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We develop a multiband k-P transfer-matrix algorithm by defining a ‘“‘diagonal representation” that
provides a unified way of calculating energy levels and wave functions for superlattices as well as for
quantum wells with arbitrarily shaped band-edge profiles. Numerical results of transfer-matrix calcula-
tions are presented for specific heterostructures. We show that, contrary to expectations, the various
versions of the boundary conditions used in the literature lead to results for the subband energies that
agree with one another reasonably well for the wide-band-gap materials.

I. INTRODUCTION

The envelope-function approximation (EFA) was intro-
duced several years ago for the analysis of wave functions
and energy levels in quantum heterostructures."?> The
basic ideas entering this model parallel those of effective-
mass theory,3 in the framework of the k-P models used in
the theory of electronic band structure in bulk semicon-
ductors.* With its foundation in the k-P model, the EFA
is a phenomenological approach that takes advantage of
the experimentally available’ band parameters of the con-
stituent semiconductors of the heterostructures as input.
In the case of the conduction-band energy levels in
quantum-well (QW) and superlattice (SL) heterostruc-
tures of III-V and II-VI constituent materials with rela-
tively large band gaps, a further simplification obtains in
that a one-band analysis (analogous to the Kronig-Penney
model®) suffices. It is this simplicity and the empirical na-
ture of this theory which has led to its widespread use,
especially for GaAs/Al,Ga,_,As heterostructures.
These advantages have made the model amenable to the
inclusion of band nonparabolicity effects,’ to its extension
to multiband treatments, to the inclusion of effects of
built-in strain, and to the presence of external magnetic
and electric fields."®™ ! In a multiband formalism, the
EFA has been extended also to heterostructures with
narrow-band-gap materials, such as HgTe/CdTe super-
lattices, in the presence of an external magnetic field.!* '8

The purpose of this paper is to present a unified way of
obtaining the solution of the multiband differential equa-
tions for QW’s as well as for SL’s. Earlier, one of us!®
had provided a compact and efficient algorithm for the
numerical evaluation of the electronic energy bands only
in the superlattices using the transfer-matrix method
(TMM). Here we show that the use of a ““diagonal repre-
sentation” of the transfer matrix for each heterolayer
leads to an analogous algorithm for the energy levels in
QW'’s of any band-edge profile. It is well known'*!! that
the k-P Hamiltonian for bulk semiconductors has spuri-
ous solutions with values for the wave vector k which lie
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outside of the first Brillouin zone; this is true for any
given value of the energy E for models with eight or more
bands. (This is discussed further in Sec. I1.) The diago-
nal representation permits the identification of these
spurious states associated with the eight-band k-P model
and allows their elimination for each layer, resulting in a
numerically stable, compact algorithm for the eigenstates
and eigenenergies. It should be recalled that the ex-
ponentiation of matrices, in general, is fraught with nu-
merical pitfalls;'® these are no longer an issue when the
diagonal representation is employed and the contribu-
tions of the spurious states are eliminated in each layer.

The variety of developments in the theory of electronic
energy levels in layered semiconductors has inevitably led
to various forms of the boundary conditions being used in
the solution of Schrodinger’s equation for the energy lev-
els and wave functions. The different implementations of
the theory also vary, so that there is a clear need to take
stock of the variations in these approaches. We compare
the numerical results obtained for QW energy levels when
different boundary conditions are used.

The paper is arranged as follows. In Sec. II, the EFA
is used to define the k-P Hamiltonian and the
Schrodinger’s equations satisfied by the envelope func-
tions. These second-order differential equations are
solved by writing them as coupled first-order differential
equations. We define the diagonal representation of the
transfer-matrix soluticns of these equations and demon-
strate the advantages of this representation.

In Sec. III, the theory is developed for application to
superlattices and to QW’s of arbitrary band-edge profile.
These modifications of the TMM lead to a unified way of
treating the QW and SL problems. The diagonal repre-
sentation allows us to implement two specific boundary
conditions used earlier. The numerical results
are presented for GaAs/Al Ga,_,As and
In,,Ga,As,P;_,/InP lattice-matched QW’s of different
well shapes under the different boundary conditions.
The discussion in Sec. IV provides comparison of the
present approach with earlier ones.
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II. THE DIAGONAL REPRESENTATION
FOR TRANSFER MATRICES

A. Preliminary remarks

We consider planar layered semiconductor hetero-
structures with the planes perpendicular to the growth
direction z. The layers are taken to be composed of com-
pound III-V or II-VI semiconductors with their
conduction- and valence-band edges located at the I'
point in the Brillouin zone. The periodic parts of the
Bloch functions, u;,_o(r) with j being the band index, at
the band edges are assumed not to differ much as we
traverse layer interfaces. We shall suppose that the origi-
nal bulk crystal translational symmetry is maintained in
the transverse direction.

