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From C6o to a fullerene tube: Systematic analysis of lattice and electronic structures
by the extended Su-SchriefFer-Heeger model
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The development from C60 and C70 to an infinitely long tube is studied by changing the carbon number
N. The extended Su-Schrieffer-Heeger Hamiltonian is applied to various geometrical structures and
solved for the half-filling case of n. electrons. For finite N ( —100), appreciable dimerizations ( -0.01 A)
exist, and a fairly large gap (-0.1—1 eV) remains. The solution, which includes the perfect Kekule
structure, always gives the lowest energy. Other solutions, where there are deviations from the Kekule
structure, have higher energies. When N goes to infinity, the strength of the unique dimerization pat-
tern, i.e., the prefect Kekule structure, becomes too small to be observed, but the gap width ( =0.02 eV)
is comparable to room temperature and can be measured. Therefore, the infinitely long tube will have

properties like those of semiconductors with a very narrow gap. We would not expect perfect metallic

properties, but peculiar properties due to the small gap could be observed in experiments.

I. INTRODUCTION

The fullerenes Cz, which are a new category of meso-
scopic carbon molecules, have been investigated inten-
sively. C6Q has a spherical shape while C7Q has an ellip-
soid shape. Quite recently, another category of mesos-
copic carbon molecules, "fullerene tubes, " has been syn-
thesized by the arc-discharge evaporation method, and
the structure has been revealed by an electron micro-
scope. ' They have cylindrical shapes. The surface of the
cylinder has a honeycomb-lattice pattern just as in a
two-dimensional graphite plane.

In a series of publications, we have extended the
Su-Schrieffer-Heeger (SSH) model of polyacetylene to
C6Q and C7Q. We have analyzed the lattice and electronic
structures by a numerical iteration method, taking into
account the full lattice relaxation. For the undoped case,
the well-known bond-alternation patterns and energy-
level structures ' have been found to be reproduced even
by the simple electron-phonon model. In C6Q,

' the
highest occupied molecular orbital (HOMO) is fivefold
degenerate, while the lowest unoccupied molecular orbit-
al (LUMO) is threefold degenerate. This is due to the
high icosahedral symmetry. There are ten short bonds
and twenty long bonds in C6Q. In C7Q,

' the HOMO and
LUMO are nondegenerate, owing to the structural per-
turbation from C6Q to C7Q. In the electron- and hole-
doped systems (C60 and C&0), two nondegenerate lev-
els intrude largely into the energy gap. Furthermore, the
lattice distorts and the dimerization becomes weaker
along the equatorial line of the molecule. These are the
"polaron" excitation in the fullerenes. The results of the
polarons agree with the same calculations of the
electron-doped C6Q by Friedman. The calculated optical
absorption coefficient has predicted a peak at a lower en-
ergy than the energy gap.

The electronic properties of fullerene tubes, which
have been recently discovered, are not well known. A re-

cent theoretical work has proposed properties between
those of graphite and polyacetylene: there would be a
bond alternation pattern but the dimerization would be
much smaller than those in polyacetylene and C6Q. It is
also expected that the energy gap would be much smaller
than in those systems. Other works' have shown that
the gap can be wide ( —1 eV), much smaller, or negligible,
depending upon the structures of the tubes, i.e., the diam-
eter and pitch of the helix.

The purpose of the present paper is to investigate the
lattice and electronic properties of fullerene tubes, bear-
ing in mind their relation to fullerenes with finite num-
bers of carbon atoms. Particularly, variations of dimeri-
zation and electronic properties, from C6Q and C7Q to an
infinite tube, are analyzed systematically. The idea of a
systematic investigation is as follows. We start from C6Q.
We cut C6Q into two parts along an equatorial line of the
sphere. After inserting ten carbon atoms and making
bonds, we obtain the lattice geometry of C7Q. We shall
generalize the process of making C7Q from C6Q, in order to
finally obtain a fullerene tube. If thirty carbons are in-
serted after cutting C6Q, and each ten of them are ar-
ranged in a ring, we get a possible structure of C9Q The
structure is depicted in Fig. 1(b). If ten more carbons are
included, we obtain C,00, shown in Fig. 1(c). Further-
more, if ten more or twenty more carbons are added to
the C&00, we get a C&&0 or C&2&, depicted in Figs. 1(d) and
1(e). The molecule becomes longer and longer. Iterating
these processes, we will finally obtain an infinitely long
tube, where ten carbons are arranged in a ring perpendic-
ular to the axis. The structure is shown in Fig. 1(a).
Note that the alternation of short and long bonds depict-
ed in Fig. 1 wi11 be discussed in Sec. III. In experiments,
helical structures are observed, ' and there are various
possible pitches for the helix. But, we consider only a
nonhelical structure, because we are at the first stage of
the investigation of the dispersion relations for the tubes
and can expect interesting properties due to the Peierls
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instability for the simple structure of a one-dimensional
unit cell. Effects of the helical structures are left for fu-
ture investigations.

