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Nonlocal contributions to the dielectric screening of point donor impurities in semiconductors
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A Thomas-Fermi theory for dielectric screening in semiconductors is developed in which the effects of
exchange and nonlocality are considered. This paper also establishes the region of validity of the lineari-
zation and proposes some criteria for the choice of a "single q" in the nonlocal-density approximation.
The result shows that the screening radius of a positive point charge is further reduced.

I. INTRODUCTION

Analytical expressions have been found for the dielec-
tric function in K space. ' Resta, however, used an r-
space approach to develop a general theory of screening
in semiconductors in which the Thomas-Fermi (TF}
screening equation was explicitly solved to obtain a
closed analytical expression for the spatial dielectric
function e(r). The main TF equation comes out non-
linear and is then linearized. Recent developments
have included exchange-correlation and inhomogeneity
of the electron gas. These results show a systematic im-
provements over the TF theory of Resta and have been
referred to as the Thomas-Fermi-Dirac ' (TFD) and non-
local TFD (Ref. 9) theories, respectively. Using the
energy-density-functional approach ' a nonlocal TFD
equation is obtained.

The nonlocal-density approximation (NLDA) to the
exchange-correlation energy functional, "' ' E„„ is
chosen in the form of the single q approximation of
Langreth and Mehl. ' The present work, however, has
not attempted to solve the ensuing nonlinear TFD equa-
tion in the nonlocal-density approximation [Eq. (2.14)].
Rather, the emphasis of this work is to demonstrate the
contribution of nonlocal eff'ects. Hence Eq. (2.14) is
linearized and solved analytically. It should, however, be
stated that Eq. (2.14) is the most general form of all the
TFD theories. Solution of the nonlinear TFD-NLDA
equation will be similar to that recently reported by Scar-
fone and Enver, ' although in the local-density approxi-
mation comparison of the results obtained in the present
work with those in Ref. 18 (especially in the case of
Z = + 1) clearly demonstrates the relative contribution of
nonlinearity and nonlocality to the screening of point
donor impurities in semiconductors. These results are
applied to silicon, to facilitate the comparison. The gen-
eral solution of the TFD-NLDA is presently being car-
ried out.

around a static impurity point charge Z placed at the ori-
gin. R is the screening radius beyond which V(r) has the
Coulomb form screened by the static dielectric constant
e(0),

(2.2}

In the presence of the impurity, electrons will take on
various values of kinetic energy depending on the poten-
tial they "feel."An equilibrium is reached where

E~(r)+ V(r}=EF+V(R) . (2.3)
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kF(r) kF
EF(r)= (1—5)— (p+g5),

2
(2.5)

where p is the correlation enhancement factor" and is
given by

P= 1+Bx ln(1 +1/ )x,

x =0.0914/kF,

8 =0.7734 .

(2.6a)

(2.6b)

(2.6c)

Following the arguments of Langreth and Mehl, ' we
derive a NLDA expression for the Fermi energy EF of a
degenerate electron gas at zero temperature. This is
given by

The other important wave vector, q, in the system is
given by Langreth and Mehl as

( )
~Vn(r}~ (2.7)
6n (r)

II. DIELECTRIC SCREENING

—ze(r}= r~R,
V(r)r ' (2.1) Other parameters in Eq. (2.4) and (2.5) are

The isotropic spatial dielectric function e(r) is defined
by

where V( r) is the self-consistent screened potential set up kt,.(r)=[3vr n(r)]' (2.8a)
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2
q(r)
kr(r)

g =pg F—7 —7' F

F=6fq(3mlkp. )'

(2.8b)

(2.8c) kF' kFE~= (1—5)— (P+g5) .
2 7T

(2.9)

the parameters 5 and g on position can be neglected. In
other words, they do not vary significantly in space
within the system. Using the fact that E~(r)~„~=Er
one can rewrite Eq. (2.5) as

and the parameter' f is put at 0.15.
In our approximation, we argue that the dependence of

I

Equations (2.5) and (2.9) are quadratic in k~(r) and k~,
respectively, and their roots are

p1/2
kr(r) = y(P+g5)+Qy (P+g5) +(1 5—)[e~+ V(R) —V(r)] (2.10)

21/2
k~= y(P+g5)+Qy (P+g5) +(1 5)E—~(1—5)

The perturbed charge density n (r) is then defined in the NLDA theory by
' 3/2

p3/2
n(r)= y(P+g5)+Qy (P+g5) +(1 5)[E++—V(R)—V(r)] .