We shall be interested in the zone-center bulk band
structure of the constituent semconductors, within the
spirit of the k-P model. The usual eight-band model con-
sists of the I'y conduction band (c), the I'y heavy-hole
(hh) and light-hole (Ih) bands, and the ', spin-orbit split-

J
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off (SO) band, with their spin degeneracies. In the follow-
ing, we limit ourselves to the case with no external elec-
tric or magnetic fields or built-in strain in the layers.
(The following considerations hold for the more general
case with external perturbations except that the Kramer’s
degeneracy of the bands gets lifted, and the dimensions of
the matrices are larger. The latter would be true also in
the presence of strain). With this degeneracy and with
the in-plane wave vector (k,, k,)=0, the problem reduces
to a three-band model, with the hh band factoring out.
The problem of solving for the envelope functions of the
constituent layers, within EFA, then reduces to the solu-
tion of a set of three simultaneous second-order
differential equations for the envelope functions. We
have

H,(k,k,)f (2)=Efi(2) (1

where k, has to be replaced by the differential operator
—id/0z, and k;=(k,,k,) is the in-plane wave vector
which is set to zero in the following. The eigenvalues of
the 3X3 matrix are given by the secular equation (in
atomic units):

E.+(F+1k})—E —V'Ep/3k, —V E, /6k,
—V'E,/3k, E,—Ly +2y)k}—E —V2y,k} |=0. )
—V'Ep/6k, —V72y.k} E,—3yk;—E

Here E., E,, and E; are the band-edge energies of the
conduction, lh, and SO bands. The three coupled
second-order differential equations represented by Eq. (2)
can be written as

(—A 02 /022—iB,,d/3z +C,, ) f,(2)=Ef,(2) . (3)

The matrix coefficients A, B, and € in Eq. (3) are as-
sumed to be constant in each layer. In a heterostructure
the differences in the band-edge energies provide the
confining potentials experienced by the carriers.

Equation (2) is solved by writing it out as six coupled
first-order differential equations. We begin by defining

f(z)

=)

) (4)

where the envelope functions f(z) have three com-
ponents. The differential equation satisfied by ®(z) is

0

A NC—IE) —iA™'B

=AP(z), (5)

P'(z)= P(2)

with the unique solution given by
d(z)=exp(Az)P(0)
=T(z)®(0) . (6)

Here T'(z)=exp(Az) is called the transfer matrix. Our
notation differs slightly from the one used in Ref. 16.

For a given energy E, the TMM functions ®(z) can be
constructed with the envelope functions f(z) of the form

fl2)~ 3 C,e

ik,z

, (@)

where k, is in general complex. This is because they are
solutions of second-order differential equations with con-
stant coefficients. The allowed values of k, are deter-
mined by substituting f(z) in the differential equation
[Eq. (5)] for ®(z). Substituting Eq. (7) into Eq. (5) we ob-
tain

Ay gPp(2) =ik, ,@(2) (a=1,...,6). (8)

Equation (8) is an eigenvalue equation, with the eigenval-
ues of the A matrix being the general wave vectors ik,.
The components of f(z) are then expressible as linear
combinations of the exponential functions exp(ik, ,z) us-
ing the eigenvalues ik, , of the matrix A. Note that Eq.
(8), which yields the allowed values of k, ,, is an eigen-
condition for k,; this may be compared with other treat-
ments® where a search is made to determine the zeros of
the determinant (2) to obtain the allowed values of k,.

Let us now consider the transformation matrix 2,
which diagonalizes the 6 X6 complex general matrix A
under a similarity transformation. The eigenvalues of A
are



1206

PAP '=ik=ik,d,5, a,B=1,...,6. 9)
The eigenfunctions £(z) given by
E2) =P 5Pp(2) (10)

are explicitly the exponential functions exp(ik, ,z) and as
such also satisfy Eq. (5). The above transformation ? has
thus transformed the envelope functions ®(z) into pure
exponentials. We define the diagonal representation for
the transfer matrix to be the one in which the matrix A is
diagonal. This diagonal representation has a number of
advantages, as we demonstrate below.

B. Interface boundary conditions

The boundary conditions at interfaces in planar hetero-
structures are (i) the continuity of the envelope functions
f(z) at the interface [we have already imposed the con-
tinuity of the periodic part u;,_o(r) of the Bloch func-
tions], and (ii) the continuity of the probability current
across the interface.