This paper is organized as follows. We explain the
model and numerical procedures in Sec. II. The develop-
ment of lattice and electronic structures from C6O to a
tube is investigated in Sec. III. Finite systems are numer-
ically studied and results are extrapolated to an infinitely
long tube. Section IV is devoted to tubes with a periodic
boundary condition. Extrapolations to the infinite carbon
number are performed and compared with the results of
Sec. III. We close the paper with several remarks in Sec.
V.

(a)

[ t—o+a(u J'+u")](c;,c, , +H. c. )
(~j),s

+—y (u,'1'+u,"')' .
(ij&

(2.1)

In the first term, the quantity to is the hopping integral of
the ideal undimerized systems; o; is the electron-phonon
coupling; the operator e, , annihilates a m. electron at the
ith carbon atom with spin s; u,.~' is the displacement of
the ith atom in the direction opposite to the jth atom
(three u J' for the given i are independent with each oth-
er); the sum is taken over nearest-neighbor pairs (ij ).
The quantity u '+u" is the change of length of the
bond between the ith and jth atoms. When it is positive,
the bond length becomes longer and the hopping integral
decreases from to; accordingly we take the sign before e
to be negative. The second term is the elastic energy of
the phonon system; the quantity E is the spring constant.

The model Eq. (2.1) is solved by the adiabatic approxi-
mation for phonons. The Schrodinger equation for m.

electron is

II. MODEL

In previous papers, the SSH model was extended to
C60 and C7o molecules. In the present study, we apply the
same model to fullerene tubes, making use of possible lat-
tice geometries. The form of the model is

e,p„,(0= g ( —&0+~y; )p„(j),
(ij )

(2.2)

where c., is the eigenvalue of the ~th eigenstate and

y; = u '+ u" is the bond variable. The self-consistency
equation for the lattice is

Q' p„,(i)p„,(j)
KFS

+ g g'P„, (k)P„,(1),
K Nb (kl)

(2.3)

FIG. 1. Lattice configurations of (a) an infinitely long tube
and (b}—(e) tubes with finite carbon numbers. In (a), front and
back views are shown using normal and thin lines, respectively.
In (b)—(e), only front views are shown for simplicity. The dou-
ble and single lines indicate short and long bonds, respectively.
In (d), several bonds cannot be classified into short and long
bonds. They are shown by dashed lines.

where the prime means the sum over the occupied states,
the last term is due to the constraint g(,, &y, =0, and Nb

is the number of m bonds. It is 1.5 times the number of
sites N, because three bonds are connected to each carbon
atom. In polyacetylene, " N&=N has been used due to
two bonds from each carbon. The constraint has been
necessary in order to numerically obtain a correct dimer-
ized ground state for the undoped system. We can
confidently assume that the constraint works well for the
present systems, too. Owing to the constraint, we can
avoid the contraction of the lattice; the total bandwidth
does not vary from that of the undimerized system.

A numerical solution is obtained in the following way.
(i) Random numbers between —

yo and yo (y0=0. 1 A)
are generated for the initial values of the bond variables

Iy 'I. Then, we start the iteration.
(ii) At the kth step of the iteration, the electronic part

of the Hamiltonian is diagonalized by solving Eq. (2.2) for
the set of the bond variables Iy,'"').
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(iii) Using the electronic wave functions {P„,(i)J ob-
tained above, we calculate the next set [y,~"+'~J from the
left-hand side of Eq. (2.3).

(iv) The iteration is repeated until the sum

g(; J )(y J.
+"—y J.') becomes negligibly small.

III. FULLKRKNK TUSKS %'ITH FINITE SIZES

-3.88

-3.90-

In this section, we discuss the variation of the lattice
and electronic structures from C60 to a tube. We confine
the analysis to half-filled systems, where the electron
number is equal to the site number ¹ We calculate for
the system size N=10n (6~n &30}. The parameters,
to =2.5 eV, a =6.31 eV/A, and K =49.7 eV/A, are the
same as in previous papers. The value of to has been
taken from that of graphite. In fact, the phenomenologi-
cal parameters should be determined for each system
with different N. But, their values are not known now.
We can certainly assume that the same parameters are
valid for all N. Their values should not vary so much
even for an infinitely long tube.

Figure 1 shows the bond alternation patterns. Figure
1(a) is the pattern of the infinitely long tube. The front
and back views are shown using normal and thin lines, re-
spectively. In our calculations, the conventional Kekule
structure is always the most stable solution when N is
sumciently large. This structure has the alternation of
short and long bonds depicted in Fig. 1(a). The length of
the unit cell is three times that of the undimerized sys-
tem. This is a consequence of the fact that the Fermi
wave number of the undimerized system is kz =2m /3a (a
is the unit cell length of the undimerized system} and the
Fermi level is located at the same wave number that the
calculation using the local density approximation indi-
cates. The triple length of the new unit cell is thus sug-
gested by the Peierls theorem.

