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Interaction of excitons with a generalized Morse surface potential: s-polarized incident light
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Exciton reflection spectra of direct-band-gap semiconductors are investigated theoretically with the
aid of an appropriate model for the surface potential. The dynamics of excitonic polaritons subject to a
generalized Morse surface potential and the corresponding optical response are solved exactly for the s-
polarization geometry. These calculations include an analytic determination of the profiles of the elec-
tric field and the polarization vector and of the reflectivity for s-polarized light. The correlation between
the parameters of this extrinsic surface potential (height at the surface, width, depth of the well, and sur-
face damping) and the reflectance spectra is studied for the A excitons of CdS and GaAs as examples.
We also analyze the manifestation of near-surface localized excitons in the reflection line shape. It is
demonstrated that the excitonic bound states cause broad peaks in the spectra.

I. INTRODUCTION

For many years the optical properties of undoped,
direct-band-gap semiconductors (insulators in practice) in
the excitonic region of frequencies have been intensively
studied (see, for example, Refs. 1-6). At the present
time, it is well established that the exciton reflection spec-
tra are strongly sensitive to the state of the near-surface
layer (transition layer).® This fact is interpreted as a
consequence of the interaction of excitons with a surface
potential. The form of this potential depends on several
factors: process of sample growth and special treatments
of the crystal (illumination, doping, electron and ion
bombardment, application of electric field, heating, etc.).

The transition layers of crystals may be classified in
two groups.”® The first comprises intrinsic layers that re-
pel excitons. The image potential>® and the no-escape
condition for the electron and hole®!® contribute to the
formation of these layers. In the second group there are
transition layers that have an extrinsic contribution (due
to surface charges) to the surface potential. Depending
on the characteristics of this contribution, the excitons
may be attracted or repelled by the surface, and may also
suffer additional absorption. Moreover, in these layers
the exciton wave function and the polariton fields behave
differently than in the bulk.?

In order to understand the correlation between the ex-
citon reflection line shape and the nature of the transition
layer, various theoretical models for the surface potential
have been proposed. Hopfield and Thomas? suggested the
model of the “exciton-free layer,” also called the “dead
layer.” The essence of the exciton-free-layer model con-
sists in the replacement of the intrinsic repulsive potential
U(z) by an impenetrable barrier (infinite step) at some
distance z =/ from the surface. Sugakov and Kho-
tyaintsev!! supposed a linear dependence of the surface
potential on the coordinates and solved exactly the prob-
lem of the motion of an exciton-polariton in a medium
with spatial dispersion. A more realistic model to de-
scribe a repulsive layer is the exponential one:

45

U(z)=Uyexp(—z/a) (U, and a are parameters). Assum-
ing this exponential form of the potential, Skaistis and
Khotyaintsev'? found the exact solution to the exciton-
polariton motion problem in the case of normal in-
cidence. Balslev,!* Ruppin and Englman,'* and Ruppin'®
also employed the exponential model; however, the re-
sults of their investigations were obtained from numerical
calculations. The exponential potential explains well the
experimental reflectivity spectra of both II-VI and III-V
semiconductors.'?

The presence of an extrinsic contribution to the surface
potential is very common. This is due principally to the
great facility of the transition layer to be modified by im-
purity ions which are produced with surface treatments
or even unintentionally during the crystal growth. The
impurities give rise to a near-surface macroscopic electric
field and, as a result, a band bending.7 A fundamental in-
vestigation of the action of the near-surface electric field
on excitons has been performed by Blossey.'®!” Evangel-
isti, Frova, and Patella’ examined the effect of the extrin-
sic layers on exciton reflectance, making use of the model
of Hopfield and Thomas. They concluded that the im-
purities in the near-surface region increase the dead-layer
thickness. In a series of works Kiselev,»!#72! and
Lagois??> analyzed the reflectivities corresponding to
different models of the potential U(z) with an attractive
part. The potential was approximated by a multistep
model. Also considered is a gradual increase of the exci-
ton damping near the surface because of the probability
of dissociation of the exciton due to impurities. A prob-
lem of current interest is the generation of bound exciton-
ic states in the surface potential well.?»>* These states
may manifest themselves in the reflection spectra as a
complex structure of spikes. Thus important variations
in the reflection line shape, owing to exciton localization
at treated semiconductor surfaces, have been observed in
several experimental works.?> ™28