To derive the probability current, we begin by requir-
ing that the envelope functions f(z) be normalized. The
time derivative of [ fdz fT(z)f(z)] being zero, we use Eq.
(3) to derive the form of the conserved current:

J@ =72 |~z égf(z)

+ f“'(z)gt;—f*(z)éz flz), (1)

where the Hermiticity of A, B, and € has been used.

Thus the current continuity condition across interfaces
is given by the continuity of

. (12)

—AS(2)= S Bf(2)

In the following we refer to the boundary condition (12)
as BC1.

In the earlier presentation!® of TMM, the current con-
tinuity condition was replaced by the requirement that
the Schrodinger equation [Eq. (3)] be valid throughout
the layers and also across the interfaces. This condition
led to the continuity of

[—ASf'(2)—iBf(2)] . (13)

The discrepancy of a factor of J in the coefficient of the B
term arises because the corresponding term —Bf’'(z) in
Eq. (3) had not been symmetrized. The discrepancy in
the two procedures disappears when the symmetrization
is implemented. In the following we refer to the bound-
ary condition (13) as BC2. We compared the effect of im-
posing BC1 and BC2 on the energy levels in QW’s with
different band-edge profiles. The energies obtained using
BC1 and BC2 agree to within five significant figures. We
discuss the reasons for this result in Sec. IV.

If we define o =1 for BC1 and o =1 for BC2 we can
represent the interface boundary conditions on the TMM
functions ®(z) by
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D(z)|, = D(z)g, (14

I 0
—iocB —A

1 0
—iocB —4
which can be written compactly as

¢(Z)|R:ZRL¢(Z)|L N (15)

in terms of an interface transfer matrix J.

C. Spurious states in the k-P model

The allowed values of k are determined for each given
energy E by solving the linear eigenvalue problem, Eq.
(8). The original Hamiltonian in Eq. (1) is Hermitian,
and the secular equation [Eq. (2)] gives a determinant
which is a function of k2. Hence for every eigenvalue k
we must have other eigenvalues —k, k*, and —k™* as al-
lowed solutions.'* It is found that any adequate treat-
ment of the coupling of both electrons, hh, lh, and SO
states by k-P theory inevitably leads to the appearance of
spurious branches in the dispersion relation.!! This is be-
cause the k-P approach is basically a perturbative one,
with a finite and incomplete basis set, so that it is impos-
sible for E(k) to be a periodic function of k when k
moves past the first Brillouin zone. Spurious branches of
the dispersion relation appear outside the first Brillouin
zone. These branches should be periodic over the entire
Brillouin zone, but are found not to be so. Such E (k)
branches typically have very large values of |k| which
correspond to very rapidly rising or falling exponential
states of highly oscillatory wave functions within the unit
cell. Thus states belonging to such k values do not carry
any physical significance. They are responsible for oc-
casional numerical instability encountered in the original
formulation of TMM.!® In the context of constructing
electronic states in quantum heterostructures, these states
have to be eliminated also in order to satisfy the proper
boundary conditions.

In our numerical implementation of the TMM algo-
rithm we sort the k eigenvalues and construct a projec-
tion matrix &, which eliminates the components corre-
sponding to the spurious states in the diagonal represen-
tation. Let the spurious states occur for the a=pu, and
W,, say. Then we define

1 for a:B s ai,u'lnu'Z

Sop= (16)

0 otherwise .
We then have the allowed states in the diagonal represen-
tation given by &,565. Such an elimination of the spuri-
ous states is performed in each layer in the heterostruc-
ture. This ensures a much better computational stability
in the TMM algorithm than anticipated earlier.!®

Given this need to eliminate the spurious states, it is
useful to formulate both the SL and the QW problems in
terms of the diagonal representation. We first need to
redefine the transformation matrix 2 which diagonalizes
the matrix A. The matrix 2 is made up of the eigenfunc-
tions of A arranged column by column. We therefore set
to zero the elements associated with columns (and rows)
py and p,. In order to calculate the inverse transforma-
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tion matrix P~ ! we reinsert unit diagonal elements for
a=pB=(u,,u,) in P, in which again we set the corre-
sponding rows and columns to zero once the inversion is
performed. This procedure of inserting a unit matrix ele-
ment in the appropriate diagonal elements associated
with the spurious states preserves the original dimensions
of the matrices in the numerical analysis. We label these
transformation matrices with primes. The interface ma-
trices J are also expressed in the diagonal representation.
For example, for the interface between layers labeled 1
and 2 we have

I,=PJ,P" . (17)

In Sec. IIT we apply the above considerations to the SL
and the QW geometries.

