PHYSICAL REVIEW B

VOLUME 45, NUMBER 20

15 MAY 1992-11

Theory of the anharmonic linewidths of surface phonons in aluminum

A. Franchini and G. Santoro
Dipartimento di Fisica, Universita degli Studi di Modena, Via Campi 213/A, 41100 Modena, Italy

V. Bortolani,* A. A. Maradudin, and R. F. Wallis
Department of Physics, University of California, Irvine, California 92717
and Institute for Surface and Interface Science, University of California, Irvine, California 92717
(Received 12 November 1991)

A theoretical investigation has been made of the linewidth of the Rayleigh mode on the Al(111) sur-
face due to cubic anharmonic interactions between atoms. The normal-mode frequencies and eigenvec-
tors for the harmonic crystal were calculated by using a model containing central interactions extending
up to tenth-nearest neighbors and three-body interactions extending up to second-nearest neighbors.
This model reproduces with great accuracy the experimental bulk-phonon frequencies as well as the
surface-phonon frequencies. The linewidths were evaluated along the T direction as a function of the la-
teral momentum transfer and at the M point as a function of the temperature. The results compare

favorably with recent experimental data.

I. INTRODUCTION

The study of anharmonicity is of fundamental impor-
tance in understanding the thermal and elastic properties
of solids. An important manifestation of anharmonicity
appears in the one-phonon cross section,! ~* which can be
studied experimentally with scattering techniques.
Anharmonic interactions produce a broadening and an
energy shift of the observed peaks with increasing tem-
perature. Neutron inelastic scattering experiments have
been performed to obtain the linewidth and energy shift
for bulk phonons in metals.*>

Recently, there has been increasing interest in this
problem in connection with the study of crystal surfaces.
Theoretical as well as experimental studies have demon-
strated the importance of the surface. For instance, it
has been shown for certain surfaces that melting begins in
the surface region.® ® The surface-initiated melting for
Pb(100) was related to the increase with temperature of
surface anharmonicity effects. The molecular-dynamical
calculations for low-index Cu surfaces reported by Jay-
anthi, Tosatti, and Pietronero’ indicated a larger increase
with temperature of the mean-square displacement of
surface atoms than of bulk atoms. Recently, Armand
and Zeppenfeld!® reported measurements of the thermal
attenuation of the specular beam in He-atom surface
scattering and interpreted their results in terms of an
enhanced surface anharmonicity.

In the present paper we report the results of theoretical
studies of the linewidths of surface phonons on aluminum
that have been recently measured with high-resolution in-
elastic He-atom surface scattering as a function of the la-
teral momentum for the (111) face.!! We use one-phonon
scattering theory,’ including cubic anharmonic terms in
the crystal Hamiltonian, to investigate to what extent the
linewidth evaluated in this approximation compares with
the experimental data. To this end we first evaluate the
linewidth as a function of the phonon momentum for the
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(111) surface at constant temperature. Temperature
effects for some selected phonons in the surface Brillouin
zone (SBZ) are also studied.

We use the lattice dynamical approach that we have
recently applied to the study of bulk anharmonicity in fcc
metals.'? The harmonic model that we use is based on
central and three-body interactions and satisfies rotation-
al invariance at the surface. As shown elsewhere, this
model reproduces the measured bulk!® and surface'* pho-
non frequencies. The cubic anharmonic part contains
central interactions up to third-nearest neighbors. We
evaluate the width of the surface phonons by performing
the sums over wave vectors with 1,000 points in the SBZ.
The results are compared with the recent experimental
data of Toennies et al.!!

II. LATTICE DYNAMICAL MODEL

The model that we use consists of a harmonic part
which contains long-range central interactions, up to
tenth-neighbor shells, with both the first and second
derivatives of the potential for each neighbor, and angu-
lar interactions involving triplets of first- and second-
nearest neighbors. The force constants of this model
compare very well with the ab initio pseudopotential cal-
culations performed both for the bulk and the surface.'?
The central interactions needed to correctly reproduce
the Friedel oscillations present in the pseudopotential cal-
culation include ten shells of neighbors. The numerical
values of the force constants are given in Ref. 13. The
force constants are defined as follows. The first-order
tangential force constants «; are

