
PHYSICAL REVIEW B VOLUME 45, NUMBER 20 15 MAY 1992-II

Analysis of the phenomenological models for long-wavelength polar optical modes
in semiconductor layered systems
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The standard type of phenomenological model for this problem consists of a mechanical field

equation for the vibration amplitude and —in the quasistatic limit —Poisson s equation. The critical
issue concerns the matching boundary conditions. The apparent incompatibility between mechanical
and electrostatic boundary conditions often appearing in the literature is analyzed and clarified. It
is shown how the full solution can be obtained so that there is no incompatibility and the key
features of the results, notably the symmetry pattern, agree with microscopic calculations and with
Raman-scattering data.

Considerable attention is being devoted to the study
of long-wavelength polar optical modes in semiconduc-
tor quantum wells and superlattices. Various theoretical
models have been proposed that represent substan-
tially different and often diverging viewpoints and have
met with varying degrees of success in the interpreta-
tion of observed experimental facts. Raman-scattering
data are available for a wide range of superlattices, espe-
cially GaAs related, and show the existence of different
types of modes. Some of these modes have amplitudes
mainly concentrated in one of the constituent slabs, usu-

ally termed confined modes and some with the am-
plitudes spreading to both constituents but tending to
concentrate close to the interfaces, hence called interface
modes. The Raman experiments do not give the spa-
tial dependence of the amplitudes, but this is surmised
from the fact that the observed frequencies are forbidden
in one of the constituent materials (guided or confined
modes) or in both (interface modes, in this case they are
induced by interface disorder). Moreover the geometry of
the Raman-scattering experiment can be chosen to de-
tect modes with different symmetries. In particular, one
can then experimentally establish whether the amplitude
(or the potential) of the observed modes is even or odd
with respect to the center of the slabs. These aspects
of the experimental data and the key features of the re-
sults obtained in microscopic calculations should be
taken as the criterion to decide whether a phenomeno-
logical model is reasonable or not, while some lack of
quantitative accuracy can, to some extent, be expected
and tolerated.

The central issue can be introduced by considering just
one interface. The essence of a long-wavelength phe-
nomenological model is that one uses differential calculus
and then a way must be found to match the solutions at

the interface. Of course it can be argueds io that in prin-
ciple the differential equations are not valid in the imme-
diate vicinity of the interface, when finite changes take
place over microscopic distances. Any phenomenological
model of the matching problem must necessarily be an
approximation, just as it is in all the existing matching
calculations for long-wavelength acoustic or piezoelectric
modes. Differential calculus is used to match at abrupt
interfaces and the model works quite well. The same
can be said, for instance, of envelope-function matching
calculations for electronic states.

The question raised here is not whether the standard
type of phenomenological model can be rigorously justi-
fied. It is clear that formally it cannot. The question is
whether one can start from a simple phenomenological
model and obtain a solution which has all the general
properties one may require and reproduces to a good ap-
proximation experimental results. In this paper we show

that this can be done.
The key issue concerns the matching boundary condi-

tions. One can approach the problem with a dielectric
model and impose electrostatic continuity. The pat-
tern of vibrational amplitudes and electrostatic potential
one obtains is in open disagreement with experimental
evidence and with microscopic calculations.
Moreover, one achieves electrostatic continuity at the ex-
pense of mechanical discontinuity. Alternatively, one can
start from a mechanical equation of motion for the vibra-
tion amplitude2 and then impose mechanical continuity.
This yields the correct symmetry pattern for the vibra-
tion amplitudes, but it appears to produce a discontinu-
ous electrostatic potential. The incompatibility between
the separate use of these two approaches has been cor-
rectly stressed. Our purpose is to show that both
requirements —mechanical and electrostatic continuity—
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can be satisfied by combining the two approaches in a
proper way which accounts for the coupling between the
mechanical and electrostatic fields.

One possibility is to start from a phenomenological
model for the vibrational wave and then introduce ad hoc
matching boundary conditions which force the electro-
static continuity into the analysis. The idea is to save
the simplicity of the phenomenological model, with pa-
rameters determined from a fit to bulk phonon-dispersion
relations, for use in problems of practical interest like the
derivation of an electron-phonon interaction Hamiltonian
and the calculation of Raman-scattering efficiencies.

