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We suggest that a unified description of the integer and fractional phases of the quantum Hall system

may be possible if the scaling diagram of transport coefficients is invariant under linear fractional (modu-

lar) transformations. In this model the hierarchy of states, as well as the observed universality of critical

exponents, are consequences of a discrete SL (2,Z) symmetry acting on the parameter space of an effective

quantum-field theory. Available scaling data on the position of delocalization fixed points in the integer

case and the position of mobility fixed points in the fractional case agree with the model within experi-

mental accuracy.

I. INTRODUCTION

Both the integer and fractional plateaus observed' in
the transverse conductivity cr„ofthe quantum Hall sys-
tem are well understood in terms of variational wave
functions approximating the responsible ground states. '

There has been less success in extending this first quan-
tized description to a second quantized many-body (field-
theoretic) formalism capable of explaining not only the
plateaus, but also the observed scaling in the transitions
between the plateaus. Experiments suggest that the
same scaling exponents apply to transitions between both
integer and fractional levels, but to date there is no ex-
planation for this within the context of the hierarchy gen-
eration scheme ' which so successfully accounts for the
observed levels. Indeed, the physics of the integer quan-
tum Hall effect can be understood in terms of nonin-
teracting electrons, while the fractional effect involves the
repulsion between electrons, making it difficult to under-
stand the connection between the scaling phenomena.
This problem has even prompted some authors to suggest
a completely different class of variational wave functions
in order to generate the hierarchy in a way which would
relate the fractional and integer effects in an obvious
manner.

In this paper we consider the general question of how
to construct a scaling theory for the quantum Hall sys-
tem which is capable of describing the extended states,
found in the transitions between levels, which are respon-
sible for the transport of electric charge through the sys-
tem and, therefore, the changes in o and o between
the plateaus. For a review of previous work in this direc-
tion we refer the reader to Ref. 8. Because of the men-
tioned "universality" of the critical exponents, our task is
to construct a single quantum-field theory satisfying ap-
parently incompatible constraints: on one hand it should
contain an infinite set of nested phases with distinct phys-
ical properties; on the other hand the critical points
characterizing the transition between the phases should
in some sense be universal. (In a real system, Wigner cry-
stallization, which has recently been observed, will disal-
low all but a finite number of these phases, but this

refinement will not be included in the model considered
here. ) More precisely, what we seek is a single family of
field theories parametrized by the longitudinal (dissipa-
tive) conductivity o.„and the transverse (Hall) conduc-
tivity cr„„,with the property that o.~ is forced to take a
fractional value when 0 vanishes, and which provides a
natural explanation for why the scaling observed between
these plateaus is always the same.

We propose that this can be achieved by making the
partition function invariant under an infinite discrete
group acting on the parameter space (o„,cr„„),in such a
way that it maps all critical points into each other. A
symmetry of this type will organize the parameter space
into regions, or equivalence classes, which are the
different phases of the system. These phases are mapped
into each other under the action of elements of the sym-
metry group, but they are not identified because the phys-
ical parameters have different values in different phases.
In short, such a symmetry will classify, rather than iden-
tify, different regions of parameter space. It will, howev-
er, force the scaling equations to have the same form
close to all critical points, thus explaining why the criti-
cal exponents are always the same.

In view of the existence of the hierarchy, it is clear that
the phase structure of the two-dimensional parameter
space of the quantum Hall system must be extremely
complicated. It might, therefore, appear to be a daunting
task to identify an effective-field theory with this struc-
ture, much less a microscopic theory which would give
rise to such a field theory in the long-wavelength limit.
In fact, while exploring Abelian lattice gauge theories
with theta terms, ' Cardy" discovered that a certain
class of self-dual spin models has the phase diagram
shown in Fig. 1, which has most, if not all, of the proper-
ties we want. The complexity of this phase diagram is a
consequence of including a topological theta term in the
action, which enhances the usual duality or Kramers-
Wannier' symmetry of the partition function to an
infinite discrete non Abelian group-, SL(2,Z). Because
SL(2,Z) is realized by complex fractional linear (Mobius)
transforrnations, it follows that the phases only touch the
real axis at rational numbers. As was apparently first
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n, is an integer-valued link variable representing a con-
served electric current, and its piece of the action con-
strains P, to take values in Z .