The principal purpose of the present work is to investi-
gate the behavior of excitons, and the corresponding
exciton-polaritons, with a realistic enough model for the
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surface potential U(z) which, at the same time, permits
us to find an analytic solution to the problem. For this
reason we have proposed a model for U(z), named the
generalized Morse surface potential, whose functional
form is

Uje **+U,e %%, 2>0

Ulz)= 2 <0 (1)

o
(the infinite half-space z >0 is occupied by the semicon-
ductor). The quantities U,, U,, and a are parameters
that depend on the type of transition layer. Thus, in the
cases |U,| << U, or |U,| << U, the model (1) is essentially
exponential and describes repulsive potentials [see Fig.
1(a)], which are characteristic of intrinsic semiconductors
at low temperatures. In more general cases U(z) from (1)
can be adjusted to represent shallow [Fig. 1(b)] or deep
[Fig. 1(c)] potential wells. These potentials correspond to
strongly treated surfaces. The conventional Morse poten-
tial is obtained by choosing U; = —2U, and by extending
the validity of Eq. (1) (for z > 0) to all z.

Another objective of this paper is to find a detailed
correlation between the physical parameters of the sur-
face potential (height at the surface, and depth and width
of the well) and the reflectivity spectra. Such a depen-
dence can shed light on the form of U(z) on the basis of
experimental spectra, and ultimately can be related to the
state of the sample surface. Moreover, it is of great in-
terest to understand the connection between the spectral
resonances (spikes) and the eigenstates of mechanical ex-
citons, localized near the surface.

In Sec. II, using the generalized Morse surface poten-
tial, we obtain analytic exact expressions of the electric
field and the excitonic polarization and of the semicon-
ductor reflectivity for s-polarized light. The study of the
influence of the potential parameters on the reflectivity
spectra is carried out in Sec. III. Finally (Sec. IV), we in-
vestigate the form of manifestation of near-surface local-
ized excitons in the reflectance.

O Z1 Zm

Z5 z

FIG. 1. Generalized Morse surface potential: a, exponential;
b, shallow well; ¢, deep well.
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This work is the first of a planned series devoted to the
analysis of the interaction of excitons with the general-
ized Morse surface potential. A future paper will deal
with p-polarized light incident at a surface. A third pa-
per will be devoted to transmission by a thin film.

II. THEORY

Let us consider a spatially dispersive dielectric occupy-
ing the semispace z > 0. In the region z <0, which corre-
sponds to vacuum, the incident and reflected fields are s-
polarized and have the form

Ei =(0yEi(xyZ>t)y0) s

g, x+g,z)— w0t

E,(x,z,t)=E;e s
()
E,=(0,E,(x,z2,),0) ,
E,(x,z,t)=E,el(q"x_q’”—m' ,
where
q,=gqsin8, g,=qcosb, g=w/c, (3)

o is the frequency, 6 is the angle of incidence, and c is the
speed of light in vacuum.

In order to investigate the optical properties of nonlo-
cal dielectrics, we will employ a system of coupled
differential equations for the electric field and polariza-
tion vector in the medium (z >0). This system is com-
posed of the equation of motion for the polarization P
and the wave equation for the electric field E. For the as-
sumed geometry

ot

P=(0,P(x,z1),0), P(x’zyt)=P(z)equx_ @

and the system of equation to solve is?

9 2 _ w12’
37 +T4z) |P(z)=— 2 a)TE(Z) ,
) " ) )]
[0} 0 _4dro
’qﬁ_eo C2 - azz E(Z)_ C2 P(Z) ’
where
Fz(z)=I‘§+AF2(z) s (6)
fiw
FZB= MT wz_sz____MT q,f-Haw s
(7)
2 v 2MU(2)
AF (Z)__T .

Here E (z) is the y component of the electric field in the
region z 20, ¢, is the background dielectric constant, o
is the frequency of the exciton resonance, wp is a measure
of the oscillator strength, v is the damping constant, and
M is the translational exciton mass.

It is important to mention that the excitonic polariza-
tion field P in (4) is proportional to the exciton wave
function of the translational motion and that the first
equation in (5) was obtained by time-dependent perturba-
tion theory for a single excitonic resonance.>’ The sur-
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face potential U (z), which appears in Egs. (5)—(7), in fact
determines the shift of the binding energy of the
electron-hole pair with respect to its bulk value
[AEinging(2)=—U(2)].

