. In this cross section the
four tetrahedral bonds of each atom are oriented in the
crystal lattice as shown in Fig. 1(a). It is evident that the
projection of the tetragonal zinc-blende lattice into the
plane gives a fourfold symmetry. Therefore we set up a
DLJ potential rejecting the fourfold symmetry. This re-
striction to two dimensions was applied to the simulation
purely to save CPU time.

In our model each particle is represented by two two-
dimensional vectors in the plane of the cross section,
namely its location r and its orientation e with ~e~ =1.
The pairwise interaction potential is characterized by
three parameters: the binding energy Eo, the binding
length r, „, and the parameter p which describes the co-
valent character of the bond. The potential energy of two
interacting particles is given by
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FIG. 1. (a) (001) surface of a zinc-blende structure with the
usual crystallographic directions and the corresponding bonds.
(b) Schematic drawing of two particles at a distance of r», with
their orientations e&, e2 and the definition of the angles y&, p2.

The pairwise interaction energy is a function of the
variables r, z, p&, and y2 which are shown in Fig. 1(b).
The distance r &2, the angular dependence f, the parame-
ter a, and the cutoff radius r,„„~are taken as

r e„cos(ip„)=, f(ip„)—:cos (2ip„), with n E I1,2I,
1/6a=2requ & cutoa =2.5 requ

A graphical representation of the potential energy for
P=0.5 is given in Fig. 2. The interaction potential can
be tuned by the parameter P from the pure Lennard-

Jones potential with P=0 to the pure directional
Lennard-Jones potential with P= 1. Since different
species of atoms are allowed, Eo, r, „,and P are specific
for the atom species involved in the interaction. There-
fore, we denote these parameters by Eo;i, r,q„,i, an.d P;i
to describe an interaction of an atom of kind i with an
atom of kind j. To simulate the growth of compound epi-
layers on compound substrates our model allows one to
select Ec;j, r,q„,j, and P,j for n different kinds of atoms.
That means, in principle, 3n(n+1)/2 parameters
describing the interaction of atoms can be set at will.

To save CPU time we set

equ, ij ( equ, ii + equ, jj )/

and P; =P;; =Pjj =P. The symbols 0 and X denote the
two kinds of atom according to the representation of
atoms in the lattice pictures. By definition, 0 indicates a
substrate atom while X indicates an atom of the epilayer.

To simulate the growth of a crystal we use periodic-
boundary conditions in the horizontal direction. We
start by placing some layers of substrate atoms in the dis-
tance of reqp QQ The substrate is equilibrated by means
of a conventional importance sampling MC method; this
means that one particle is selected at random and moved
to a position within a rectangle with a horizontal length
of 2.5 r,q„«and a height of r,q„«. The orientation e
of the particle is chosen at random also. This move and
rotation is accepted with the probability
p =exp( hH/k&—T). This procedure, commonly called
the "MC step, " is repeated until an acceptable approach
to the equilibrium is achieved. After the substrate is
equilibrated, another particle is placed near the surface at
a random position and the system is equilibrated again.
After some particles are deposited, expectation values of
the position of each particle are calculated. The
difference between the actual and the average position is
used as an indication of the stability of the lattice. This
procedure is repeated until the required number of parti-
cles is deposited.

We present the results in three different ways. Since
we are working with a two-dimensional cross section, it is
possible to show a picture of the whole lattice.

Since we are interested in the vertical distribution of
the particles, we plot N&&(h), defined as the number of
particles located below the height h, as a function of h.
One can calculate N &h(h) from n (h), the number of par-
ticles at the height h.
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FIG. 2. Pairwise binding energy E»(r, y, 0) in units of Eo for
=0.5.
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FIG. 3. Correlation between lattice picture and h-versus-
N z plot.
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FIG. 4. Typical part of the simulated lattice of an epilayer
with a misfit of 14% simulating the situation present in CdTe on
GaAs. The other parameters are P=0.5, Eo&&&&=ED&&o
=Ep y x and kg T=0.04Ep x x. The resulting dislocations are
marked by arrows.

N&s(h)= J' n(h')dh'.
0

To emphasize the direct correlation to the lattice pic-
tures, N&& is drawn on the horizontal axis of Fig. 3,
while h is drawn on the vertical axis as defined by the
growth direction. Three curves are given in Fig. 3, one
for the substrate particles only (labeled o), one for the
epilayer atoms (labeled X), and one for the whole system
(labeled X+0).