When N is finite, deviations form the above-mentioned
Kekule structure are also observed. We shall consider
changes of the alternation patterns shown in Figs.
1(b)—1(e). In these figures, thirty carbons in the left-hand
part are arranged like a hemisphere of C60. The other
thirty carbons in the right-hand part are arranged simi-
larly. The patterns in these two parts are the same as in

C6O and C70. It is energetically favorable that the
parts like the hemisphere of C60 always form the same
pattern. This is an end effect. The lattice configuration
of the finite-N system is determined by the presence of
the two ends. When the number of carbon atoms insert-
ed between the two parts is a multiple of thirty, the mid-
dle part forms a Kekule structure. The dimerization is
commensurate with the triplicate unit cell. This is real-
ized in Figs. 1(b) and 1(e). For the other numbers of car-
bon atoms, there are deviations from the Kekule struc-
ture. For example, in Fig. 1(c), there are two rings
formed by five short bonds in the middle. In Fig. 1(d), we
cannot identify short and long bonds from the length
difference in the middle part. These indiscernible bonds
are shown by dashed lines. The hexagons formed by the
six dashed lines are like a benzene ring which has six
bonds of the equal length. There are similar hexagons in

3,4
C70

-3.S2-
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FIG. 2. Total energy per site. The filled squares, open
squares, and filled circles are for the series N =30n, 30n +10,
and 30n +20, respectively. Here, n is a integer. The linear lines
are extrapolations to infinite N.
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1.0-

0.0
0.00 0.01 0.02

FIG. 3. Energy gap E~. The filled squares, open squares, and
filled circles are for the series N =30n, 30n +10, and 30n +20,
respectively. The linear lines are extrapolations to infinite N.

The total energy per site is calculated and plotted
versus 1/N in Fig. 2. There are three series, N=30n,
30n+10, and 30n+20. Each series is shown by a
different symbol. The series N =30n is the most stable of
the three. This is due to the Kekule structure. The other
series, which include the defects, have larger energies.
Each series is well fitted by a linear line. As N goes to
infinity, the energies of the three series come near to the
same value: —3.9345 eV. This is the due to the fact that
contributions to the total energy from the two ends and
the defects become smaller as n increases.
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FIG. 4. The average of the absolute value of the bond vari-
able y; J. The filled squares, open squares, and filled circles are
for the series N=30n, 30n+10, and 30n+20, respectively.
The linear lines are extrapolations to infinite N.

The energy gap E, i.e., the energy difference between
the HOMO and LUMO, is plotted against 1/N in Fig. 3.
Again, there are three series. The series N =30n has the
largest gap, while the series N =30n +20, has the small-
est one. The smaller gaps for N =30n +10 and 30n +20
are due to the presence of defects. Extrapolation to
N~ ~ by linear lines is successfully performed to give
lim& Eg =2.226X10 eV, which is comparable to kT
at room temperature. The infinitely long tube is a semi-
conductor with a narrow gap.

It is interesting to see what value each bond variable in
the Kekule structure takes as N ~~. But, in the present
scheme of extrapolation to infinite N, there are always
two ends in each system calculated. Dimerization ampli-
tudes in the two end parts are always large. The con-
straint g(; )y; . =0 greatly effects the values of the small-
er bond variables at the middle of the tubes. Therefore,
extrapolations by the present scheme are not reliable.
This problem will be studied in Sec. IV. Instead, we shall
calculate the average of the absolute values ( ~y, ~

). This
measures the strength of dimerization quantitatively.
The result is shown in Fig. 4. Independent extrapolations
of the three series to infinite N seem to give the same
value: lim& ( ~y, ~ ) =2.66X 10 A. The average di-
merization for C6O is 2.22X10 A. The magnitude of
the extrapolated value is smaller by one order of magni-
tude. It would be very hard to observe such small dimeri-
zations. However, the width of the energy gap near room
temperature is clear evidence that dimerization remains.

FIG. 5. Total energy per site. The curve is the result of a
fitting using a third-order polynomial.

ture shown in Fig. 1(a) is stabilized. This series gives the
energy minimum solutions as expected from the discus-
sion in Sec. III.

Figure 5 shows the total energy per site plotted versus
1/N. The fitting using a third-order polynomial is suc-
cessful. The result is shown by the curve. The extrapo-
lated value to infinite N is —3.9346 eV.