Equations (5)-(7) are valid in the frequency region
lo—ws| <<wy. Hence the parameter '} can be “renor-
malized” such that it includes AT?%(z). Indeed, making
the substitutions
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For the half-space z >0 the function P(z) can be written
as a linear combination of only two independent solutions
of Eq. (9):

P(z)=A,P,(2)+ A,P,(z) . (10
In the bulk [exp(—z/a)<<1], where AT%z)—0 and

I'*(z)—T%, the functions P,(z) (s =1,2) have the asymp-
totic form

or—or(z)=or+Awr(z) , Awp(z)=ReU(z)/#,
(8a)
=y+ A =—2 __ 4.z
v—v(z)=v+Av(z) , Av(z) ImU(2)/%, P(z)=e""", (11
in formula (7) for T'} we find that I'*(z) in (6) may be
written as where ¢, (Img, >0, s =1,2) are
M ﬁ(UT 2 2
*z)= P~ wi(z)— 2+ : 8b 1 o’ ©
I'“(z) Heo, o —w7(z) w9 tov(z) (8b) g1,= > F%-l—e(,?—q,fi F%—eo-c;+q3
As has been commented in the Introduction we assume
that the complex surface potential U(z) in Egs. (5)-(7) is 4ada?M 1177 172
X . . P
given by the generalized Morse surface potential (1). —, .
This model has two complex parameters (U,,U,) and ¢“for
one real (a). In the particular case that U;=—2U, the
potential U(z) (z >0) takes the form of the “classical” 12)
Morse potential truncated at z =0.
The system of equations (5) can be reduced to one For arbitrary z it is convenient to write
equation for P(z) by substituting E(z) from the first
equation in (5) into the second done. We get PS(Z)EeLq’zFS(z) ’ (13)
a* o’ ar? oP
EZ—P + 60“7_4): (+TH2) |- P+2—— oz oz where F((z) are to be determined. For large values of z
[exp(—z/a) << 1] the functions F,(z) are practically con-
w*? s o a)%,a)zM T2 . stants [F(z)~1].
+ €072 "4 I'(z)— PEP 322 P=0 After substitution of expressions (10) and (13) into Eq.
T (9) we obtain the equations for the functions F,(z)
©) (s =1,2):
o, +4 oF, + |6(ug, 2+ T3+ AD2(2) + €2 oL,
L L z)tey—5 —
az4 95 823 qs B 0 C qx azz
2 2
41g,’+2uq, | T} +ATXz) + e % —g2 | +298012) 1 25
c oz oz
2 2 24 T2
AT(2) |(1g, PHeg s —g? | +2iq, 28TN2) | FAL) | (14)
c? dz az?
f
These equations with the surface potential U (z) from (1) 3*f, d*f, 5 3 3%f,
may be solved exactly. Introducing the variable & act a1:§3 e a8 tasd +a4s§4) ac
f=e 77, (15) af,
2 3 2
and a set of functions f(£) (s =1,2) defined by Flasbtaet +a’) A 3 T lasbtagtf =0
f:(8(z2))=F(z), (16) 17)
Equations (14) can be written in the form Here the coefficients a;, (i =1,2,...,9;5s =1,2) are
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als=6—4KS N

2
ay =7+ r§+eo%—q3 a?—12k,+6k2 ,
_u . n
=T Ty
2 o’ 2,2
a53=1+ I-\B+60?—qx a
2 o’ 2 (,2 2 3
—2k, |2+ FB+50_;2—_qx a* | +6x;—4«; ,
U (18)
Qg =—(2,—3) , ay —}72(2,% 5),
U 2
a85=_71 1+ 50?_‘13 (12_2KS+K§ ,
2 2
a9s=——[é—/ 4+ eo—z%—qf a’—4x,+K2 |,

ask(k —1)+tagk +ag
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where

W=#/2a*M . (19)

K, =1Lg;a ,

Equations (17) may be solved by writing

o]

£=3 actk. (20)

k=0

Insertion of this expression for f(£) in Eq. (17) leads to
the recursion relation

Qp 1,5 = s Qs Tl Qg 1 5 (21)
for k 21 with ag,=1 and a ;= —ag,/as, (s =1,2). We
have here