III. THE TRANSFER-MATRIX METHOD
FOR SUPERLATTICES AND QUANTUM WELLS

A. Superlattices

We consider a bilayer superlattice made up of layers of
thickness d, and d,, with d =d;+d,. We have to em-
ploy Bloch’s periodicity condition on the wave functions,
given by

d(d)=e"9P(0) , (18)

in order to obtain the correct solutions for the superlat-
tice states and energy bands. Here q is the wave vector of
the extended states in the z direction. On the other hand,
the wave function at z =d can be obtained from the one
at z =0 by using transfer matrices for each layer and in-
terface matrices to connect up the wave functions across
interfaces. We are thus led to the eigencondition

J1:T2(dy) T, T1(d)P0T)=eDd(07) . (19)

We use the diagonal representation to write Eq. (19) in
the form

(P, T,,P5 " e " (P, 2, P e 1T E(0F ) =eidg(0T)

or

L™ 2™ g0 ) =eindg(0") . 0)
Equation (20) is an eigenvalue equation for the function
£(0). The exponentials e are diagonal matrices with
. . . ik; ,d;
the diagonal elements being given by e “*'. The energy
E, which is an input variable in the differential equation,
is varied until the above eigenvalue condition is satisfied.
This gives a unique value for the dispersion function
E(q). The advantage of the present approach is that,
with the spurious roots absent, the transfer matrices are

numerically more stable than in the treatment presented
in Ref. 16.

B. Quantum wells

Let the quantum well consist of a left barrier region of
material labeled by 1, a well region of thickness d of ma-
terial 2, and a right barrier region of material 3. The bar-
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rier regions are considered to be of infinite thickness.

The transfer matrices relate the wave function
®(d/2+0") in the right barrier to the wave function
®(—d /2—0%) in the left barrier by

O(d /2401 )=(Tpne 2, )®(—d /2—0%) . @1

In the diagonal representation Eq. (21) is expressed as

ik, d

Ed/2+01)=Te 2 I5E(—d/2—07). (22)

Here the boundary conditions at z == « require that the
wave functions fall off exponentially as |z| ~ 0. We now
implement these boundary conditions.

The components of £ at z=1d /2 consist of coefficients
of exponential functions e’** with k having both real and
imaginary values. The solutions with real values of &k,
lead to trigonometric solutions which have to be discard-
ed in the barriers on either side of the quantum well.
Furthermore, the states with imaginary values of k, (call
them «,) in £(d /2) [and in §&(—d /2)] which lead to ex-
ponentially increasing solutions with increasing (decreas-
ing) z have to be eliminated. The wave-vector values are
thus sorted out first to eliminate the spurious states, then
to separate out and discard the ones with real values of
k,, and finally to discard the ones with the improper sign
for the wave-vector values which are purely imaginary.

Let us define diagonal projection matrices Uy and U,
which act on &(%d /2) to eliminate components of £(z)
which are not evanescent solutions in the two barrier re-
gions, respectively. We can then write
g g

UrE=Te
=Q¢ . (23)

Equation (23) is a set of linear equations for the
nonzero components of the envelope function amplitudes
in the barriers just to the left and the right of the well re-
gion. The surviving components in the left amplitude
vector, after the projection using %, , do not overlap the
ones from the right, after the projection by Uy, in the di-
agonal representation since they correspond to *«, wave
vectors, respectively. Hence the unknown components of
&(+d /2) can be combined together and written as a sin-
gle unknown multicomponent amplitude £. [This has
been done in Eq. (23), above).] Also, the components cor-
responding to spurious states factor out. We can there-
fore write Eq. (23) as a set of homogeneous equations for
the components of £ with a nontrivial solution when the
determinant of the coefficients det(%z —@) becomes
zero. We then scan in energy to search for those energies
for which the above determinant is zero in order to ob-
tain the allowed values of energy for bound states. The
wave-function amplitudes from such energy are then
solved for from the homogeneous equations (23), and
separated out again into the wave-function amplitudes
just to the left or the right of the quantum well. The full
coordinate dependence of the wave functions is then
given by exponential functions in the diagonal representa-
tion.