_ 193¢

;= 1
a=_7 r—r (1)
where r; is the equilibrium distance of the ith atom from
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the reference atom and ¢ is the central two-body poten-
tial. The second-order radial force constants 3; are

g =3¢ @)

2
, .
ar? |r=r,

The three-body noncentral angular interactions are
represented by a second-order nearest-neighbor angular
force constant §,; defined by

| 9%, cosy)
Sy=—g—— , 1=1,2 3)
3a® 9d(cosb ) |g _g

ijk ijk

where ¢91 is the angular part of the potential, a is the

edge of the unit cube, 9?]-,( is the angle formed by the vec-
tors R(i)—R(j) and R(i/)—R(k), and R(7) is the equilib-
rium position vector of the ith atom. 6, involves a triplet
of nearest-neighbor atoms, while 8, involves a nearest-
neighbor and a second-nearest-neighbor atom.

The cubic anharmonic potential contains central in-
teractions that extend up to third neighbors. The third-
order central force constants are defined as

3
L4 4)

Yi=r .
! ard |r=r,

The cubic force constants are determined by a proper fit
of the third-order elastic moduli by using the procedure
developed in Ref. 12. As shown there for Al, three-body
anharmonic interactions can be neglected. The third-
order central force constants which best fit the experi-
mental third-order elastic moduli extend up to the third
shell of neighbors. The introduction of the second- and
third-neighbor interactions is important in order to ob-
tain numerical convergence in the values of the nearest-
neighbor force constant y,; which is the most important
ingredient in the evaluation of the linewidth.!? The nu-
merical values of the y; that we have obtained by using
the harmonic model that includes ten shells of neighbors
for the central interactions and two shells of neighbors
for the angular forces (10C2 4 ) as well as the experimen-
tal third-order elastic moduli'® are reported in Table I.

The surface lattice dynamical problem is solved by us-
ing the slab method. In order to perform the very inten-
sive calculations of the linewidth, which involve many di-
agonalizations of the dynamical matrix, we have chosen a
slab with the smallest number of layers that is sufficient
to avoid interference effects between the surface modes
localized on opposite surfaces of the slab. We found that
a slab of N, =15 atomic planes fulfills this requirement
for all the lateral momenta Q (three-dimensional momen-
tum projected on the surface) with Q =0.2 A" In the
small-Q region one should take a very large number of
planes, but in this case the evaluation of the linewidth
would become overwhelmingly time consuming.

We want to point out that, for the simple metal Al,
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TABLE I. The Cs are the third-order elastic moduli from
Ref. 15. The y; are the cubic-central-force constants derived
with the fitting procedure of Ref. 12. The units are 10"
dyn/cm?

Ciu=—12.24
Cip=—3.73
C53;=0.25
y1=—6.33
7/2:—1.33
Y3=0.14

there is only a small modification of the force constants in
the surface region compared to the bulk region for the
(111) and (100) surfaces, as demonstrated by the pseudo-
potential calculations of the force constants performed by
Gaspar et al.'® For this reason we perform our calcula-
tions by taking the same force constants in the surface re-
gion as in the bulk region.

We solve the dynamical problem for the slab of
N, =15 atomic planes with one atom per unit surface cell
of area A at fixed lateral momentum Q. The eigenvalues
and eigenvectors are written, respectively, as @(Q,J) and
e(Q,J;!). The vector e refers to three-dimensional Carte-
sian axes, / labels the planes, and J is the normal coordi-
nate index, with J=1,2,...,3N,. The polarization vec-
tors are normalized as

Sle(Q,J;1)*=1. 5
1

For surface modes, |2(Q,J;1)|*~1, and for bulk modes,

|e(Q,J;1)|2«NL . ()
V4

III. FOURIER-TRANSFORMED
ANHARMONIC COEFFICIENTS

The principal quantity that enters into the evaluation
of the one-phonon line width ' is the Fourier-
transformed anharmonic coefficient. To determine it, we
will consider the contribution of cubic anharmonic terms
to the total energy of the crystal. In the case of Al, as al-
ready discussed, we consider only central cubic interac-
tions extending up to and including the third shell of
neighbors.