T T T e+ D[k (k — 1)k —2)Fak(k —1)+ayk +as]

sk — D)k —2)+az(k —1)+ay,

b = Tk F D[k (k—1)(k —2)Fayk(k —D+agk +as]

Using Eqgs. (16) and (20), we express the functions F,(z)
(s =1,2) as follows:

F(z)= 3 aje /7. (23)
k=0

The relations (10), (13), and (23) give us the solution P(z)
of Eq. (9) for the case of a dielectric half-space. With the
aid of the first equation in (5) and the found polarization
P(z) we can write the electric field E (z) in the form

E(z)=A,E(z)+ A,E,(z), (24)
where
drtior 4 .| 0°F,(2) oF(z)
E(z)=——F—e" > t2ug
wpM 0z oz

+[I'(z)—q2]F,(2)

b

s=1,2. (29

At the surface of the dielectric we will apply Pekar’s
additional boundary condition (ABC) P(0)=0.! This
choice is justified by the finite radius of the Mott-
Wannier exciton: the center of mass of the exciton can-
not reach the surface plane z =0, implying that the wave
function (and polarization) there vanishes. The Pekar
ABC and the first equation in (5) evaluated at z =0 per-
mit us to relate the constants 4, and 4, to the electric
field at the surface E (0). Thus,

(22)
[
a= M b 0EW©)
Y 4ntio; 02 ’
26)
2
4,=-2P7 ¢ P (0)E(0)
2 4rfiwy 0! ’
where
Co=[P,(0)P}(0)—P,(0)Py(0)] " . 27)

Here the primes symbolize derivatives with respect to z.
Employing the usual continuity conditions on the tangen-
tial components of the electric and magnetic fields at
z =0 we easily get the reflectivity

E, 1q,—[E'(0)/E(0)
R=l?, r=lr it ] (28)

E, 1q,+[E'(0)/E(0)]’

where, using Eq. (5),

E’(O) e ’
Ew©) ~ ColP2(0)[PY"(0)+T*0)P(0)]

—P,(0)[P5'(0)+T%0)P5(0)]} . (29)
Finally, using the boundary condition E(0)=E;(1+r),

we can express the fields P(z) from (10) and E(z) from
(24) in terms of the incident-wave amplitude
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oA M
p(z):%;—wTCO[Pl(O)Pz(z)—PZ(O)Pl(z)](1+r)E,- ,
(30)
2
M
O ColPL(0)E,(2)— P, (0)E (2)[(1+PE, .
T

Let us verify our results in the case of the repulsive ex-
ponential potential, which is a good model to represent
surface potentials of sufficiently pure (intrinsic) semicon-
ductors at very low temperatures.!®> The exponential po-
tential is a particular case of the generalized Morse sur-
face potential. Thus, assuming that U,=0 in (1) the
function U (z) becomes

U(z)=U,e %/, z>0. 31)

It is not difficult to demonstrate that with the repulsive
potential (31) the functions F,(z) (s =1,2) in (23), which
determine the effect of the surface potential on the fields
P(z) and E (z) in (30), are expressed as

F1(2)=2F3(1+KO-K1,1_K1_KO 5

1=K+, 1 =K =Ky, 1 —2k36)
(32)
Fy(z)=,F3(1+Kky—Ky 1 —Ky—Ky 3

1_K2+K1,1_K2—K1,1_2K2;§) .

Here k,=(€y)!%aw/c, E=(U,/W)e */% ,Fi(a,,a,;b,,
b,,b;;&) is the generalized hypergeometric series. In the
situation of normal incidence (=0, g, =0) the functions
F.(z) from (32) go over into the corresponding results of
the work.!?

III. THE SURFACE POTENTIAL
WITH EXTRINSIC CONTRIBUTION

In this section we will consider that the surface poten-
tial of the semiconductor has an attractive part due to the
presence of impurities in the transition layer.® Within
our model [Eq. (1)], to simulate a real surface potential it
is necessary to specify three parameters (ReU,,ReU,,a).
We will relate them with quantities which characterize
physically the potential (see Fig. 1): the height at the
boundary U,, the minimum value U,,, and the width A
defined as the difference between the roots z, and z,
(z;>z,) of the equation ReU(z)=U,,e " !. Elementary
calculations give us the dependences of ReU,, ReU,, and
a on the physical parameters:

RCU1 = UO—RCU2 >

ReU,=U,—2U,, +[(U,—2U, )*—U31'"?, (33)
a =0.4608A .
The surface increment of the damping Awv(z)

=—2ImU(z)/#% will be described by an exponential
function.?’ Taking U, as real we assume that the surface
damping has a range a, namely,

Av(z)=Avge "?%, Avo=-—2ImU,/# . (34)

Now let us analyze the theoretical results of calcula-
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tions of normal incidence (6=0) reflectivity for the 4, _,
exciton of CdS. The CdS data used in the calculations
are®® #iw;=2.55272 eV, #wp=0.29396 eV, M =0.94m
(m is the free-electron mass), €,=9.1, #iv=0.124 meV (1
cm™ ). Figure 2 shows the modification of the reflection
line shape with increasing width A of the surface poten-
tial well and fixing other parameters (| v, [, Uy, and Avy).
Note that the increase of A diminishes the main reflection
peak (w=wy;). Also, a spike appears near the longitudi-
nal exciton frequency fiw; =2.554 58 eV. Then the effect
of “rotation” of the reflection contour with increase of A
is obtained. Such a rotation has been reported in Ref. 31
for CdS samples treated by electron bombardment.
Another important consequence of the variation of the
width A (i.e., the extrinsic-transition-layer width) is the
shift of the reflectance minimum R ;, to lower frequen-
cies. The variation of other parameters (see Figs. 3-5)
demonstrates that the redshift of R, is, fundamentally,
due to the increment of A. The potential-well width is
practically determined by the surface electric field, and
may be found from the redshift observed in an experi-
ment.

The reflectivity peak at w, is also obtained with in-
creasing the depth of the potential well (see Fig. 3). This
spike has been observed with doped CdS crystals in
numerous experimental works.”?>?* Moreover, in Fig. 3
the enhancement of the overall reflectivity is evident,
contrary to the effect produced by the width increase
(Fig. 2).

Variation of the height of the extrinsic surface poten-
tial (U,) produces small changes in the reflectance spec-
tra (see Fig. 4). However, these variations are different
from those which are seen in the case of repulsive (intrin-
sic) potentials. There the effect of increasing U, leads to
the reduction of the relative intensities of the main max-
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FIG. 2. Normal-incidence reflectivity of CdS with increasing
the width A of the surface-potential well: a, 100 .3;; b, 130 10\; c,
160 1&; d, 200 A. Other parameters of the surface potential used
are Uy=4 meV, U, =—2meV, iAvy,=11 meV.
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FIG. 3. Normal-incidenceAreﬂectivity of CdS with surface-
potential parameters A=130 A, Uy=4 meV, iAvy;=11 meV; q,
U,=—1meV;b, U,=—2meV;c, U,=—3 meV.

imum and minimum of the spectra, and to a small red-
shift of these extremes.!> Here (Fig. 4) the large max-
imum R, (0=w;) is essentially unshifted. Thus the re-
sults of Fig. 4 cannot be explained by the existence of a
repulsive potential near the semiconductor surface.

We know that the presence of impurities in the transi-
tion layer introduces an additional damping of the
exciton-polariton, Av(z), due to the final probability of
dissociation of the exciton in the surface electric field.
The surface damping can considerably influence the

0.7
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0.5
}
=
= 0.4
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@)
]
~ 1023
.
]
& 0.2
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} 4
L e e S e e e e
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[04)

2.550 2.552 2.554 2.556
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FIG. 4. Normal-incidence reflectivity of CdS for different
heights of the extrinsic potential at the surface: Uy=1 meV
(short-dashed line), Uy=4 meV (long-dashed line), Uy =8 meV
(solid line). Other parameters used in the calculations are
A=130 A, U,,=—2 meV, #iAv,=11 meV.
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FIG. 5. Normal-incidence reflectivity of CdS with increasing
surface damping: a, fiAv,=0 meV; b, fiAv,=6 meV; c,
#iAvy=11 meV; d, iAv,=20 meV. The parameters fixed are
Uy,=4 meV, U,,=—2meV, A=130 A.

reflectivity spectra. Figure 5 shows the reflectance curves
calculated for different values of the damping at the CdS
surface, Av,. The enhancement of the main reflectance
maximum (o=wy) with decreasing the value of Av, is
very prominent. The shape of the spike at o =w; is also
modified by the surface damping. So by increasing Av,
we can see in Fig. 5 that the spike is converted from a left
spike (when the main reflectance minimum is at
®in > @) to a right spike (w;, <w; ). The left-to-right-
spike conversion has been experimentally observed by in-
creasing the doses of electron irradiation on the sample
surface,?} and with etching, too.*?