For completeness, we note that the above analysis for
the allowed energy levels can be cast into the form of an
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eigenvalue problem. In Eq. (23), %y has 1 along the di-
agonal for the components of £ which correspond to —«,,
and zeros for the other diagonals. Let UR=I—Uy.
Adding U% & to both sides leads to the equation

(Q+URIE=IE . 4)

Equation (24) is thus an eigenvalue problem for & with ei-
genvalue 1, so that the method may be viewed as being
parallel to the one for SL’s. Again a range of energies is
searched with the allowed energy being the one for which
the eigenvalue is unity.

IV. APPLICATIONS AND CONCLUDING REMARKS

In this section we investigate numerically specific het-
erostructures in order to demonstrate the efficacy of the
diagonal TMM. We also use the ability of adapting alter-
native boundary conditions inherent in the diagonal
TMM in order to explore a somewhat confusing issue on
boundary conditions which has also been considered by
Burt.!>? Here we demonstrate the effect of the different
boundary conditions numerically. We use both boundary
conditions, mentioned in Sec. II, in our calculations of
several examples of QW’s, and in addition, we include a
third set of boundary conditions,'? referred to as BC3,
which are the continuity of

flz), f'(z), (25)

across interfaces. The introduction of BC3 helps us mak-
ing the comparisons more obvious.

In the first example, the subband energies are calculat-
ed for the ¢, hh, and 1h states in a GaAs/Gag 43Alg 37As
rectangular QW of 100 A width. The input band param-
eters are chosen from Ref. 20 so that not only can we
compare the results from the different boundary condi-
tions, namely BC1, BC2, and BC3, but also compare our
modified TMM with the original TMM in Ref. 16. The
results are listed in Table I. The differences associated
with the various BC’s are remarkably small. We return
to this issue below. In the next example, we consider

TABLE 1. Energy levels for the conduction electron (c),
light-hole (lh), and heavy-hole (hh) subbands (in meV) for a
GaAs/Gag 3Alg 37As rectangular well of 100 A width for the
three boundary condition (BC) considered in the text. The re-
sults are compared with the calculations of Ref. 20 in column 5.

Band BC1 BC2 BC3 Ref. 20
c 32.53 32.53 32.57 32.53
122.05 122.05 122.07 122.05
249.92 242.92 242.85 24291
1h 22.70 22.70 22.24 22.69
82.58 82.58 81.60 82.56
158.10 158.10 157.67 158.09
hh 7.52 7.52 7.57
29.92 29.92 30.09
66.61 66.61 66.92
116.03 116.03 116.43
172.42 172.42 172.61
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lattice-matched GA, 47Ing 53As/InP QW’s. The exciton
transitions in such QW’s have been studied both experi-
mentally and theoretically.?! The valence-band parame-
ters of Gag 4;7In; 53As are not accurately determined. The
only experiment on bulk Ga 4/Ing 53As for the deter-
mination of effective masses of heavy holes and light
holes was done by Alavi and Aggarwal.?? There is a
somewhat large uncertainty in the effective mass of heavy
holes in the reported value. We shall therefore use the
best-known experimental valence-band parameters of
GaAs and InAs to calculate the modified Luttinger pa-
rameters ¥, and ¥,, and employ linear interpolation to
obtain the valence-band parameters for Ga,_, In, As.
The use of linear interpolation on modified Luttinger pa-
rameters rather than on the effective masses of the heavy
and light holes can be supported by the following argu-
ments: (i) The experimentally measured band gap of
Gag 47Ing 53As is about 10% smaller than that obtained
from linear interpolation between GaAs and InAs.?!
Also, the experimental spin-orbit split-off energy,?* which
agrees with the value obtained by Pearsall,®* is about
10% smaller than that obtained from linear interpolation.
This suggests that the bowing effect is important in this
material. Thus a direct linear interpolation to determine
the effective mass of light holes is not expected to yield an
accurate estimate. (ii) The modified Luttinger parameters
only contain the interaction from remote conduction
bands. Thus they should be less sensitive to change in
composition. In fact, the effective mass of light holes ob-
tained from our method is in very close agreement with
that determined by Alavi and Aggarwal.’’ The input
band parameters are listed in Table II. The calculated
subband energies are listed in Table III.

The results displayed in Table I from the three bound-
ary conditions reveal that they play a minor role in the
determination of the subband energy edges for the case of
a 100-A GaAs/Gag ¢3Alj 37As where the differences be-
tween the results obtained from BC1 and BC2 are less
than 0.01 meV. Though BC3 looks quite different from
BC1 or BC2, the results obtained from BC3 are also no
more than a few meV away from those obtained from ei-
ther BC1 or BC2. And so is the case of
Gag 47Ing 53As/InP with about a 0.01 to 0.03 meV
difference between the results obtained from BCI and
BC2 (Table III); on the other hand, the results from BC3
are off by tens of meV for valence energy levels in the
narrower wells with better congruence of values of lower
energy levels in wider wells.