Duality in this model corresponds to the exchange of
electric and magnetic monopole charges, where the
monopole current is given by I,=

—,'e„A"s,. This is best
expressed as a transformation on the complex parameter

0 . 2~
z — +l2' pg

(2)

0
0

FIG. 1. SL(2,Z) invariant phase diagram.

noted by Girvin and MacDonald' (see also Refs. 14 and
15), this so-called "oblique confinement"' scenario is
reminiscent of the hierarchy generation scheme of the
fractional quantum Hall effect, which is designed to gen-
erate only odd-denominator filling fractions by iterating
two real fractional linear transformations.

in terms of which the duality transformation is just a
linear-fractional transformation

l
z ~S(z)= ——

z

The parameter z is more convenient than Cardy's choice
g =tz (the bar denotes complex conjugation) because with
this pararnetrization the duality transformation S acts on
the complex upper-half plane as a conventional generator
of SL(2,Z).

The term in (1) which is proportional to 8 couples the
monopole current to the spin fields, and it is only nonzero
in the presence of fields with nontrivial topology. It is, in
fact, a discretized and dimensionally reduced version of
the usual four-dimensional theta term OE'p

p
F" Fp . The

angular nature of the theta term means that the action is
periodic in 8, so that Z is also invariant under the
translation

z~T(z) =z + 1 . (4)

II. DUALITY

Self-duality is found in many statistical models, where
it relates high- and low-temperature properties of the sys-
tem. Cardy generalized the usual duality transformation
to the case which includes a topological theta term cou-
pling two copies of the Ising model. " While we are not
suggesting that we can, at the moment, derive this model
from the microscopic physics of electrons in a transverse
magnetic field, it is worth exhibiting here not only be-
cause it is a prototype possessing the kind of hierarchical
structure that we need; it also provides much needed
physical intuition which will be useful for motivating the
structure of the effective-field theories that we shall be
drscussrng.

The partition function studied by Cardy and Rabinovi-
C1 1s10'11

Because S '=S, arbitrary compositions of S and T are
necessarily of the form R = T 'ST 'S. . .ST "

(p&,p2, . . . ,p„CZ),and since this is a continued fraction
it can be written as a linear-fractional transformation

R (z)=, a, b, c,d EZ,az+b
cz +d

with unit determinant ad —bc=1. Furthermore, every
modular transformation is of this type, so that the sym-
metries S and T, in fact, generate all of the modular
group SL(2,Z).

This symmetry may be given a geometrical interpreta-
tion as follows. If the fields P, are taken to have periodic
boundary conditions, then in the continuum limit (1)
looks like a two-dimensional nonlinear sigma model with

a toroidal target space, whose action

Z (g, 8)=Tr exp — (b,„P,—2n.s„,)
2g

X ( b "P' 2ms "')+ipn, P'—
+ E„e,b ( bFP' 2rrs"')—ipo

X(b,"P —2n.s" )

where p and v label the two spatial dimensions, a and b
label the two models whose spins P, and $2 reside on dual
lattices, and s„,are integer-valued plaquette variables.

is parametrized by the toroidal metric g,-b =g „5,b and
the torsion t,b

=t
y

E'
b In two dimensions the torsion is

topological, and formally similar to the theta term in (1).
The parameter space is four dimensional, corresponding
to the three possible ways to deform the independent
components of the symmetric metric g,b, and the one in-

dependent component of the torsion. Because the target
space is a torus, the parameter space is automatically a
complex space, so it is convenient and conventional' to
collect the four real parameters into two complex "rnodu-
li:"
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r=(g„~+i&detg)/g~, 0 =t „+i&detg (6)

r is just the complex structure ("shape") parameter of the
torus, which in our case is frozen at ~=i, while the imagi-
nary part of o parametrizes the Kahler form ("size") of
the torus, because it determines the volume of the target
space. In our homogeneous and isotropic case the
complexified Kahler form simplifies to o.= t +ig „,
which is just z. Furthermore, it is well known that the
space of r's of a torus is invariant under SL(2,Z), but it is

equally true for the other parameter o of the nonlinear
model, thus providing a geometric explanation of the
SL(2,Z) invariance of the parameter space of (1).