Now we will apply our theory to GaAs, which is a III-
V semiconductor. Figures 6—-8 show results of calcula-
tion of the GaAs reflectance. The GaAs data utilized
were®?® #fiw;=1.515 eV, #w,=0.07106 eV, €,=12.6,
#iv=0.035 meV. It should be pointed out that we consid-
er a single exciton branch with mass M =0.298m, ob-
tained by the average valence-band approximation.'®

In Fig. 6 we show graphs of normal incidence
reflectivity R (o) for extrinsic surface potentials with dis-
tinct depths (|U,,|). In comparison to the CdS spectra it
is evident that a “rotation” of the spectrum takes place
for GaAs. As can be seen, there the increase of |U,,|
lowers more the main reflectance minimum R,
(w=wy) and, as in the case of II-VI semiconductors (see
Fig. 2 for CdS), the spike at the frequency of the longitu-
dinal exciton (w; ) gradually becomes a prominent max-
imum.

The influence of A on the reflectance of GaAs (see Fig.
7) has some characteristics of the II-VI semiconductors
spectra. For this reason, we can conclude that for both
types (II-VI and III-V) of semiconductors the redshift of
R ;. is an effect produced principally by the variation of
the potential-well width, which is intimately related to
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FIG. 6. Normal-incidence reflectivity of oGaAs with surface-
potential parameters Uy=1 meV, A=630 A, #iAv,=2 meV; a,
U, =—0.05meV; b, U,=—0.1meV;c, U,=—0.15meV.

the penetration depth of the surface electric field originat-
ed by impurities.®

We have also analyzed the dependence R (w) for
GaAs with various angles of incidence. The graphs of
reflectivity, obtained with the help of our method, are
given in Fig. 8. As can be noted the spectra of oblique in-
cidence for s polarization have similar features to the case
of normal incidence reflectivity. Figure 8 also shows that
the reflectivity R grows with increasing angle 6.
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Doz ] V.
5041‘ \/’
-
L
o
0.1 4
3 Wr Wi
0.0 Frrrrrrr

T )
1.5145 1.5150 1.5155 1.5160

FREQUENCY (eV)

1.5140

FIG. 7. Normal-incidence reflectivity of GaAs for different
values of the well width A: a, 400 A; b, 500 ;\; ¢, 600 A. Other
potential parameters used: Uy=1 meV, U,,=—0.05 meV,
#iAvo=2 meV.
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FIG. 8. Oblique-incidence reflectivity of GaAs for s-

polarization a, =0 b, =45 ¢, 6=280°; and with U,=1 meV,
U, =—0.05meV, fiAv,=2 meV, A=600 A.

IV. LOCALIZATION OF EXCITONS
AND ITS OPTICAL MANIFESTATION

In the Introduction we have commented that the sur-
face potential well can give rise to excitonic bound states.
In the present section we will study the influence of these
states on these states on the reflectivity spectra. With
this aim let us determine, first, the eigenvalues of energy
#iw, (n =1,2,. . .) of mechanical exciton bound states for
a specific potential well. We shall employ the Morse sur-
face potential U(z) from (1) with U, = —2U,, that is, the
truncated Morse potential. In this case the function (1)
can be written in terms of the minimum value U,, and
the position of the minimum z, [U, =U(z,)], as fol-
lows:

—(z—2,))/a

—2z—z )/a
|(e mT—2e

U)=|U, ), z>0.  (35)

The Schrodinger equation for the translational motion

of excitons in the semispace z >0 is®

? | 2M

—+ —[fw—fw,;—U(2)] |¥Y(z)=0 . (36)
azz ﬁz [ T ] ¢

The boundary conditions for the wave function (z) are

P(0)=0, Y(x)=0. (37)

In the interval of energies #iw; —|U,, | <#io < fiwy (inside
the potential well), Eq. (36) with the potential U (z) from
(35) has solutions of the form

¢=C€‘ZU/‘I¢(§) , (38)
where C is a constant, and
¢(E)= 3 ar, t=e7?. (39)
k=0
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FIG. 9. Graph of the Morse surface potential with U,,=—3
meV, z, =60 A, a =60_ A. There are only two exciton bound
states (n =1,2).