These trends can be explained as follows. First, the
difference in BC1 and BC2 arises from the treatment of
the momentum matrix elements. These are off-diagonal
terms in the Hamiltonian. As has been emphasized by
Bastard,! the momentum matrix elements P in all the
III-V and II-VI semiconductors are comparable. If we
assume the momentum matrix elements are the same for
the well and barrier materials, then the difference be-
tween BC1 and BC2 disappears. Under the same as-
sumption, the only difference between BC2 and BC3
would come from terms containing the modified Lut-
tinger parameters. Since the modified Luttinger parame-
ters are due to the interaction between valence bands and
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TABLE II.

Material parameters for InP and Gag4/Ings3As used in the calculation.

1209

The

conduction-band offset between them is taken® as 0.257 eV. The y parameters are the modified Lut-

tinger parameters.

Parameter InP GaAs InAs Gayg 47Ing 53As
E, (V) 1.425° 1.518° 0.418° 0.812°

A (eV) 0.108° 0.340° 0.370° 0.330°
m, (mg) 0.079° 0.0665° 0.023° 0.041°
my (mg) 0.121° 0.0914 0.027° 0.051¢f
my, (mg) 0.560° 0.34¢ 0.4° 0.370%f
E, (eV) 17.02 22.69 21.05 21.00

F 0.0 0.0 0.0 0.0

Y1 1.045 1.982 2.982 2.514f
) —0.370 —0.480 0.241 —0.106

2Reference 27.
YReference 5.

‘Reference 24.
dReference 29.
‘Reference 22.

fObtained by linear interpolation between the modified Luttinger parameters of GaAs and InAs (Ref. 5)

and in very close agreement with Ref. 22.

remote conduction bands, their effect on the determina-
tion of the sub-band-edge energies is much less impor-
tant. Therefore the differences in all the three boundary
conditions is insignificant, particularly for a wide quan-
tum well, in this limit. For a narrower well the absence
of the “mass-derivative” factors in the continuity condi-
tions of BC3 leads to substantially higher valence-band
energies (see Table III). Second, the differences arising in

TABLE III. Subband energy levels (in meV) for
Gay 47Ing 53As/InP rectangular wells for the boundary condi-

the sub-band-edge energies as obtained from different
boundary conditions also depend on the amount of mix-
ing occurring in the bulk wave functions in the [001]
direction. Depending on the change in the material pa-
rameters (such as E,, A, etc.), across the interface, the
wave-function mixing can be shown to be no more than a
few percent (see below). Third, the TMM requires an ini-
tial wave function at one side of the interface. Once this
is given, the wave function is obtained fairly accurately at
all points in a layer. The exponentiation procedure used
in obtaining the transfer matrix is numerically stable and

tions (BC) discussed in the text.

d (A) Bands BC1 BC2 BC3
15 ¢ 211.46 211.46 212.06
Ih 224.16 224.13 249.08
hh 129.43 129.43 165.10
30 ¢ 150.25 150.25 150.44
lh 138.79 138.76 153.47
hh 56.19 56.19 68.72
220.14 220.14 246.63
47 c 102.35 102.36 102.16
lh 89.70 89.69 97.89
257.38 257.36 270.50
hh 28.18 28.18 32.75
112.43 112.43 127.20
248.33 248.33 270.05
79 c 57.72 57.73 57.45
196.92 196.92 197.23
lh 49.06 49.05 52.63
158.51 158.49 165.93
263.82 263.81 271.70
hh 11.95 11.95 13.21
47.82 47.82 52.49

107.45 107.45 116.6
190.04 190.04 202.59
292.08 292.08 302.35

the errors in the procedure are less than 1 part in 10%. A
numerical error of essentially the same order occurs in
the transfer-matrix calculation for each point z,
d; <z <d;;,, in a layer. Hence, unlike “shooting” and
other discretization methods used in solving differential
equations, a slight error introduced in the calculation of
the wave function through the use of boundary condi-
tions across an interface occurs only at the interface re-
gion. This error is transferred to the other regions only
as a shift of the value of the wave function which appears
throughout the layer under consideration. The error is
local and does not accumulate, and hence its influence on
the subband energies continues to be of second order in
perturbation theory.