A different approach has been takens in a study of
this problem for a model in which the vibrations are to-
tally confined by infinitely rigid barriers. The mechanical
amplitudes then vanish at the boundaries but not nec-
essarily the electrostatic potential which is continuous.
This model describes well the confined modes —which are
totally confined due to the rigid barrier condition —and
gives correctly the observed symmetries, but it is limited
by the approximation inherent to it and cannot describe
interface modes. It is the simultaneous account of the
mechanical and electrostatic field and the corresponding,
and compatible, boundary conditions that makes this ap-
proach significantly different from the others. We shall
now use this approach but relax the restriction to rigid
barriers.

We accept from the start a phenomenological model
based on an equation of motion for the vibration am-
plitude u which contains (i) spatial dispersion through
terms representing mechanical forces, (ii) a natural fre-
quency for the harmonic-oscillator —like vibrations, and
(iii) the coupling to the electrostatic field E.ig This is
the well-known equation

p(u) —ioTo)u —V(pv, V u)

((eo —& ) 1

t
—7'. (pv, V'u)+

~ ~

~ToE = 0, (1)
4

where p is the mass density, co and z~ are the static and
high-frequency dielectric constant, and cuTp is the bulk
transverse-optical frequency. The ansatz for the mechan-
ical forces follows from general considerations2 and has
the form of the divergence of a tensor r. In the case of
an isotropic solid, assumed implicitly in (1),

&= pv~V u I +pvy Vu.

In the case of acoustic waves (uTo —0) r is literally
the mechanical stress tensor, with v~ and v& related to
the Lame coefficients A, p. In the present case v~ and
v& are phenomenological parameters which take into ac-
count the spatial dispersion, i.e. , the k dependence of the
bulk frequencies up to terms of order k2. The essence
of the phenomenological model is that (1) it is accepted
as it stands, even for inhomogeneous systems where the
material parameters depend on the position coordinate z
normal t,o the interface, and this includes abrupt inter-
faces. Having assumed this model we want to see how the
mechanical and electrostatic field can be obtained while

their coupling is fully taken into account.
For this (1) must be solved simultaneously with

Maxwell's equations which, in the quasistatic limit here
considered (c ~ oo) or, from an experimental point of
view, for wavelengths small compared with the bulk rest-
strahlen wavelengths, are reduced to the equations of
electrostatics. In this case

and, since there is no external free charge

D =0. (4)

However, written in this way, the coupling between the
two fields is not apparent. From the general relationship

D = E+4xP
and the particular constitutive relationship of this
modelis

(p(ep —e )i 'i
(e —1)

4)Tgu +4z. 4x

we make the coupling of the mechanical and electrical
fields explicitly appear in the electrostatic field equation
by noting that the source of 4 is the polarization charge,
so that

V' 4 =4+V' P

which, using the above expressions and the Lyddane-
Sachs-Teller relations, yields

7' 4 = 4zp(e —eo') ~roV' u.
Furthermore, substituting from (3) in (1)

p(~'-~Tzo) u- V(p".V. u)

u=uL, +UT

with V' x uL, ——0 and V'. uz ——0. Only the uL, part
of u appears explicitly in (8), but this ul. is affected in
general by the coupling to u7. This is another aspect
which is often obscure in the literature. In a bulk homo-
geneous medium described by this model the longitudi-
nal and transverse modes decouple and one easily obtains
from (8) and (9) independent dispersion relations for the
bulk LO and TO modes. It is the boundary conditions
that, in general, couple the longitudinal and transverse
parts, as is common experience with problems involving
matching between isotropic media. It suKces to study
ordinary Rayleigh surface waves2 to see this. In some
cases one can decouple them, notably with some geom-

(pvs 7'u) —
I I

~Toe'~' = 0 (9)
((ep —e )i"'
E

The coupling between the u and 4 is now explicitly writ-
ten into the field equations.

We stress that u in general consists of a longitudinal
and a transverse Geld
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We Fourier transform in 2D, thus introducing a depen-
dence on the transverse Pc, and are left with diH'erential

equations in the position variable z. We now integrate
(9) from —g to +rl and let rt ~ 0. Since 4 is continu-
ous this yields matching boundary conditions involving
the first derivatives of the components of u. If we write
the force per unit volume in the form of the divergence
of the tensor written down in (2), then these conditions
take the form

r„(z = +0) = r,z(z = —0), (j = z, y, z). (13)