Finally, we also note that Z is invariant under the
transformation

If we assume a unique phase transition when 0 is small
or vanishes, then the only phase diagram compatible with
the symmetry Aut SL(2,Z) is the one exhibited in Fig. 1.
As shown in Refs. 10 and 11, this appears to be the case
for the Z2 and Z3 models, which are equivalent to two
coupled Ising models and the three-state Potts model, re-
spectively. In the former case the model is related to the
eight-vertex model and may be compared with Baxter's
exact solution. ' It was also shown that the ground state
of each phase, which we can label by the unique fraction
p/q to which 8/2m. converges in the strong coupling limit
(Imz =g ~0), can be regarded as a condensate of elec-
tric and magnetic charges in the ratio —p/q. Further-
more, only excitations with the same charge ratio as the
ground state can appear as physical particles with short-
range interaction. All other excitations incommensurate
with the "vacuum charges" are confined by linear poten-
tials, and are therefore not in the spectrum.

This is highly reminiscent' of the physical picture un-
derlying the hierarchy scheme. Each level in the hierar-
chy is regarded as a condensate of "elementary" excita-
tions, quasielectrons and quasiholes, of the ground state
of the previous level. By guessing the corresponding
wave functions which, within a variational scheme, can
be seen to be extremely good approximations of the true
ground states, the effect of each phase transition (conden-
sation) on the transverse conductivity o „(which is relat-
ed to the number v of fractionally filled Landau levels by
cr„~=ve /h) can be derived. The resultant states are
made up of electric and magnetic degrees of freedom with
vorticity-to-charge ratio given by v —1 and suggests
the identification (8/2m )

' =v ' —1 in the strong-
coupling limit. ' When the quasihole excitations of a

z~j(z)= —z,
whose physical origin is time-reversal invariance. J is the
only automorphism of SL(2,Z) which is not, itself, a

(holom orphic) fractional-linear transformation, so in

summary we have that Cardy s partition function is in-

variant under the full automorphism group of SL(2,Z),
i.e., Z~(A (z))=Z (z) where A EAutSL(2, Z). Since Jis
fairly trivial we shall often take it for granted and refer to
the symmetry as just SL(2,Z).

III. PHASE DIAGRAM AND EFFECTIVE ACTIONS

state responsible for a plateau in the conductivity con-
dense, the change in cr

„

is some power of the transfor-
mation A: o., ~o

„

/(1+2o „).Together with
particle-hole duality B cT y~1 0 y this generates the
whole hierarchy. Note that A and B are real fractional-
linear transformations which generate a proper subgroup
G of AutSL(2, Z). G is not in SL(2,Z) because particle-
hole duality involves the time-reversal symmetry J.

We see that the hierarchy scheme is both physically
and mathematically similar to Cardy's self-dual models,
but several points need to be addressed. Clearly, 6
preserves the "oddness" of the denominator of the filling
fraction so, if the starting value of the iterations is odd,
then the hierarchy is odd. However, the phase diagram
of SL(2,Z) also admits even-denominator fractions. This
is not inconsistent, because if we restrict attention to very
strong magnetic fields so that the spin degrees of freedom
are frozen out, then Laughlin's analysis suggests that
states with even-denominator fractions cannot be formed
starting with a system of just fermions. This means that
the initial conditions following from a fermionic system
will necessarily be in an odd phase, and the system must
remain in that phase under the renormalization-group
(RG) fiow that determines the macroscopic properties of
the system. Thus, in strong magnetic fields, the phase di-
agram of Fig. 1 is consistent with G since the even self-
dual phases are inaccessible to a fermionic system.

A more difficult question is why, in trying to model the
quantum Hall system, we should consider self-dual mod-
els at all. At the moment we can only offer some specula-
tions. The relevant observation may be that Baxter's ex-
act solution of the eight-vertex model' shows that criti-
cal points lie in the self-dual plane. Zamolodchikov and
Fatteev' have conjectured that the same will be true in
all Z~ X Z~ theories. Thus, starting from a theory
without duality, the RG flow may be expected to take the
system at criticality to one of the self-dual models, giving
rise to the phase diagram of Fig. 1. Furthermore, since
the critical theories are conformally invariant, the system
may be driven to low values of p in accordance with
Zamolodchikov's c theorem, since the lowest value of
the central charge for the Z models is e= 1 when p=2.
A rigorous discrete symmetry of the system, perhaps as-
sociated with the crystal structure, may prevent us from
reaching the Zz model at the bottom, so we do not want
to dismiss Z3 out of hand.