If we restrict ourselves to central forces, the cubic
anharmonic potential for the surface problem can be
written as

$:=5 33 S S b (L—L3L1ug(L, L1
i LIL,I'aBy
Xug(L,I;L", 1" u, (L,;L", 1), (7)

where i specifies the interaction between ith neighbors,
(L,I) designates the atom in the Lth two-dimensional
unit cell of the /th atomic layer parallel to the surface,
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; , rargly «
bop (L —L"51,1"= | ——(y;—3B; +3a;)+
r
R(L—L"1,I')=R(L,I)—R(L",I"),
and
u (L,;L"I"Y=u, (L,l)—uy,(L"I") .

The vector u(L,!) is the displacement of atom (L,!)
from its equilibrium position. It should be emphasized
that the indices (L,/) and (L’,I") of a given term must be
consistent with the index i. To properly include the lack
of symmetry in the direction normal to the surface that
we will call z, the atomic position vector is conveniently
written as

R(L,[)=R(L)+R(]), 1y

where R(L ) specifies the origin of the Lth unit cell in the
two-dimensional periodic lattice parallel to the surface
and R(/) is the basis vector that specifies both the z coor-
dinate of an atom and the origin of the two-dimensional
lattice in the /th plane.

To describe the (111) surface, we consider a slab of
(111) planes. The stacking of the planes with hexagonal
symmetry is of the type ABC ABC - - - . We consider a
slab formed with an odd number of ( ABC) triplets and
we take the origin in the central plane. We then have

R(L)=L,a+L,b, (12)
with
a=ayk, (13a)
b=a, |4 +‘—/23y (13b)
]
V(Q J,QIJI.QII JII)
= L(#/2NM ¥ [0(Q,J)o(Q',J )e(Q",J )]~ /2

Xzz 2 2 d’aﬂ‘r(l‘_L';I’I')[ea(Q’J;l)eiQ.L_ea(Q’J;I’)e

i L, L,l'aBy
X [ep(Q’,J;1)e XL —

r 873+ rﬁﬁya+ry8aﬂ
2

eB(Q,,J';I' )eiQ’~L'][

(Bi_ai) Y (8)
r=R(L—L"LI")

)

(10)
f
and L, L, integers.
For the basis we have
V73
R()=1 T+7x+73§ 1=0,%1,...,%l, (14
with
2 9o,
=<0 15

Vi3 h 13

I[,=3(N,—1), and a, the nearest-neighbor distance.

The Fourier-transformed coefficients of the cubic
anharmonic potential are determined by using the normal
coordinate representation

u (L,1)=3 [A/2NMw(Q,J)]" %,
Q,J
XeQRLI 40, (16)

Q,J;1)

where A, is the normal coordinate and N is the number
of unit cells in the plane. To simplify somewhat the nota-
tion, we put R(L )=L. Substituting Eq. (16) into Eq. (8),
we get

=3 3 X VQJQ,J5Q"J")
Q,J Q,J Q",J"

XAQJAQ'J'AQ”J” > (17)

where

QL]

ey (Q",J"; e’ —e, (Q",J";1e V] . (18)

The prime on the sums denotes that the terms with (L,/)=(L’,I’) are to be omitted. We can perform the sums over

L,L’ by taking into account the property of ¢(a"}3,,,

¢a57(L L1,l) ———d)aBy —L;l'1) .
The sum over L gives a term of the type

Eei(Q+Q'+Q")-L=NA(Q+QI+Qn) ,
L

where

(19)

(20)
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_ 1 if Q=two-dimensional reciprocal-lattice vector
AlQ)= 19 otherwise .
Defining the Fourier transform of d)f,%,(L;l,l’) as
B QLIN= 3 3, (L;1,1)e @ e
L
and using the property
G QLIN= =g (—Q1']), @2)
we finally obtain
5 [ # 32 .
O T-0O Ty — ’ ny <« | LI a4 0 —1/2
V(Q,J;Q',J;Q",J")=A(Q+Q +Q )12 M ] VN [0(Q,J)o(Q',J")(Q",J"")]
XZIIS 3 (855 Q51,1en( QI3 1es(QU s e, (Q7,T"517)]
i ol aBy
+00(Q;1,1)[e,(Q,;1e QU 1e, (Q",T";1)]
+¢g§Y(Q;l,l’)[ea(Q,J;l)eﬁ(Q’,J’;l’)ey(Q",J",l’)]} . (23)
[
The physical interpretation of the various terms is o(Q,J)xQ , (27)

rather transparent. The first term in the square bracket
describes a scattering process in which the phonon Q,J
lying on the ['th plane interacts with the phonon Q"',J"
on the same plane, giving rise to a phonon with momen-
tum Q’,J’ in the plane . V(Q’) is the matrix element of
the transition. A similar interpretation can be given to
the other terms.

