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General trends in changing epila3ter strains through the application of hydrostatic pressure
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It is shown that the magnitude of in-plane strains decreases with applied hydrostatic pressure for
several general classes of lattice-mismatched heterostructures, thereby making the structures more
stable. In particular, the mismatch strain in strained-layer systems composed only of semiconductors
from the same series, such as II-VI, III-V, or group-IV semiconductors, will generally decrease with the
initial application of hydrostatic pressure, but will never vanish at any pressure. Strain-free conditions
under pressure are only possible in heterostructures composed of semiconductors from different series,
and then only when a phase transition does not occur first. The importance of using the exact form of
Murnaghan s equation, rather than a linear approximation, in analyzing strains is also demonstrated.

I. INTRODUCTION

Semiconductor heterostructures may be grown pseu-
domorphically to substrates provided that the thickness
of the layers is less than the "critical thickness. "' For
these systems, elastic strains accommodate lattice
mismatch and affect the mechanical and electronic prop-
erties of the system, such as the electronic band offsets at
interfaces. The effect of applied hydrostatic pressure on
these systems has been shown to alter the degree of
mismatch, and subsequently the elastic strains. In partic-
ular, it has been shown that lattice mismatch decreases
with increasing pressure for several common epilayer-
substrate systems, such as in SiiGe (Ref. 3) and
ZnSelGaAs (Refs. 4—6) heterostructures. This results
from differences in the bulk rnoduli of the substrate and
the epilayer. For example, it has been shown that for
ZnSe epilayers on GaAs substrates the effect of hydro-
static pressure is to decrease the inherent biaxially
compressive strains until a lattice-matching pressure is
obtained, whereupon the subsequent addition of pressure
results in the generation of biaxially tensile strains. The
main intent of this report is to demonstrate that for
several general classes of lattice-mismatched systems, the
application of hydrostatic pressure initially decreases the
magnitude of strains, thereby increasing the stability of
these strained-layer heterostructures. However, strain-
free conditions will never occur at any pressure for het-
erostructures involving semiconductors from the same
series, such as only II-VI, III-V, or group IV. Rather,
pressure-induced lattice matching in strained-layer het-
erostructures is only possible for semiconductors from
different series, and then only when the pressure at which
matching occurs is lower than the phase-transition pres-
sure for each of the layered components.

II. STRAIN CONDITIONS
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where the lattice constants a „a2, and the total
thicknesses t„t2 of the two component materials, which
may include buffer films, are all functions of pressure.
Accordingly, strain conditions for a thin film on a sub-
strate can be described as a special case of Eq. (3}with t2,
the thickness of the substrate, ~ Oo.

Externally applied hydrostatic pressure modifies the
degree of biaxial strain through the inherent pressure
dependences of Eqs. (1}—(3). This is demonstrated using
Murnaghan's equation

where a, represents the equilibrium, or actual lattice pa-
rameter for the strained layer, a is the lattice parameter
of the equivalent strain-free layer, C& &

and C&2 are elastic
constants of the film, and p is the hydrostatic pressure.

The equilibrium lattice constant depends on the partic-
ular system of interest. In the case of an epilayer grown
pseudomorphically to a substrate, the in-plane lattice
constant for the epilayer is that of the substrate
(a,q

=a,„b ). However, for more complicated heterostruc-
tures, the equilibrium lattice constant depends on the lat-
tice constants of the component materials, and is weight-
ed by their relative thicknesses. ' For example, for a
free-standing strained-layer superlattice composed of two
materials,

The degree of lattice mismatch in a coherently grown
layered structure is reflected in the nonhydrostatic strain
components within each layer, which are of the form

Bl
a(p)=a(1 bar) 1+p B

—1/3B'

(4a)
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which reduces to

a (p) =a ( 1 bar )( 1 —p /3B) (4b)

in the low-pressure limit. B = ( C» +2C, z ) /3 is the bulk
modulus and B'=dB/dp T. he overall layer thicknesses
in Eq. (3) vary as does the lattice constant in Eq. (4).
Therefore, using Eqs. (1)—(4a) and keeping terms to
second order in p, the biaxial strain varies with pressure
according to

t'
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The equilibrium bulk modulus also depends on the par-

TABLE I. Lattice constants a, bulk moduli B, and their pressure derivatives B'=dB/dp are given at room temperature, together
with the pressures of the first phase transition p„ for group-IV, III-V, II-VI, and IV-VI semiconductors, each listed by increasing lat-
tice constant. The sources of these values are discussed in Ref. 12, with multiple values representing different values in the literature.
Data are for the zinc-blende structure (zb), except where explicitly noted as hexagonal (hex).