To summarize, we have seen that the phase diagram of
Cardy's self-dual spin models is consistent with the
hierarchy, and that the transverse conductivity o. is re-
lated to 0/2m. . In the plateau region only cr is nonzero,
because the Fermi energy lies in the region of localized
states for which o „=0.In the transition region between
plateaus, o. may be nonzero when the Fermi energy
crosses that of an extended state, corresponding to the
disappearance of the mass gap. The appearance of such
an extended state is consistent with the Coleman-
Mermin-Wagner theorem ' which prohibits Goldstone
modes in two dimensions, provided it corresponds to a
critical point rather than a spontaneously broken phase.
At the critical point the symmetry breaking associated
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with a (relevant} operator vanishes, leading to an en-
larged symmetry and a massless state. This
(de)localization phenomenon has been studied theoreti-
cally using a Gaussian random potential to describe the
effects of the impurities responsible for the inelastic
scattering which underlies the dissipative conductivity
0. . Using the replica trick or supersymmetry, an
effective Lagrangian describing the behavior of the aver-
aged electron propagation, and hence the Hall conduc-
tances, may be determined. This leads to an effective-
Lagrangian description of the form

IV. SL(2,Z}

The phase diagram is determined by the "tree" of
phase boundaries and it is perhaps surprising that the
only tree that is invariant under SL(2,Z} is the one shown
in Fig. 1. Translation invariance (T) ensures that it is
sufficient to consider only the region 0~ o. „&1, but the
unification of integer and fractional effects enforced by
SL(2,Z) is best appreciated by drawing the SL(2,Z) tree as
in diagram 1, which is faithful only to the topology of the
phase diagram.

+es( oxx &
oxy ) oxx+kin +oxy+ top ~

where Xk;„is the kinetic piece of the action and Stop is a
topological term. The properties at the critical point are
largely determined by the symmetries of the effective La-
grangian, and here we investigate the implications if the
renormalized form possesses the duality symmetry dis-
cussed above. X,s is of the same general form as (1) [after
an SL(2,Z) transformation to make 8/2n =o„],provid-
ed that we can regard the transport coefficient O.„asthe
effective coupling constant 2~/pg of the model. It is
then clear from what has been said above that the parti-
tion function Z,& determined by X,s is invariant under
the modular group acting on the complexioned conductivi-
ty parameter

~xy+'Oxx ~

i.e., Z,s(A (o ))=Z,s(o) where 3 EAutSL(2, Z).
As a kind of consistency check on this approach, we

could ask how the effective Lagrangian would appear if
instead of the conductivities we chose to parametrize X,ff
by the resistivities p;. (i,j =x,y) which, by definition

form a completely equivalent set of transport coefficients.
Recall first that the Onsager relations for a homogeneous
and isotro pic medium in an external magnetic field
(which breaks parity) imply that o =o„„and
o. = —o.„,and similarly for p, . This is why the
theory depends only on one complex parameter cr, and it
is equally natural to complexify the resistivities

p =p„+ip„.By virtue of (10),p and cr satisfy

1p=S(o }=——
0

Since we have already demanded that the theory be self-
dual, it follows that p and o. have the same phase dia-
gram, shown in Fig. 1.

Each phase is labeled by the fractional value of cr„ to
which the phase converges when cr,„—+0. The left-right
symmetry of the diagram reflects the duality between in-
teger and fractional phases, which is inherent in this
model. We cannot have one without the other.