To demonstrate the lattice quality we plot the pair den-
sity in arbitrary units as a function of the particle dis-
tance r. The resulting figure shows a series of peaks, each
corresponding to a translation vector in the two-
dimensional lattice. The horizontal axis is always scaled
in lattice constants of the substrate (r, „»),which gives
us the possibility of identifying the lattice misfit and the
long-range order in the lattice.

By setting the parameter P between 0 and 1, we could
choose between LJ and DLJ potential. Whenever we set
P=0 we obtained a hexagonal lattice structure, while for
P=0.5 the results showed a quadratic lattice.

III. RESULTS AND DISCUSSION

To test our model we simulated the growth of a struc-
ture with a mismatch of 14% using DLJ with P=0.5 and

pequ x x 1& 14 pequ o Q The binding energies were
chosen Eo, x x =Eo, x o =Eo, x x and & 0 04E0, x x k& '.
The result is depicted in Fig. 4, which shows a typical
section of the lattice but the simulation was calculated for
a substrate width of 70 atoms. The resulting dislocations
are marked by arrows. It is evident that the mean dis-
tance between two dislocations is seven substrate atoms.
It is thus in excellent agreement with the TEM observa-
tions of CdTelGaAs heterostructures. '
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FIG. 5. Result of a simulation to demonstrate island growth
by selecting a weak bond between epilayer and substrate. The
parameters are P=O, r, „x&&

=0,95 r, „oo, Eo &&o =0.5

Ep, xx' Eo, oo =Eo, xx: (a) typical part of the lattice, (b) h-

versus-N, h plot, and (c) pair density vs distance in units of
requ, o 0

FIG. 6. Result of a simulation to demonstrate layer growth

by selecting a strong bond between epilayer and substrate. The
parameters are P=O, r, &&&q&=r,q„oo, Eoxo=2 Eo, xx
Ep o o =Ep g &&. (a) typical part of the lattice, (b) h-versus-N

plot, and (c) pair density vs distance in units of r,q Q Q .
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In the next set of simulations we investigated the tran-
sition from island to layer growth. The substrate width
was kept constant during all simulations with 80 atoms
and the temperature was set to T=0.04EO xxk~ '. The
ratio of the binding energy between substrate and epi-
layer atoms Eo xo to the binding energy between epi-
layer atoms Eo x x was varied in seven steps from 0.5:1
to 2:1. For all the simulated systems we found a strong
influence of the ratio of the binding energies on the nu-
cleation stage. Out of 48 simulations we show two typi-
cal results. For a weak binding between substrate and
pilay«Eo, xo =0 5 Eo, xx Eo, oo =Eo, xx

lattice-mismatched (5%) system, we obtained the results
shown in Fig. 5. For a strong bond between substrate
and epi»y«(Eo, xo =2 0 Eo, xx o, oo =

o, xx)»d
exact lattice match, the result is shown in Fig. 6. The lat-
tice pictures Figs. 5(a) and 6(a) show clearly either island
or layer growth. The h versus-N&1, -plot in Fig. 5(b)
reflects the island growth in the steps of the curve labeled
X, which shows that more than one lattice plane is need-
ed to accommodate the number of atoms for a full mono-
layer. On the other hand, the h-versus-N(& plot in Fig.
6(b) labeled X shows that almost the full monolayer cov-
erage is reached within one lattice plane.

Figures 5(c) and 6(c) show the pair density for island
and layer growth. The insets define the unit cells with
the base vectors for the identification of the translation

vectors. Within an island one can find pairs for almost all
translation vectors while in a single layer there exist only
pairs for translation vectors parallel to the interface.
Therefore, we find peaks for the translation vectors (11),
(21), (22), and (31) in Fig. 5(c), whereas in Fig. 6(c) the
(50), (60), and (70) peaks are clearly resolved. The lattice
mismatch of 5% is evident by a shift of all peaks in Fig.
5(c) in comparison to the scale, which is given in lattice
constants of the substrate.

In this paper we have demonstrated the use of a
continuous-space Monte Carlo method for studies of is-
land and layer growth by using different binding energies
for the deposited atoms to the substrate. The restriction
to a two-dimensional cross section allows only a
simplified picture of the real growth mechanisms. How-
ever, we could show that our results describe the realistic
situation as shown, for example the incorporation of
dislocations at the CdTe/GaAs heterointerface.
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