In the case of acoustic waves this expresses the conti-
nuity of the forces per unit area transmitted across the
surface. In the present problem one can interpret this in
the same way, always within the frame of the approxima-
tion, embodied in the model. The z component of (13)
reads

p('+ b)
' =p(!+vb)

z =+0 s= —0
(14)

which one can in the same spirit interpret as the conti-
nuity of the hydrostatic pressure although the present
analysis shows that this does not require the decoupling
of uL, and uz in the approximation one may choose to
call hydrodynamic. All that matters is that given (9) one
obtains mathematically the three continuity conditions of
(13). The explicit form of these is readily obtained from
(9). Note that Eq. (14) can be mapped onto the Bas-

etry specifically designed for a Raman-scattering exper-
iment which detects modes vibrating in some symmetry
direction and with Pc = 0, Pc being the two-dimensional
(2D) wave vector parallel to the surface. In other situ-
ations one can make an approximation, for example, in
the study of electron-phonon scattering, which involves
only the uL, part of u and is such that only very low wave
vectors have an appreciable weight. 4

However, the issues raised here can be clarified without
need to decouple LO and TO modes. What we have in

(9) is a field equation for the total u given that the uL,
part of it is coupled to 4, while (8) says that 4 is the
potential created by the polarization charge

ppol — &~ &o Lo 7 ' up 1/2

4x

where u is the solution of the mechanical field equation
(9). Seen from the point of view of electron-phonon cou-
pling this is the potential that the external test charge of
an electron sees in a system where the vibration u pro-
duces a polarization charge p& ~ given by (11). Hence, it
is very important to obtain a full solution which simulta-
neously describes both u and 4 correctly which, accord-
ing to the laws of electrostatics, requires continuity of 4
everywhere. This is guaranteed by the phenomenological
model embodied in (8) and (9). The moment we accept
diRerential equations to describe the amplitudes u and 4
these must be continuous at the matching interface:

u(z = +0) = u(z = —0); 4(z = +0) = 4(z = —0).

tard boundary conditionir by replacing the p (v2 + v&)
by I/m, m being the efFective mass.

It is also easily seen by using (6) that integration of
(8) from —g to +il, with il ~ 0, yields

D, (z = +0) = D, (z = —0), (15)

as expected from general principles of electrostatics.
What we stress is that the matching boundary conditions
(13) and (15) follow mathematically and unambiguously
once the phenomenological model has been accepted.

The issue initially raised has been formally settled. In

(8) and (9) we have a system of four second-order dif-
ferential equations. We need eight matching boundary
conditions. These are (12), (13), and (15). This defines
an eigenvalue problem whose solution is uniquely deter-
mined by the four differential equations and the eight
independent matching boundary conditions. The phys-
ical interpretation of these conditions and the approxi-
mations embodied in the phenomenological model are a
separate issue. Mathematically the problem is uniquely
and correctly specified while the coupling between the u
and E fields is evident and explicit in the analysis.

The confusion arises when one decouples uL, and uT
and the two field equations. If u is only uL„ then P (6)
is only PL„so D is only DL, and its curl vanishes. Since
its divergence also vanishes (4), then D vanishes, which
yields

E = —4irp(e ep )' ~r,ou .1/2
(16)

Substituting this in (9) one obtains a field equation for
u only. The other field equation is often taken to be (4)
which involves the dispersive dielectric functions. How-

ever, the two field equations are apparently decoupled
and this has led to their independent use as optional
alternatives. The contradiction arises because the E
and u fields are really coupled: they must always ful-
fill (16). This is what causes the apparent incompatibil-
ity of boundary conditions: if one chooses to work from
the mechanical equation, imposes mechanical continuity,
and uses (16) and (3) to obtain C' by inspection, then
4 is discontinuous. The point is that the correct way
to solve the full problem is not to do this but to deter-
mine 4 by solving (8) with correct electrostatic matching
boundary conditions even when one studies a purely lon-
gitudinal field. The physical implications of this for the
electron-phonon interaction has just been stressed.

The main objection one can make to the procedure just
followed is the assumption of isotropy in (1). Cubic crys-
tals, for instance, are known to be anisotropic to second
order in the components of k. It is possible to generalize
(2) so as to include this anisotropy. This can be easily
done by replacing (1) by

2 2 f(e0 —e )&
S/2

p (u —~To) u —7' r —
I I

~To&c' = 0,
4ir

where for the tensor r we use instead of (2) (in matrix
notation)
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(
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(18)
u, (z) = A„sin (z+ d/2) ~; n = 1, 2, . . .

d ) '

and

(2o)

with 4 continuous. The condition (15) is in this case
automatically satisfied. The full solutions of Eqs. (9)
and (19) ares

In this case the v, v&, v, parameters are obtained fitting
the corresponding bulk phonon-dispersion relation [v, =
v~ leads back to the isotropic case of Eq. (2)].