Furthermore, since we have no freedom in the con-
struction of the SL(2,Z) tree, we should be able to make
completely rigid quantitative predictions which, when
confronted with sufficiently precise experimental data,
should unambiguously verify or falsify the model. The
most important information of this type is, of course, the
location of the Hall plateaus, i.e., the points on the real
axis accessible from any of the phases. In mathematics
they are called "parabolic fixed points of SL(2,Z)," and as
already mentioned they coincide with the rationals. They
will be denoted by the symbol @. In addition, the main
set of data which must be extracted from the tree is the
location of the "nodes" where the tree bifurcates and new
phases appear. They are called "elliptic fixed points of
SL(2,Z} of order three" (E3 }, and we denote them by 6.
Finally, except for a trivial "hyperbolic fixed point' at
infinity, the only other class of fixed points of SL(2,Z) are
the "elliptic fixed points of order two" (Ez), which we

represent by the symbol .
The E„(n =2,3) fixed points are all images of

o =exp(in/n) under SL(2,Z} transformations, and their
coordinates may be computed as follows. Consider the
generic bifurcation depicted in diagram 2.
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since these will be of particular interest when we turn to a
comparison with experiment.

V. RENORMALIZATION GROUP FLOW
AND IMPLICATIONS FOR THE

QUANTUM HALL EFFECT

&2a+b, 2c+d &a+2b,c+2d

Every phase a/c is separated from a phase b/d to the
right by a phase boundary which bifurcates into an addi-
tional phase alcb/d =(a+b)/(c+d) at a node la-
beled by ~, +&,+d. If we let g and g denote the linear-
fractional transformations

a +(a +b)z (a +b)+bz
c+(c+d)z' (c+d)+dz ' (12)

2, +i z, +d=g(j), r, +2&, +2d=@(j) CE3(B),
where j=exp(in. /3). Clearly, by iterating this algorithm
we can recursively generate the whole hierarchy of
phases in diagram 1. For example, the three fixed points
of SL(2,Z) associated with the qth phase of the principal
sequence of fractional states with filling factors 1/q are
located at

Oiq=

J
1+(q —1)j' '~ 1+qi '

1+i
q +(q —1)i

(14)

The positions of the fixed points of the charge-conjugated
sequence of phases 1 —1/q are obtained by simply
reflecting these points in the line Reo. =—,'. We also
record the location of the fixed points in the "secondary
sequence" of phases, which are labeled by the fractions
k/(2k+1) (k =1,2, . . . ),

(k —1)+j"2"+'

(k —1)+ki

(2k —1)+(2k +1)i
@+i

~k 2k+1 (2k +1)+2~

(15)

then the fixed points associated with the new phase are
given by

o', +t, ,+d =g (i)& o g+k, +q =g(i) EEz( )

(13)

Up to now we have considered the implications of
SL(2,Z) only for the phase diagram, but it also gives us
information about the RG flow which determines the
macroscopic properties of the system. Since phase boun-
daries are RG flow lines and the appearance of additional
phases is controlled by fixed points of the RG, the scaling
digram must coincide with the tree of Fig. 1. Every fixed
point of SL(2,Z) must be a fixed point of the RG, but the
converse is not necessarily true. Thus, at the very least,
there must be RG fixed points at the nodes (the triple
points E&) and the other elliptic fixed points of order two

(Ez), and the parabolic fixed points on the real line. In
order to explain the quantization of the plateaus the
latter must be the only stable fixed points, since the RG
flow drives the system to the strong-coupling limit at
which cr„„=Oand o„is rational (these are the only
points accessible starting from any of the phases above
the strong coupling limit). The structure of the rest of the
RG flow depends on the character of the remaining fixed
points and on whether there are RG fixed points addi-
tional to those of SL(2,Z).

The Z3 model is consistent with the minimal choice of
fixed points given above, because it is known to have an
isolated repulsive fixed point at i, so it follows in this case
that the E2 fixed points are repulsive. This, in turn, im-

plies that the E3 fixed points are (three-way) saddle
points, assuming no additional fixed points. The Z2
model may be completely solved because it is related" to
the symmetric eight-vertex model solved by Baxter. ' It
has a critical line along the fundamental phase boundary
between i and j corresponding to the addition of an
infinite number of RG fixed points. Finally, there is
another simple possibility (not realized by Cardy s mod-
els) in which the E3 fixed points are repulsive and the Ez
fixed points are ordinary saddle points. With this latter
identification the flow lines of the SL(2,Z)-invariant dia-
gram are as shown in Fig. 2, where the broken lines are
flows which end up at the attractive (real) fixed points.
The Z2 and Z3 flow diagrams are similar, but in the
latter case the arrows on the tree must be reversed, while
in the former case no arrows can be assigned to these
lines at all since they are marginal directions. The bro-
ken flow lines are always the same.