3m. (1—5)

(2.11)

(2.12)

and the unperturbed ground-state density corresponding
to the valence electrons is

lim[rV(r)]= lim[rV0(r)]= —Z,
r~0 r~0

(2.18)

SCF3

3H
(2.13)

V0(R )
V(R) =

eO

where

—Z
e(0)R

(2.19)

with k~ defined as in Eq. (2.11). For the sake of self-
consistency, the screened impurity potential satisfies the
Poisson equation

z
V (r)= ——.

r
(2.20)

—V V(r)=4m. [n(r) —n0] . (2.14) The solution of Eq. (2.16) obtained using these boundary
conditions is

Substituting Eqs. (2.12) and (2.13) into this equation, one
obtains, using the linearization condition

[ V(R) —V(r)](1—5)
y (P+g5)+(1—5)Er

—Z sinh[Q(R —r)] + V(R)
r sinh[QR ]

(2.21)

Imposing the continuity condition on the electric field at
r =R, one obtains a transcendental equation

the linearized Poisson equation

V'V(r) =Q'[V(r) V(R)], —

where

(2.16)

sinh[QR ]=QR e(0) (2.22)

from which the screening radius is obtained. A closed
analytical expression for the spatial dielectric function is
obtained using Eqs. (2.1) and (2.21),

4kF'

m [k~(1 —5)—yv'2(P+g5) ]
(2.17)

The TF theory was originally formulated in connection
with dielectric screening in metals where the assumption
of continuous states is more nearly satisfied. In the study
of insulators and semiconductors, we note that their main
difference from metals is the vanishing density in the gap.
Actually, real semiconductors always have some impurity
states and even very pure samples would still have surface
states, all of which give rise to nonvanishing density of
gap states. '

Therefore, we can use the TF theory to adequately de-
scribe incomplete impurity screening in semiconductors
provided the correct boundary conditions are used. The
linearized Poisson equation is solved using the following
boundary conditions:

e(0)QR
e(r) = sinh[Q (R —r) ]+QR

'

e(0), r ~R .
(2.23)

The major difference between this treatment and the ear-
lier ones due to Resta and Scarfone is that it has the
effects of both exchange-correlation and inhomogeneity
incorporated.

III. RESULTS AND DISCUSSION

The result obtained in the preceding section is applied
to study the screening characteristics of the group-IV
semiconducting elements, specifically, for silicon. We
consider four possible cases: (i) y=O, 5=0, this is
equivalent to the TF-LDA theory; (ii) y=0, 5%0, the
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TABLE I. Results for silicon. Here, the nearest-neighbor distance a =4.44 a.u. , the static dielectric
constant e(0)=11.94, and the valence Fermi momentum KF=0.96. Wave vector q in Eq. (2.7) corre-
sponds to the 3s orbital in the Si atom (Ref. 17).