Our explanations can be further illustrated by compar-
ing Tables I and III. The momentum matrix element of
Gag 47Ing 53As is almost 23% larger than that of InP,
while the momentum matrix element of GaAs is about
3% larger than that of GaggAly;;,As.  Also
Gag 47Ing 53As has a smaller band gap than that of GaAs.
Thus band mixing in the Gag 4;Ing 5;As/InP QW is larger
than in the GaAs/Gag ¢;Alj 3;As QW. As an example,
for rectangular well of 47-A QW’s, the light holes at their
second sub-band-edge energy in GaAs/Gag ¢;Al; 3;AS
have about 0.5% wave mixing with spin-orbit split-off
holes, while the  corresponding mixing in
Gay 47Ing 53As/InP is about 2.3%. Thus the calculation
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for Gag 47Ing 53As/InP heterostructures should be more
sensitive to the applied boundary conditions than that for
GaAs/Gag 63Alg 37As, according to the above arguments.
This is why the difference between the results obtained
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TABLE V. Material parameters for Ga,;_, Al As. The frac-
tional conduction-band offset is assumed to be independent of
composition x and a value of 0.7 is used (Ref. 28).

g Parameter Ga,_ Al As
from BC1 and BC2 in the case of Gag 47Ing 5;As/InP is
larger than that in the case of GaAs/Gag 4;Al, 5;As. For E; (V) 1.5192+1.452x —0.9x*+ 1. 1x*
the same reason, one expects that the calculation for A (eV) . 0.341—0.1282x +0.0685x*—0.016x’
conduction-sub-band-edge energies should be less sensi- ~ Lr (V) 22.7138—1.6138x
tive to the boundary conditions than those for light holes. 5 b 1.80 62(()) 131x

. . . . .

From Table I, the results from the diagonal TMM are in " —0.5676+0.2241x

excellent agreement with previous TMM calculations.!®
The slight differences are due to the cutoff technique used
to prevent numerical overflow!® in the previous develop-
ment of the TMM. Such cutoffs are no longer needed
here.

We list the allowed band-to-band transition energies
from our calculation with the theoretical and experimen-
tal values and their uncertainties of exciton transition en-
ergies from Ref. 21 in Table IV. The corrections of exci-
ton binding energy are also considered. These exciton
binding energy corrections are taken from Lin er al.,?
who have used a thermally modulated photoluminescence
technique?® to study systemically the exciton binding en-
ergy in the Gag 4;Ing 53As/InP quantum well. These exci-
ton binding energies are also in close agreement with the
analysis from the dips beside the 1c-1hh response peaks
observed in the photoluminescence excitation spectrum
for the 30- and 47-A quantum wells.?! Our theoretical re-
sults are in reasonable agreement with the experimental
data. But the splittings between sub-band-edge energies
of light holes and heavy holes are generally smaller than
the experimental values. This may be attributed to fluc-
tuations in In concentration in growing those
Gag 47Ing 53As/InP QW samples. A richer In concentra-
tion in the sample introduces biaxial compression in the
well material, which can increase the valence-sub-band

*Reference 30.

PLinear interpolation from corresponding data of GaAs and
AlAs in Ref. 5.

°The effect from remote conduction bands to the effective mass
of electrons is neglected.

splitting. We fit the experimental data using In concen-
tration and well width as two adjustable parameters. The
fitting ranges were limited to the uncertainties of the ex-
perimental characterization of the samples. The results
for transition energies are much improved by these ad-
justments. The only exception is that for the 47-A well
where a good fitting can only be obtained at In concen-
tration at about 57.2%. The 2c-2hh and 2¢-2lh transi-
tions observed in that sample cannot be reproduced
theoretically with the best-known conduction-band offset
ratio,?’ unless we increase the conduction-band offset ra-
tio to 52% and In concentration to 58%. We calculate
the transition energies for 1c-1hh, lc-11h, 2¢-2hh, and 2c¢-
21lh transitions. The theoretical values are 0.913, 1.008,
1.198, and 1.369 eV, to be compared with the experimen-
tal values of 0.903, 1.018, 1.198, and 1.373 eV, respective-
ly. (This adjustment, however, does not improve matters

TABLE IV. Comparison of transition energies between experiment and theory for Gag 4;In, s;As/InP rectangular wells. The
theoretical estimates in columns 4-6 are those after excitonic corrections.

d (A) Transition Expt.? Theory? Theory® Best fit® d(Ay x°

14.67 lc-1hh 1.130+0.010 1.151 1.137 1.131 14.67 0.542
le-11h 1.25240.022 1.254 1.248 1.246

29.35 lc-1hh 1.013+0.010 1.006 1.010 1.016 26.41 0.550
le-11h 1.141+0.024 1.104 1.101 1.122

46.95 Ic-1hh 0.907+0.010 0.929 0.935 0.912 46.59 0.572
lc-11h 1.018+0.022 0.995 1.004 1.007

79 lc-1hh 0.858+0.005 0.870 0.875 0.857 85.10 0.546
lc-11h 0.905+0.010 0.908 0.913 0.905
2c¢-2hh 1.018+0.015 1.050 1.047 1.026
2c-2lh 1.145+0.020 1.173 1.153 1.140

“Data read from Ref. 21. The reading error is ~+2 meV. The uncertainties in the experimental values are taken from their error
bars.