The scaling diagram in Fig. 2 is consistent with the ob-
served hierarchy of fractional phases. ' By tuning the
experimental parameters, which include the magnetic
field, temperature, contamination, and other microscopic
quantities specific to the particular sample being used, we
can dial up specific values in the o. plane from which to
start the RG flow. The system will flow to the unique
stable fixed point (p/q, O) which belongs to the same
phase as the starting value of o. In very strong magnetic
fields all electron spins are aligned with the field, so that
the Fermi-Dirac statistics of the electrons prevent any
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FIG. 2. The simplest assignment of fixed points and flow
lines to the SL(2,Z) invariant scaling diagram.

even wave function, appropriate for even-denominator
phases by the standard argument of Laughlin, from ap-
pearing. If such a system is tuned so that the initial
values of o and o. correspond to an even phase in Fig.
l, then the large energy associated with these (spin-
flipped) phases will mean that the system prefers to be in
a nondual phase not represented in this two-parameter
scaling theory. However, the RG low may be expected
to take the system to critical points associated with odd
phases of the self-dual plane described by Fig. 1. This is
why it is usually odd values of q which are observed. At
lower values of the magnetic field, where spin flips are no
longer disallowed by energetics, even phases should, ac-
cording to this argument, appear and some have been ob-
served.

The microscopic physics of the nondual initial
configurations will similarly determine within which fixed
point's domain of attraction a (dirty) configuration with
large initial o.

„

lies. If the system is in the domain of at-
traction of the hyperbolic fixed point at i ~, then no
quantum Hall effect will be observed. Alternatively, if
the microscopic physics is such that a large o. is in the
domain of attraction of one of the integer fixed points,
then the integer Hall effect will still be observed for large
initial values of cr„„.Lacking a derivation of the self-dual
effective action from a microscopic one describing elec-
trons in a transverse magnetic field, we cannot determine
which possibility is relevant.

As the starting value of o
„

is pushed closer to zero, by
improving the purity of the sample, say, more and more
physically distinct phases become available, and in the
order required by the hierarchy scheme. This '*nesting"
of plateaus was quickly recognized as a desirable feature
of a scaling theory of the quantum Hall system, and is
therefore built into the scaling diagram proposed in Ref.
27, which was inspired by the integer scaling theory
based on the replica o. model. It is gratifying to have it
forced upon us by a simple discrete symmetry.

The tree structure of our RG flow diagram is different

from that proposed in Ref. 27, where the branch points
are trifurcations rather than bifurcations, but appears to
be the only one consistent with duality. The main
difference between the two is the appearance of even
phases, including the 1/0 phase, in the self-dual digram.
This raises the question of whether we can maintain the
physical interpretation, proposed in Ref. 27, of the mobil-
ity fixed points as gap-closing transitions, i.e., as transi-
tions in which increasing disorder destroys a phase. This
"dirty limit" implies the overlapping of two of the Lan-
dau bands in the sample, so that two extended states
merge into one. Hence, a Hall plateau should disappear,
and this should correspond to the disappearance of a
phase in the scaling diagram. Since the appearance of
new phases is controlled by the mobility fixed points 6,
we should be able to interpret these fixed points as gap-
closing transitions. The scaling diagram in Ref. 27 was
constructed by hand, so that this is obviously the case.
The question is whether this interpretation can be main-
tained for the self-dual diagram, and we see no reason
why this should not be the case. If the magnetic field is
sufficiently strong to exclude the even regions, i.e., if it is
not energetically favorable for the system to access the
self-dual plane, then it might seem difficult to associate
the closing of a mobility gap with a 6 fixed point, on the
o y 2

line, say, unless the —,
' and —', phases share a com-

mon border. But again, there is no contradiction since it
is quite possible for two odd phases to be "nearest neigh-
bors" in a three-dimensional flow diagram of which we
have only obtained the self-dual slice. And again we can-
not address this question in any detail because we lack
the necessary microscopic information. Furthermore, in
weaker magnetic fields the roles are reversed; while our
diagram immediately admits 6 as a gap-closing transi-
tion, there is apparently no room for such phases at all in
the diagram of Ref. 27.