Group IV

III-V

C
SiC
Si

a-Sn

GaP

Alp
GaAs
A1As
InP
InAs
GaSb
Alsb
InSb

a (A)

3.566 83
4.359 6
5.430 72

5.657 906 0

6.489 2

5.450 6

5.467
5.653 25
5.660
5.868 7
6.058 3
6.095 93
6.135 5

6.479 37

B (kbar)

4423
2280

960,979,
988,992
689,744,

750
425

882,887,
899
860

747,755
773,781
711,725

579
563,578
582,593
433,456,

465

dB ldp

4.07

3.20,3.94,
4.24,4.68
4.55,4.76

4.78

4.49,4.67

4.6
4.79
4.78

4.58,4.88

p, (kbar)

125

80,105

215,220

140,170
172
123
100
84

62,80
77,83

22.5

II-VI ZnS

ZnSe

Cds

P-HgS
CdSe

HgSe

ZnTe

HgTe
CdTe

5.4102

5.6676,
5.6687

5.825 (zb)
5.818 (zb)
5.851
6.052 (zb)

6.084

6.1037,
6.100
6.461
6.481

748,769,
784,800,

841
595,607,
624,640,
657,667

549 (hex),
615 (hex)

686,597
530 (hex),
550 (hex)

486,497,
516,576
480,509,

513
408,423
420,421,
424,429

4.91

4.77

4.88

4.7,5.04

3.78
6.4

150

137

27

0
29

95

14
33,39

IV-VI PbS
PbSe
PbTe

5.9362
6.1243
6.454

572
541

409,456
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ticular system of interest. For the simple case of a com-
mensurate epilayer on a thick substrate, the bulk
modulus is that of the substrate (B, =B,„b}. However,
for a free-standing superlattice

1

B,
= 2

aeq tl +t2 BI aeq

t2 1

tl+t2 B2

in the low-pressure limit, and therefore B,q is intermedi-
ate to B, and B2. Again, the thin film on a substrate case
can be viewed as the limiting case of t2~ ao.

Exact theory of course includes terms to higher order.
However, as will be seen, Eq. (5) is sufficient to demon-
strate the physical trends related to the exact theory. It
is also worth mentioning that the more commonly used
quasilinear result obtained by combining Eqs. (1) and (4)
in the low-pressure limit of Eq. (4b) (B'—+0} is even less
accurate than the linear analysis. Specifically, if e(p) in
the quasilinear model were expanded in powers of p, only
the final term in the bracketed p expression in Eq. (5)
would be recovered. However, the other terms in the
brackets that would remain in the B'~0 limit would not
be recovered. Of course, the pressure-dependent strains
may be calculated for any semiconductor heterostructure
using the above equations and the relevant parameters,
which are given in Table I, ' either exactly, or in the
linear, quasilinear (low-pressure, B'~0), or quadratic ap-
proximations. However, certain general trends should be
noted.

It is evident from Eq. (1) that at ambient pressure, the
strain is tensile e & 0 (compressive e & 0) for a, & a
(a,q

& a ), while from Eq. (5) it follows that de/dp & 0 for
B, &B and de/dp &0 for B, &B. Therefore, if the het-
erostructure material with the larger lattice constant also
has the smaller bulk modulus, the immediate effect of
pressure is to reduce the magnitude of strain in each lay-
er. Indeed, this inverse relationship between lattice con-
stant and bulk modulus exists for many systems, as will
now be shown.