"Calculated values using either BC1 or BC2.

“The input parameters for Ga,_ In,As around x =0.532 are discussed in the text.

YThe well width d is fitted by varying d by monolayer thicknesses within the experimental uncertainty.

“The In concentration X is fitted by varying it within the experimental uncertainty.
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FIG. 1. The; conduction-band offset as a function of coordi-
nate in a 147-A Ga,_, Al, As/Ga, ;Aly 3As parabolic quantum
well.

for the other QW’s.) The best fitting parameters as well
as their results are listed in Table IV. The presence of
strain due to any lattice mismatch introduced by our
changes in the In concentration has been accounted for in
our calculations. We should mention that we have
neglected the contribution of remote conduction bands to
the effective mass of the electron in the model; it has been
suggested that this may not be able to adequately de-
scribe Gag 47Ing s;As material.’?> This may account for
some deviations between theory and experiment.

In the final example we present a calculation for a par-
abolic QW to demonstrate the power of the diagonal
TMM in obtaining energy levels in heterostructures with
arbitrary band-edge profiles in a multiband model. This
example allows us to explore the case where the band-
edge profile varies continuously in a heterostructure.
Theoretically such a system has boundary conditions
only at infinity since in effect there are no interfaces.
However, an analytic solution cannot be obtained in this
case. We approximate the parabolic well by thin layers
of homogeneous composition. The band-edge profile for
a 147-A wide parabolic QW with a discretization of 50
layers is shown in Fig. 1. The well is made of
Ga,;_, Al As, with the Al concentration x varying from 0
to 0.3, and the barrier is made of Gag ;Al, ;As. The ma-
terial parameters for the layers are shown in Table V.
The conduction-band-offset of the band-gap mismatch is
assumed to be independent of composition.

The results for the energy levels of carriers in the para-
bolic QW are listed in Table VI. These results are entire-
ly independent of the applied boundary conditions. For
example, the results obtained from BC1 are the same as
from the others. This is not the case in the rectangular
quantum well. One can view the material parameters on
either side of an imaginary interface to be essentially

TABLE VI. Subband energy levels (in meV) for the 147-A
Ga,_,Al, As/Ga, ;Al, ;As parabolic well for the boundary con-
ditions discussed in the text. The last column presents the cor-
responding result in the one-band model with no nonparabolici-

ty.

One-band

Bands BCl1 BC2 BC3 model
c 49.39 49.39 49.39 48.94
145.48 145.48 145.85 149.05

231.80 231.80 231.80 240.1
l1h 26.47 26.47 26.47 26.70
77.60 77.60 77.60 80.50
hh 14.59 14.59 14.59 14.59
44.17 44.17 44.17 44.17
73.70 73.70 73.70 73.70
101.38 101.38 101.38 101.38

equal in this case. Thus, regardless of the form of the
boundary conditions, the energy levels obtained are the
same when the band edge varies smoothly. We also list
the result of calculations from a one-band model without
including any band nonparabolicity for reference. The
first electron subband energy is lower than that obtained
from the multiband model, and subsequent subband ener-
gies are higher. This is to be expected from the effect of
nonparabolicity in QW.” The first subband energy of elec-
trons calculated without considering the band nonpara-
bolicity in the parabolic QW is about 3 meV lower than
that obtained from the formula

2n —Hw , (n=1,2,...),

where #iw is the ground-state quantum confinement ener-
gy for an infinite parabolic well.?® This discrepancy
reflects the finite depth of the parabolic well as well as a
heavier effective mass of the electron in such a parabolic
quantum well.

In conclusion, we have presented a unified TMM algo-
rithm for the subband energy levels and wave functions
for both SL’s and QW’s with any arbitrary band-edge
profile in a multiband model. We have also demonstrated
numerically that the effect of the boundary condition on
the determination of sub-band-edge energies for wide-
band-gap heterostructures in multiband models are much
less important than is conventionally believed.
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