In the calculation of anharmonic properties it is neces-
sary to evaluate sums over momenta Q' and Q' of the
quantity |V|?> multiplied by various functions of momen-
tum and energy. These calculations are rather complex,
as is evident from Eq. (23), and generally are simplified
with the Peierls approximation,!” which consists of ap-
proximating V as

V~[0(Q,J)o(Q,J")(Q",J")] /% . (24)

This is a drastic approximation of Eq. (21) and unfor-
tunately does not give an accurate picture of the depen-
dence of ¥ on the momenta Q and Q'.

To illustrate this point, we will consider the contribu-
tion of the Rayleigh mode to ¥ around the T point. To
estimate the polarization vectors, we consider the Ray-
leigh wave for a continuous medium. In this case!® the
polarization vectors are normal to the surface plane and
are given by

e, (QJ;N=VQ , (25)
while the frequency is given by
QT )=y sin | T2 (26)
max 2 Qmax ’

where w,,, is the phonon energy at the zone boundary
Qmax'

To further simplify the calculations, we take for w a
Debye model so that

for Q smaller than a suitable Debye momentum. We con-
sider the Al(111) surface and Q along the 3(112) direc-
tion. For the sake of simplicity we consider nearest-
neighbor interactions and the Rayleigh wave entirely lo-
calized on the surface. In this way we can put /=1["'=1
and J=J'=J"=1. The Rayleigh wave is also assumed
to have a polarization normal to the surface so that we
can take a=B=y =z.

With a simple calculation we get for ¥ a sum of terms
of the type

V(Q,Q,Q") x A(Q+ Q' +Q")[ sin(wa; Q)+ sin(wa, Q")

+ sin(7a; .Q")] , (28)

where a; =Q-L, aL,=Q’-L, and aLHZQ”-L. For Q=0,
Eq. (28) behaves as

V(Q,Q,Q")« sin(ma; Q') , (29)

while in the Peierls approximation this ¥V coefficient
would be zero. This demonstrates the necessity of using
the full expression for the V coefficient.

IV. NUMERICAL CALCULATION
OF THE PHONON LINEWIDTH

In the present calculations we consider second-order
cubic anharmonic central interactions extending up to
third neighbors. The imaginary part of the proper self-
energy, which determines the linewidth, is given by>!°
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I‘(Q,J;a))=££

ﬁZ
G Q,€8B2J,,J,
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S 3 3 IV(—QJ;Q,J;Q—Q+G,J,)?

X{(n;+n,+D[dlo—0;—w,)—8loto,;+w,)]

+(n,

where (Q,J) labels the harmonic mode of momentum #Q
corresponding to branch J, 0o=w(Q,J), w;=w(Q;,J;)
(i=1,2), n;=n(w;) is the occupation number of phonon
i, and, for conservation of momentum, Q,=Q—Q,;+G.
If G=0 and Q, lies inside the first SBZ, the process is
called normal; otherwise, if a reciprocal-lattice vector is
required to return Q, to the first SBZ, the process is
classified as umklapp. In performing the summations in
Eq. (30), we found that the best convergence was ob-
tained by representing the 8 function by

— 1 —w?/e?

8(w) Y e , (31)
where £2=(Aw)*/21n2 and Aw is the width of the Gauss-
ian at half maximum. In actual practice, € must have a
finite value that is sufficiently large to give a reasonable
number of Q points a nontrivial weight and yet
sufficiently small that the function is sharply peaked.
The fulfillment of these conditions also depends on the
number of planes in the slab, since increasing the number
of planes produces more closely spaced phonon eigenval-
ues. For a slab of 15-21 planes the above conditions are
satisfied with Aw=1 meV, and the evaluated linewidths
are sensibly independent of € over a range of values
around 1 meV.

The calculations were performed with a slab of 15 lay-
ers, and convergence was checked by performing calcula-
tions at some selected points of the SBZ, with a slab of 21
layers. The slab with 15 layers already ensures that in-
terference effects of the modes localized on opposite sur-
faces are negligible for 9 >0.2 A™'. This has been
verified by comparing the surface-phonon frequencies ob-
tained with N, =15 with those obtained with N, =45.