The coefficients a; in Eq. (39) satisfy the recursion rela-
tion
2z, /a z, /a

_ L€ a,_,—2e a; 40)
G0 T (20 +1+k)
for k=1, and with ao=1 and a,=—2v2exp(z,, /a)(2v

+1)"'. In expressions (38) and (40) we have introduced
the quantities

v=a[2M(or—w)/#]'?,

(41)
=(a/H)2M|U,, )'/?* .
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FIG. 10. Normal reflectance of CdS with the Morse surface
potential shown in Fig. 9, and with a, % Avy=0; b, fidvy=1
meV.
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FIG. 11. Graphs of the absolute values of a, the excitonic po-
larization |P(z)/E;| and b, the electric field |E (z)/E;| for the
Morse surface potential showed in Fig. 9, and with
Avy=0,0=0w,,;- Curve c is the exciton wave function ¢,(z)/C,
(see text). The other parameters correspond to CdS.

The eigenvalues #iw, are calculated by solving numeri-
cally the first equation in (37) [¢(0)=0] with respect to
. The number of eigenstates for the well of the Morse
surface potential is finite.

Now we shall analyze the CdS normal reflectance for a
Morse surface potential with exciton bound states. The
parameters of the chosen potential (see Fig. 9) are
|U,,|=3 meV, z,, =60 A, and a =60 A. In this situation
there are only two eigenvalues (#iw;=2.55137 eV and
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FIG. 12. Graphs of the absolute values of a, the excitonic po-
larization |P(z)/E;| and b, the electric field |E(z)/E;| for the
Morse surface potential shown in Fig. 9, and with
Avy=0,0=w,,,. Curve c is the exciton wave function 1,(z)/C,
(see text). The other parameters correspond to CdS.
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#iw,=2.55271 eV) of excitonic bound states within the
well. Reflectivity spectra corresponding to this potential
(without and with surface damping) are presented in Fig.
10 (the CdS data are the same as those used in Sec. III).
The bound states manifest themselves in the spectra as
maxima at the frequencies w,,;=(2.5516 eV/#),
®,,,=(2.5529 eV/#). The fact that the frequencies of the
maxima are greater than the eigenvalues is a result of the
interaction between the localized mechanical excitons
and the electromagnetic fields in the medium (polariton
effect®®). As may be expected, the surface damping (see
curve b) diminishes the peaks gotten in its absence (curve
a).

It is interesting to study the effect of the near-surface
localized excitons on the excitonic polarization P(z) and
the electric field E(z). Figures 11 and 12 show the results
of calculating |P(z)| and |E(z)| at the frequencies
®,,1,0,,, of the peaks in Fig. 10. In Figs. 11 and 12 we
have also included the wave functions ¥,(z),1,(z) of the
exciton eigenstates (w;,w,). Note that the polarization
field preserves important characteristics of the
mechanical-exciton wave function. Thus |P(z)| has one
and two maxima for the first and the second bound state,
respectively. Moreover, the excitonic polarization is
strongly localized near the surface, in the well. These
facts confirm that the broad peaks in the reflectance spec-
tra (Fig. 10) are originated by localized excitons. Accord-
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ing to Figs. 11 and 12, the electric field decreases in the
surface potential well. This explains the manifestation of
exciton bound states in the reflectance as a structure of
maxima. CdS reflectance spectra with two peaks at fre-
quencies 0, <wy (n =1,2) were observed in Ref. 27.

V. CONCLUSION

We have developed a theory which describes the
influence of extrinsic-semiconductor surface potentials on
the reflectivity spectra of s polarization. We found the
principal effects produced by the variation of the
surface-potential parameters and by the localization of
excitons near the semiconductor surface. These results
should be useful for inferring potential shapes from ex-
perimental spectra. However, because of large number of
quantities to define, a reflectance spectrum can be repro-
duced by different sets of parameters. Consequently, for
a satisfactory determination of the surface potential the
parameters should be adjusted to the results of several ex-
periments (for example, at distinct polarizations and an-
gles of incidence) with the same sample.
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