The mechanical vibration amplitude has been
treated in a way which is similar in spirit to the analysis
proposed here, although it differs in detail. A dynamical
matrix is written down inspired in the form of the ef-
fective Hamiltonian for envelope-function calculations of
electronic structures. Due to crystal symmetry the math-
ematical form is the same as we obtain from mechanical
considerations. The parameters of this dynamical matrix
are found by fitting to the results of a microscopic calcu-
lation based on a rigid-ion model, which gives a correct
description of the optical vibrations. The discussion is
then centered on the equation of motion for the mechani-
cal vibration amplitude and the corresponding matching
boundary conditions, for which two extreme cases are
studied. These correspond to Duo —the difference in res-
onant frequency at zero wave vector —being either much
larger or much smaller than the bulk bandwidths. In the
first case the amplitude is assumed to vanish at some
chosen plane. In the second case, after some plausible
approximations a kind of continuity equation is derived
which expresses energy conservation and this is used to
establish matching boundary conditions.

Although this is close in spirit to our present analysis,
it difFers in two important respects, namely (i) Our model
does not depend on whether A~a is large or small and
thus can be directly used for GaAs/Al Gai ~As systems
with arbitrary z; (ii) we discuss explicitly the differential
equation of 4, its coupling to the mechanical differen-
tial equation, and the compatibility between the match-
ing boundary conditions for both fields. This also allows
for an explicit study of the electron-phonon interaction
Hamiltonian in which one can easily see how to introduce
screening due to the electron gas if one has a model for
its dielectric function. This is a very important issue for
transport calculations in populated quantum wells with
external modulation doping.

Finally it is interesting to consider the particular case
of a GaAs well with AIAs barriers using the method just
presented. In this case the frequency difference is very
large and it is a good approximation to assume infinitely
rigid barriers. That is u(z = +d/2) = 0 and u = 0 for
~z~ & d/2, d being the well width.

We consider the case of (001) interfaces and vibrations
in the (001) direction with K = 0, where the transverse
part uT = 0 for all z C (—d/2, d/2), we only need to study
a longitudinal field. From the vanishing of V' x u one can
reduce the mechanical field equation to one differential
equation for u, with the amplitude vanishing for ~z~ &
d/2. Equation (8) now reads

, = [4~p(s ' —s, ')] ~r,o

'f1 —(-1)"l,
( ) C 2cos (z+ 2)

, K-1)"—1l,

where

z & -d/2—";.—P+(-1)"l,
lzl «/2

z & d/2,

n=13
n= 2, 4, . . . ,

1/2

C„=A„
(ns/d)

(22)

and A„ is a normalization constant. These results agree
rather well with those of microscopic calculationss 4 s s

and there is no incompatibility. The solution yields a con-
tinuous electrostatic potential and the symmetry pattern
agrees with experimental evidence. Raman-scattering
datai2 i4 is detect LO modes with 4 odd —corresponding
to n odd in (21)—when the geometry of the experiment
is Z(Y, X)Z and 4 even —n even —when it is Z(X, X)Z
and this pattern is what one finds from (21) and from
microscopic calculations.

Studies based on the so-called dielectric model use the
boundary condition (15) and impose the vanishing of C

for ~z( & d/2. This yields

@( )
cos( d z) j (»)sin g z

which gives the opposite symmetry pattern. This hap-
pens at the expense of mechanical discontinuity. On the
contrary, calculations based on a decoupled field equation
for u and the vanishing of E, for ~z~ & d/2 yield the cor-
rect vibration amplitudes but then 4 is discontinuous.
An ad hoc way out of this dilemma can be found in
which 4 is forced to be continuous by adding in each layer
a term independent of z and dependent of n. These con-
stants are exactly the terms involving (—1)" contained
in (21), which is the solution naturally obtained with-
out need to resort to any artifact when the mechanical
and electrostatic field equations are correctly coupled and
solved.

This clarifies the issue raised at the beginning. The
mechanical field equation is only a model and hence an
approximation, but it works quite well for the vibration
amplitudes, while 4 must be obtained from (8). This
provides the basis for obtaining in a rather simple way
an electron-phonon-interaction Hamiltonian based on a
reasonable model which works rather well in the cases in
which it has been tested and leading to solutions which
meet all general requirements with no incompatibility be-
tween the mechanical and electrostatic matching bound-
ary conditions. Further work on this problem is currently
in progress.
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