Figure 6 depicts Eg versus 1/N. Data points are well
fitted by a linear line. The extrapolated value to infinite
N is 1.889 X 10 eV. This is close to the value
2.226X10 eV obtained from Fig. 3. We conclude
again that an infinitely long tube has a very narrow gap
comparable to kT at room temperature.

We shall discuss each bond length at infinite N. Figure
7(a) shows the labels of the bonds. There are four kinds

0.6

0.4

0.3-

0.2-

0.1 "

IV. FULLERENE TUBES
WITH PERIODIC BOUNDARIES

0.0
0.00 0.01 0.02

In this section, we discuss the fullerene tubes calculat-
ed with periodic boundary conditions. We consider the
system size, N =60n (1 ~ n ~ 5), where the Kekule struc-

FIG. 6. Energy gap E . The linear line is an extrapolation to
infinite N.
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TABLE I. The bond variables of the infinitely long tube.
The labels of bonds are shown in Fig. 7(a). The bond length be-
cornes longer from a to d.

Label of bond Bond variable (A)

—0.001 645
—0.001 002

0.000 500
0.001 148

-2 I S I I I

0.002 0.004 0.006 0.008

IN

FIG. 7. (a) Labels of nonequivalent bonds. The illustration is
a part of the front view of Fig. 1(a). (b) The bond variables. The
filled and open squares are for bonds a and b, respectively. The
filled and open circles are for bonds c and d. The linear lines are
the results of extrapolations.

of nonequivalent bonds. The length becomes longer from
bond a to bond d. Figure 7(b) shows the result of an ex-
trapolation to infinite 1V making use of linear lines. As
far as we judge from the figure, the extrapolation is suc-
cessful. In Table I, the extrapolated values are listed. All
of the values are one order of magnitude smaller than
those of C60. It seems that the difference in length be-
tween the short and long bonds varies from one author to
another and most of the data of C60 range between 0.03
and 0.06 A. The magnitude resolution of the measure-
ments is about 0.01 A. Thus, it would be very hard to ob-
serve the small length differences of Table I in very long
tubes. However, we believe that a very small dimeriza-
tion persists as long as the tube is so long that the con-
ventional Peierls theorem for a one-dimensional system
applies.

Finally, we compare the average dimerization with
that in Sec. III. We calculate ( ~y; J ~ ) for each N and plot
it against I /N in Fig. 8. The linearly extrapolated value
is 9.96 X 10 A. We can also estimate (Jy; 1 ~ ) from the
data in Table I. The result is 9.54X10 A. The two
values agree remarkably well. In Sec. III, we have ob-
tained 2.66X10 A. The order of the magnitude is the
same, but this value is larger than that in this section.
This might be due to the effects of the end parts: the di-
merization amplitude in the end parts is relatively large
and this affects the average value.

V. CONCLUDING REMARKS

0.020-

0.010-

0.000
0.00 0.01 0.02

FICr. 8. The average of the absolute value of the bond vari-
able y;, . The linear line is an extrapolation to infinite N.

We have considered tubes which have nonhelical struc-
tures. In this case, the unit cell in the tube axis direction
has a simple structure, and interesting dimerization pat-
terns are expected to occur due to the perfect nesting of
the Fermi surfaces. In fact, a triplicate length of the unit
cell is realized. However, the bond alternations are weak-
er than those in C60 and C7o This is due to the larger
carbon number. Similarly, the smaller dimerization than
that in polyacetylene is due to the fact that a larger num-
ber of carbons are present in the unit cell. Therefore, it
would be difficult to observe them directly by experi-
ments. If a very narrow gap comparable to kT near room
temperature is observed, this gap would be related to
bond alternations.

In the ideal infinitely long tube, the Kekule structure is
triply degenerate. The potential surface among the triple
minima might be almost flat. It would be difficult to real-
ize an ordered state. However, in actual samples, the
tube is not infinitely long. The length is finite and there
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are always two ends. The calculation in Sec. III would
simulate the real system better. The phase of the Kekule
structure is uniquely determined by the presence of the
end parts. Therefore, the ideal flat energy surface does
not smear out the ordered structure in real systems.

We have only calculated dispersion relations for lattice
geometries where ten carbons are arranged in a ring per-
pendicular to the tube axis. In real samples, the number
of carbons in a ring can be larger than ten. The dimeri-
zations will become weaker. This should be discussed
quantitatively in future works. However, we believe that

the nonhelical tubes, which are infinitely long, have di-
merization patterns due to the Peierls theorem, even if
the strength of bond alternations is very small.

The electronic and lattice structures of helical tubes
would be a very interesting problem. When the dimeriza-
tions do not occur, the tube will have properties like
graphite. Even metallic properties could be expected.
When perfect nesting conditions are fulfilled, various di-
merization patterns will be realized, depending upon
structures of a unit cell (the pitch of the helix and number
of carbons in a ring).
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