III. GENERAL TRENDS IN EPILAYER STRAINS

Keyes' noted several trends among the elastic con-
stants of tetrahedrally bonded semiconductors, including
the observation that within the same series the elastic
constants are approximately proportional to 1/b, where
b is the distance between nearest-neighbor atoms (b ~ a ).
Indeed, a similar trend has been demonstrated between
the bulk modulus and lattice constant for the alkali
halides, ' ' metals, ' ' and other solids, ' ' ' with the
general result that B=Boa ", where n is determined by
the dependence of the interatomic potential on distance
and Bo is determined by the type of chemical bond. In
Table I, this general decrease of B with a is seen for
binary II-VI semiconductors, binary III-V semiconduc-
tors, and for the group-IV materials. Small variations
that exist between the different series are due to differing
ionicity and effective valence charge. '

Recent work has more accurately characterized the re-
lationship between bulk modulus, lattice parameter, and

BI
B2

1 —0.25f;i aq
3.613

&1.
1 —0.25f;2 a i

Figures 1 —3 show how the in-plane strain changes with
applied hydrostatic pressure in several representative het-

bond character. ' ' Notably, by considering how the
bond stretching and bending force constants and the lo-
calized effective charge depend on bond distance and ion-
icity, Neumann ' has shown that the bulk modulus for di-
amond and zinc-blende semiconductors can be related to
the lattice constant a and the spectroscopically defined
bond ionicity f; by

B = 105.25(1 —0.25f; )/a

where B is in kbar and a is in nm. Within each series f;
is fairly constant and the bulk modulus generally depends
on lattice constant as —1/a . For each semiconductor
series, the data in Table I are well fit by this 1/a
dependence, which is superior to a 1/a 4 fit.

Ternary II-VI and III-V alloys are thought to fall on
these universal curves if their ionicities are similar to
those of the corresponding binary compounds. Excep-
tions to this trend are found among the diluted magnetic
semiconductors. For example, the elastic constants and
bulk moduli of Cd& „Mn„Te and Hgl „Mn„Te decrease
with increasing Mn concentration, though their lattice
parameters decrease. ' Explanation is offered in terms
of reduced bond charges (and consequently increased ion-
icity} in these compounds with increasing concentrations
of Mn. ' On the other hand, as the Mn fraction in-
creases in Zn, „Mn„Se (thereby increasing a and b) the
elastic constants and bulk modulus decrease faster than
a, again because the added Mn also decreases bond
charge.

It therefore follows that for all strained heterostruc-
tures consisting only of binaries or ordinary ternaries
selected from among a single series of II-VI, III-V, or
group-IV semiconductors, the immediate effect of pres-
sure must generally be to reduce the magnitude of strain
at ambient pressure, resulting in increased elastic stabili-
ty. This results because for aeq & a then Beq &B, and vice
versa, and applies to epilayers grown pseudomorphically
to substrates, for which a,q=a, „b and Beq Bs&bp free-
standing and strain-symmetrized strained-layer superlat-
tices, and to more general strained-layer heterostructures.
Nonetheless, exceptions to this trend do exist, as for ex-
ample in the cases of A1Sb/GaSb and HgTe/CdTe het-
erostructures, where biaxial strain increases with pres-
sure. This results from small deviations from the inverse
functional dependence between B and a.

For heterostructures composed of semiconductors
from different series, the inverse relationship between B
and a does not generally apply. Nonetheless, it does hap-
pen to apply in many such heterostructures, including
ZnSe/GaAs. By using Eq. (7), which is from Ref. 21, a
general relation can be established for such different-
series heterostructures. For example, for an epilayer on a
substrate with a& &a2, where al may refer to either the
epilayer or the substrate, epilayer strain wi11 decrease
with applied pressure if
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FIG. 1. Linear, quasilinear, quadratic, and exact results for
biaxial strain at room temperature are plotted vs applied hydro-
static pressure for a Si epilayer grown on a Ge substrate, which
is a same-series semiconductor heterostructure. p, denotes the
lower of the two phase-transition pressures of the heterostruc-
ture components, i.e., for Ge.

erostructures at room temperature. Figure 1 demon-
strates the general decrease in the magnitude of strain
with pressure in same-series heterostructures, while Figs.
2 and 3 demonstrate this same variation for specific
different-series heterostructures. These figures compare
the exact model of epilayer strains with the linear, quasi-
linear, and quadratic approximations. It is immediately
evident that the commonly used quasilinear theory is not
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FIG. 2. Linear, quasilinear, quadratic, and exact results for
biaxial strain at room temperature are plotted vs applied hydro-
static pressure for a ZnSe epilayer grown on a GaAs substrate.
In this different-series semiconductor heterostructure, each
model predicts crossover through a strain-free condition at
pressures lower than the phase-transition pressure in each layer,
which is in contrast to what happens in most other different-
series heterostructures. p, denotes the lower of the two phase-
transition pressures of the heterostructure components, i.e., for
ZnSe.