The Q, sum over the SBZ in Eq. (30) requires particu-
lar care. By taking an arbitrary mesh in the SBZ, the
presence of umklapp processes requires that the sum has
to be performed over the whole SBZ. For the (111) sur-
face that we are considering, the umklapp processes are
associated with the first two shells of reciprocal-lattice
vectors G and G,. Only a G, or a G, can remap an ar-
bitrary Q, into the first SBZ. The number of terms in-
volved in the multiple sums in Eq. (30) is of the order of
N? values times the number of Q values inside the SBZ.
The number of terms is approximately equal to 10000
times the number of Q, values. To reduce drastically the
number of terms in the sums, we have chosen an ap-
propriate mesh of Q, values in such a way that Q, + G is
also a point of the chosen mesh. This choice also reduces
drastically the number of diagonalizations of the dynami-
cal matrix. The mesh that fulfills the above requirements
is drawn in Fig. 1. The vectors G, and G, can be written
as

—m))[8ot+o;—w,)—8lo—w,tw,)]}, (30

G,=n;6,+m;§,, (32)

where 8, and 8, are the unit vectors defining the mesh
and n; and m; are integers. In this way a given Q, can be
remapped into a point of the mesh inside the irreducible
part of the SBZ by subtracting a reciprocal-lattice vector
G, and eventually by using the symmetry operations of
the surface point group (D3, ).

When a vector Q, is remapped inside the irreducible
part of the SBZ, the same symmetry operations should
also be applied to the corresponding phonon eigenvec-
tors. With this procedure a mesh point inside the irre-
ducible part is representative of 12 points in the whole
SBZ. The number of terms in EQ. (30) is practically re-
duced by about a factor of 12, which makes the evalua-
tion of Eq. (30) more affordable in terms of computer
time. This procedure imposes a limitation on the values
of Q for which we can evaluate the linewidth. We can
evaluate I" only at points belonging to the mesh. For ex-
ample, we show in Fig. 1 the mesh of Q=n,8,+n,8,,
with n,=0,1,2 and n,=0,1,2,3. Here, §, and 8, are the
basis vectors depicted in Fig. 1.

We now present our results for 2I'yw(Q ), the linewidth
of the Rayleigh mode. We first consider the convergence

*
*

S 7\
4 g + ‘\¢ + * + #\1»
e N, ' S
A + + + + + +
+ + + + + + +
| + + + o + + + o
+ + + o + + ]
|+ + [ o + + o o
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| + + + + + + + +
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|+ + + + |+ + + + ]
+ +\* * + * + * +7 *\f * + * + * / N
+7 . N+ + AN + FrO N
s ~. A ~ e ~
/‘9 + + "+, 4+ + + "+, + + + +. —
+ + + + + + + + + + K
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N+ +7 N, +7
N Ny

FIG. 1. The hexagonal SBZ of the (111) surface of Al. The
8, and &, are the basic vectors that define the mesh used in the
calculations. The open dots are in the irreducible part of the
SBZ. The crosses are the points in the entire SBZ. The vectors
{G,}] and {G,]} are the only reciprocal vectors that remap any
Q point of the extended zone into the SBZ.
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of T'z/(Q) as a function of the number of planes N. At
the M point of the SBZ we consider 21 Q, points in the
entire first SBZ. The evaluated linewidth is
2T g (M)=0.612 meV for N;=15. By varying the
value of N, we estimate the probable error to be 0.05
meV. The convergence of 2z, (M) as function of the
number of Q, points is presented in Table II. In the same
Table is also given the number of Q, values in the entire
SBZ as well as in the irreducible part. As one can see
from Table II, the convergence is very rapid: It is reached
with 16-21 points in the irreducible zone. In order to
also have good convergence for the Q, inside the SBZ, we
performed the calculations with 21 values of Q. The re-
sults for 'z (Q) along the = direction are presented in
Fig. 2 with the estimated error bars. In the same figure is
also drawn the straight line that best fits the calculated
results. One sees that the straight line does not pass
through the origin. This indicates that 2I'z,(Q), in the
limit Q —0, goes to zero more rapidly than Q.