TF-LDA TF-NLDA TFD-LDA' TFD-NLDA'

Fermi energy

Screening
radius
r(z =1)
Region of
validity
R —r
r(z =2)
R —r
r(z =3)
R —r
r(z ——4)
R —r

EF 0.461

Q 1.106

R 4.275
0.849

3.426
1.178
3.097
1.393
2.882
1.554
2.721

0.446
1.315

3.593
0.932

2.661
1.240
2.353
1.436
2.157
1.580
2.013

0.155 (0.100)
1.352 (1.417)

3.495 (3.335)
1.098 (1.148)

2.397 (2.187)
1.420 (1.464)
2.075 (1 ~ 871)
1.620 (1.659)
1.875 (1.676)
1.766 (1.801)
1.729 (1.534)

0.263 (0.167)
1.551 (1.740)

3.048 (3.716)
1.015 (1.033)

2.033 (1.683)
1.300 (1.298)
1.748 (1.418)
1.477 (1.460)
1.571 (1.256)
1.606 (1.577)
1.442 (1.139)

' Results obtained when the correlation effect is included are shown in parentheses.

TF-NLDA theory; (iii) yAO, 5=0, the TFD-LDA
theory; (iv) yAO, 5%0, the TFD-NLDA theory.

Using the linearization condition of Eq. (2.15), regions
of validity are established for these four cases and the re-
sults are shown in Table I, along with the values of Q, EF,
and R for each case (all results are for Z=+1). Unlike
our earlier work where the effect of correlation was left
out, we here show the results arising from inclusion of
correlation (these are put in parentheses in the table). We
observe that the inclusion of correlation further decreases
the screening radii and increases the regions of validity
beyond the ones previously obtained.

In this work our emphasis has been on nonlocality.
Nonlinear effects have been shown also to lead to better
screening of impurities in semiconductors. A combined
effect of nonlinearity, nonlocality, and full exchange-
correlation is being investigated. Furthermore, dielectric
function obtained from this model is to be applied to
study electron-hole interaction in exciton problems. In
all these calculations, it should be noted that the Fermi
surface of silicon is not spherical (as in a free-electron gas
model). We have determined the appropriate q using the

density corresponding to the 3s orbital. In an effort to
keep the calculations simple, we have used functions
simpler than the Hartree-Fock (HF) functions. For this
purpose we made use of the single-exponential function
to describe an atomic orbital in the fashion prescribed by
the self-consistent-field (SCF) method. ' The values of q
obtained using the SCF method agree with those ob-
tained from the HF atomic orbitals by Langreth and
Mehl' in the case of beryllium.

Finally, it is noted that the effect of nonlocality on the
spatial dielectric functions is quite significant and consti-
tutes our major results. The TFD-NLDA is more
effective at reducing attractive potentials than either the
linear or nonlinear TFD theories of Scarfone. It should,
however, be stated here that the value obtained by Scar-
fone and Enver' for the screening radius in the nonlinear
TFD regime is very close to that obtained here in the
nonlocal TFD regime for the monovalent impurities for
which the linear approximation is most appropriate.
From these two results, one observes that both nonlinear-
ity and nonlocality tend to reduce the range of the attrac-
tive potential of the impurity.

~D. R. Penn, Phys. Rev. 128, 2093 (1962).
~G. Srinivasan, Phys. Rev. 178, 1244 (1969).
J. P. Walter and M. L. Cohen, Phys. Rev. B 2, 1621 (1976).

4F. Bassani, G. Iodonisi, and B. Preziosi, Rep. Frog. Phys. 37,
1099 (1974).

5R. Resta, Phys. Rev. B 16, 2717 (1977).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

7P. Scavinsky, Phys. Rev. B 28, 6076 (1983).
L. M. Scarfone, Phys. Rev. B 29, 3259 (1984).
S. B.Elegba and A. I. Amali, J. Phys. C 19, L169 (1986).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Solid State

Commun. 24, 765 (1977).
J. A. Alonso and L. A. Girifalco, J. Phys. Chem. Solids 39, 79
(1978);Phys. Rev. B 17, 3735 (1978).
D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 456
(1981);Phys. Rev. B 28, 1809 (1983);29, 2310 (1984).
D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884
(1977).
L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
C. O. Almbladh and U. Von Barth (unpublished).
E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686
(1961).
L. M. Scarfone and A. Enver, Phys. Rev. B 43, 2272 (1991)~