FIG. 3. Linear, quasilinear, quadratic, and exact results for
biaxial strain at room temperature are plotted vs applied hydro-
static pressure for an InAs epilayer grown on a ZnTe substrate.
In this different-series semiconductor heterostructure, exact
theory predicts a crossover at a pressure far exceeding the tran-
sition pressure of each semiconductor. p, denotes the lower of
the two phase-transition pressures of the heterostructure com-
ponents, i.e., for InAs.

adequate in most cases.
It should be noted that because strains involve lattice

constant differences, it is even more critical to use the ex-
act form of a(p) in analyzing biaxial strain in hetero-
structures than in analyzing lattice constants in bulk ma-
terials. This is clear in comparing the strain for Si films
on Ge at 1 bar and at 50 kbar. Exact theory predicts
fractional changes in the Si and Ge lattice constants
(from 1 bar to 50 kbar) that are 10% and 14% smaller
than the changes predicted by quasilinear theory. How-
ever, the fractional change in the biaxial strain for Si/Ge
predicted by exact theory is 26% smaller than that pre-
dicted by the linear model as seen in Fig. 1. Though this
specific example used the values of 8' from Table I, this
conclusion is not very sensitive to the exact values of 8'.

IV. STRAIN-FREE CONDITIONS

Using only terms linear in p in Eq. (5), it is seen that
for heterostructures with a, )a and 8, (8 or vice ver-

sa, with continued increase in hydrostatic pressure the
magnitude of strain in each layer continues to decrease
until a strain-free condition is attained. With a further
increase in pressure the magnitude of biaxial strain in-
creases, but now layers that were formerly compressive
are tensile, and vice versa. However, the potential for
such a crossover (through a strain-free condition) de-

pends on two factors. First, if any layer undergoes a
phase transition at the applied hydrostatic pressure, the
interface will no longer be commensurate. Any crossover
must therefore precede a phase transition in any of the
layered components. For semiconductors, the first phase
transition usually occurs at p, —10—220 kbar (Table I).
Second, the nonlinear dependence of volume on pressure
in Eq. (4a) must also be considered. Higher-order terms
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may prevent crossover before the phase-transition pres-
sure.

To see the effect of higher-order pressure terms more
clearly, Eq. (5) may be rewritten as

2

P
18

1 —~—+
B 3 B

1+5e'(p) = (9)

where b =a/a, —1 — e(1—bar), P=B/B,
q
—1, and

a=68' +13(38'q+1)+(3/P)(8'q —8'). Physically,
crossover (a=0) can only occur for 5/P& 0, and then, at
a pressure p =p„ for which,

1 Pc a Pc+
P 38 18 8

2

(10)

For a heterostructure composed of two semiconductors
from an identical series (e.g., two II-VI or two III-V
semiconductors), b, /P- —1/3. 6 because 8 ~ 1/a
This assumes that the magnitude of 4&&0.1, which is
anyhow generally the case, since biaxial strains in
strained layers seldom exceed a few percent. If the
quadratic term in Eq. (10) were ignored (linear approxi-
mation), one would obtain the condition p, =(3/3. 6)B,
which is typically -500 kbar, and far exceeds the phase-
transition pressures of semiconductors. Moreover, when
the quadratic term is included in Eq. (10), it is seen that a
solution for p, exists only when —I/2a & 6/P 0, where
I /2a -0.017. The lower limit is an estimate using
reasonable values for 8', etc. , from Table I. (For most
II-VI and III-V semiconductors B'-4-5. The first term
in a is therefore -24—30. Though the magnitude of the
second term depends on the materials involved, it is typi-
cally —10—20% of the first term. The third term is usu-
ally negligible. Therefore, a is -30 for many II-VI and
III-V semiconductor heterostructures and is only weakly
dependent on the details of the specific system. )