This result is consistent with the more general result,
obtained in the framework of the theory of elasticity by
Mayer and Bortolani.?® According to these authors

o« 11/3
2Lrw(Q )IimQ—>0Q )

In Table II the normal and umklapp contributions to
the linewidth are also given. One sees that the umklapp
contributions have the same importance as the normal
ones. This important result was also found in the evalua-
tion of the linewidth for bulk phonons.

We wish to point out that the value of 2T gy at the M
point, where the mode is purely transverse, is much
larger than the maximum value of 2T" attained by trans-
verse modes in the bulk.!? This is proof of the impor-
tance of anharmonicity in the surface region and is con-
sistent with the notion that in the surface region the
atoms are more weakly bound than in the bulk region.

In Fig. 2 we have included the experimental value!! of
2T gy at the 0 =0.8Q;; point. As one can see, the agree-
ment between the calculated and experimental values is
good, particularly when one notes that the complicated
deconvolution procedure required to extract the value of
2T from the experimental data introduces additional un-
certainty into the experimental values. Furthermore, the
deconvolution corrections increase with decreasing wave

TABLE II. N, is the number of Q points in an irreducible
part of the SBZ. Ng; is the number of points in the whole SBZ.
2I'™(M), contribution to the linewidth due to normal processes.
2I'Y% M), contribution due to umklapp processes.

20(M)=2T¥M)+2T% M),

total linewidth evaluated at the M point. Calculation performed
at 7=300 K.

Ny, Nxz 2r'MM) 2% M) 2I(M)
4 21 0.378 0.234 0.612
9 65 0.391 0.338 0.729

16 133 0.466 0.433 0.899
25 225 0.449 0.429 0.878
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FIG. 2. Linewidth for the Rayleigh mode of Al(111) along
the = direction at T=300 K. The solid squares are the evalu-
ated linewidth and the straight line is the best fit of the evalu-
ated points. The solid dot represents the experimental point.
The estimated errors are also indicated.

vector, so we have only presented the experimental result
for the maximum measured Q. We have also studied the
temperature dependence of the linewidth. In Fig. 3 we
present the behavior of 2I'zy versus T at the M point.
One sees a linear behavior at high temperatures. This is
due to the fact that n(w) can be approximated as
kpT /fiw. At T=0 the linewidth is associated with the
zero-point motion for which n(w)=0. At very low T the
behavior is exponential because

2T (M) (meV)
o o o =
» ] @ o
T T T T
| 1 | A1

o
N
1
I

0.0 1 1 1 L -

o 100 200 _300 400 500
T (K)

FIG. 3. Linewidth for the Rayleigh mode at the M point of
Al(111) evaluated as a function of the temperature. Solid
squares as in Fig. 2.
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n(w)= exp(—#iw/kgT) .

The temperature dependence of the linewidth has not yet
been measured experimentally at the M point.

V. CONCLUSIONS

We have carried out a theoretical analysis of the
linewidth of the Rayleigh surface mode of the (111) sur-
face of aluminum for Q in the = direction. A novel
feature of this study is that we have used, for the harmon-
ic part of the interaction, a phenomenological model that
contains central interactions extending up to tenth neigh-
bors and angular interactions up to second neighbors.
This model reproduces with great accuracy the phonon
eigenvalues and eigenvectors derived from ab initio pseu-
dopotential calculations both for bulk phonons and for
surface phonons. For the anharmonic part, as in our pre-
vious'? study of the linewidth of bulk phonons, we have
used central interactions extending up to third neighbors.
This ensures convergences of the third-order nearest-
neighbor force constant, which is the leading term of the
anharmonic interactions. The calculated values of
I'zw(Q) exhibit a linear dependence of I'gy, versus Q ex-
cept at Q —0.

We have also seen that 2T g5 (M) is much larger than

A. FRANCHINI et al. 45

the maximum linewidth of bulk phonons, which proves
the importance of anharmonic effects in the surface re-
gion. The result for 2Ty at Q/Q3=0.8 is in good
agreement with the experimental data. Furthermore, we
have analyzed the dependence of I" on the temperature.
At high temperature we obtain a linear behavior, as ex-
pected from the limiting form of the Bose factor. At very
low temperatures the zero-point motion gives rise to a
nonzero value of 2I' g, which in principle can be mea-
sured.
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