Consequently, for a heterostructure composed of two
semiconductors in the same series there is no solution for
p, . This means that contrary to linear theory, a strain-
free condition can never be attained (even when consider-
ing p &p, ) by applying hydrostatic pressure to these
structures. The use of the exact form of Murnaghan's
equation (instead of the expansion to the p term) and
corrections for the small deviations from the 8 ~ I/a
dependence do not change this conclusion. This is
confirmed for the case of a Si epilayer grown on a thick
Ge substrate (b, /P= —0. 132; Bs;=979 kbar; Bo,=750
kbar; Bs; =3.94; 8G, =4.76 from Table I), as is shown in
Fig. 1. Linear and quasilinear theory predict a crossover
(offscale in the figure), albeit above the (lowest) phase-
transition pressure. However, quadratic and exact theory
predict that in fact no crossover can ever occur. A simi-
lar situation exists for InAs/GaSb heterostructures
(b, /P= —0.218). In this latter case b, /P is relatively near—1/3. 6, which is typical for III-V and II-VI heterostruc-
tures.

However, for heterostructures composed of semicon-
ductors from different series (or those which do not
strictly follow a 8 ~ 1/a ' dependence), a solution to Eq.

(10) can sometimes be obtained. For example, because
the lattice mismatch is very small for ZnSe/GaAs hetero-
structures, while the difference in the bulk moduli of the
two materials is relatively large (b, /P = —0.012;
Bz s 595 kbar; BG,A, =747 kbar, Bz s 4 77

BG,A, =4.67 from Table I), a crossover condition is at-
tained with p, &p, (Fig. 2). It is predicted to occur at

p, =22.3, 22.0, 28.1, and 26.7 kbar using linear, quasilin-

ear, quadratic, and exact theory, respectively, and has
been seen experimentally by Tuchman et al. , Cui et al. ,
and Rockwell et al. A similar crossover with p, &p, is
predicted for GaSb/ZnTe (Ref. 5) (b, /P= —0.007) at

p, =12.4, 12.3, 14.2, and 13.9 kbar using linear, quasilin-
ear, quadratic, and exact theory, respectively. Equation
(8) can be used with Eq. (10) to examine the general
trends for strain-free crossover in different-series hetero-
structures with b, /P &0.

In some cases, linear and quasilinear theory predict
crossover prior to the phase-transition pressure, while
quadratic and exact theory indicate that these are expect-
ed to occur either after the phase transition, or not at all.
Figure 3 indicates that for InAs/ZnTe heterostructures
(b, /P= —0.036; Bi„A,=579 kbar; Bz„T,=480 kbar;
8',„~,=4.79; Bz„T,=4.7 from Table I), linear and quasi-
linear theory predict a crossover at 62.6 and 60.5 kbar,
respectively. However, quadratic theory predicts that no
crossover can occur, and indeed, actual crossover is ex-
pected to occur at 132 kbar —which is much greater than
the phase-transition pressures of InAs (84 kbar) and
ZnTe (95 kbar). For GaP/Si (6/P= —0.039), despite the
small initial mismatch (e = —0.37%) and the rather high
phase-transition pressures, quadratic and exact analysis
indicate that no crossover can ever occur. Note that
linear and quasilinear theory predict crossover at 104 and
100 kbar, respectively.

The example of InAs/ZnTe heterostructures in Fig. 3
illustrates the uncertain nature of strain predictions in
heterostructures under hydrostatic pressure when B and
8' are not accurately known, since e(p) is sensitive to the
exact choice of parameters. Using an alternate value of B
(509 kbar) listed in Table I for ZnTe, and the value of 8'
used in the figure, p, is predicted to be at 320 kbar using
exact theory, instead of 132 kbar, which is still )&p, for
InAs and ZnTe. Moreover, if B' for ZnTe is changed to
the alternate value listed in Table I (5.04), then for any of
the listed values of B, a crossover will never occur. Usual-
ly, a change in B' is more significant than a change in B,
and therefore only the exact and quadratic models are
strongly affected by uncertainties in these parameters.

Although the examples provided in Figs. 1 —3 refer to a
thin epilayer on a substrate, similar conclusions can be
drawn for all free-standing heterostructures of the corre-
sponding materials. For example, though changes in bi-
axial strain with pressure are slower in superlattices than
in epilayer-substrate structures, the crossover pressure p„
at which there is no biaxial strain, is the same for all het-
erostructures of similar composition because the cross-
over condition is still a, (p, ) =a 2 (p, ).

In closing, it should be noted that it may be possible to
relate the condition for pressure-induced crossover
through a strain-free condition in semiconductor hetero-
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structures [Eq. (10)] with the phase-transition pressures
of its bulk semiconductor constituents. There is evidence
that the pressure at which the first phase transition
occurs can be predicted fairly well by using the modified
Born criterion, which states that a phase transition
occurs when the ratio of a shear modulus to the bulk
modulus, g=C, (p)/B (p), where C, is the smaller of C~
and (C„—C2z)/2, decreases below a critical value. [For
zinc-blende semiconductors, (C» —C22)/2 is the smaller
of the two. ] This is a revision of the original Born cri-
terion which stated that g,„„„&=0at p =p, . For alkali
halides, it has been found that q„;„„&-0.15—0.20. For
many II-VI and III-V zinc-blende semiconductors

graf jtjgg] 0. 17—0.23, with smaller values for II-VI corn-
pounds than for III-V compounds, while for Si and Ge,
g„;„„&is closer to 0.30. Though it is known that g„;„„&
tends to decrease with increasing ionicity, there is no
accurate information on how it varies over an entire
semiconductor series. Nonetheless, within a group of
similar bulk semiconductors (e.g., ZnS, ZnSe, and ZnTe)

p, could, in principle, be determined by when C, (p)/B (p)
reaches the given critical value for that group.

It has further been shown that one may extrapolate
values of g=C, (p)/B (p) to high pressure by using low-

pressure values and their derivatives. For the bulk
modulus, B(p)-B+B'p is determined by knowing the
general form of B, say from Eq. (7), and B'=dB/dp,
where B and B' are evaluated at 1 bar. For these semi-
conductors B' typically ranges from 4—5 (Table I).
Moreover, it can be seen that B' is either nearly indepen-
dent of the lattice constant a or increases very slowly
with a. Keyes' has shown that C44 and (C» —C22)/2
both decrease as A /a for semiconductors, where A de-

creases faster with ionicity' than does the corresponding
factor for the bulk modulus [Eq. (7)]. However, the gen-
eral variation of dC, /dp with lattice constant is not clear.
For example, while in many materials dC44/dp is typical-

ly 0.5 —1.5, in some materials it is even negative.
Though these general trends between the strain cross-

over pressure p, and the phase-transition pressures p, of

the individual bulk materials can be established, the
above analysis suggests that this is not of great impor-
tance since in most cases it is clear that p, &p, . It should
also be noted that the thickness of a layer and the strain
in that layer can affect to some degree the pressure at
which the phase transition occurs, as has been shown by
Weinstein et al.

V. CONCLUSIONS

In summary, the application of hydrostatic pressure to
semiconductor heterostructures composed of semicon-
ductors from the same series usually decreases the magni-
tude of biaxial in-plane strain in each layer. However,
these systems will never cross over from compressive to
tensile strain, and vice versa, through a strain-free condi-
tion. For strained layers composed of semiconductors
from different series, the application of pressure may or
may not decrease the magnitude of strains. When it does,
crossover through a strain-free condition can only occur
when the materials are very nearly lattice matched and
yet have very different bulk moduli (possibly because of
differing ionicity). This is true for a few II-VI/III-V,
group-IV/II-VI, and group-IV/III-V combinations.

Finally, the pitfalls of using linear or quasilinear theory
in heterostructure strain analysis have been demonstrat-
ed. Keeping terms quadratic in pressure does, however,
improve the analysis somewhat. Exact theory confirms
that there will be a crossover, prior to a phase transition,
only when predicted by quadratic theory. However, only
an exact strain analysis using Murnaghan's equation pro-
duces accurate numerical results.
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