The situation is summarized in the somewhat heuristic
three-dimensional diagram in Fig. 3, which shows how
the peaks, plateaus, and inflection points of the "experi-
mental" graphs p„„(B)and p, (B) are collated by the
SL(2,Z) tree. While the p plane encodes the "universal"
(material-independent) aspects of the quantum Hall sys-
tem, the widths of the plateaus depend on the sample, so
that the scale on the B axis is arbitrary. In principle,
p„(B)is a Devil's staircase, but only a few (odd) plateaus
are shown, corresponding to an experiment with finite
resolution in a very strong magnetic field.

This diagram also explains the observation reported in
Ref. 30, which was one of the main motivations for un-
dertaking the work described here. In Ref. 30 it was
shown that Laughlin's wave functions appear effortlessly
in a second quantized (field-theoretic) formalism based on
conformal invariance, which accounts both for the simple
and elegant form of these wave functions, as well as their
astonishing accuracy on the plateaus. In our scaling
theory, these obviously correspond to attractive fixed
points (6). Since quantum-field theories are conformal
at fixed points of the RG it should, therefore, be possible
to recover Laughlin's wave functions directly from the
action (l), by computing expectation values of strings of
vertex operators which describe the quasiparticles in this
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FIG. 3. Resistivities p„„andp„~plotted against the external magnetic field B, and compared to the SL(2,Z) tree, which encodes
universal features of the quantum Hall effect.

theory. '

The transition between any two neighboring phases, in-
teger or not, is controlled by the same type of fixed point.
Because the RG equations describing the flow in the
neighborhood of any two such points are related by
SL(2,Z), they must determine the same critical exponents.
So, while there are an unlimited number of physically dis-
tinct phases, the properties of the fixed points controlling
the appearance of a new phase are always the same.
(This may, perhaps, be called universality, although
this breaks with common usage of the word. ) Hence, in
this model the critical exponents must be the same for all
Hall steps, as is indeed observed in all the transitions
studied so far.

We would also like to check the location of the fixed
points in the cr plane which were computed above, but a
reliable experimental determination of this information is
complicated by our lack of knowledge about microscopic
properties of the quantum Hall system. Since what can
be measured is the flow of an initial point in the o plane
as a function of temperature, we need to translate the
scaling equations into temperature-driven flows.
This is in principle possible because the effective sample
size (the renormalization scale) is related to the inelastic
scattering length, which can be increased by decreasing
the temperature (Thouless scaling). Hence, the mea-
surement of (o.„„,cr„„)for a succession of decreasing tem-
peratures corresponds to a measurement of (cr„„,o ) as
the system follows a RG flow line.

We have found two sets of data which appear to be
sufticiently accurate to make a comparison with the mod-
el. The initial scaling experiment demonstrated rather
strikingly that so-called "delocalization" fixed points as-
sociated with the transition between integer levels are lo-
cated at cr„=n+—,

' (n =0, 1,2, . . . ), in agreement with

the scaling diagram in Fig. 2. Furthermore, it is apparent
from the flow diagram in Fig. 3 of Ref. 33 that once the
system has entered deeply into the quantum domain, so
that semiclassical effects no longer distort the RG flow
(solid lines in Ref. 33), then not only do the directions of
the flow lines coincide with our Fig. 2, but they also ap-
pear to originate at 0. =

—,'. If this is really the case, then
the delocalization fixed points between integer phases
coincide with the E2 fixed points labeled cr „&
(n = 1,2, . . . ) in diagram l.

Similar temperature-driven scaling experiments have
also been carried out in some of the fractional phases.
However, the statistics are not suScient to provide flow
diagrams of the same quality as for the flow between in-
teger levels. The most accurately determined quantities
in this case are the values of O.„„atwhich the

3 5 7 9

(and possibly also the —,', ) phases first appear. Since these
data presumably locate the height at which the "tip" of a
fractional phase is located, we interpret these o.„„values
as the imaginary parts of the "mobility" (E3 ) fixed points
associated with the secondary sequence.

Table I compares the experimental data reported in
Ref. 35 with the theoretical values rk 2k+, (k=1,2,3,4,5)
recorded above in (15). We see that while the values
agree within the accuracy of the experiment, the theoreti-
cal values appear to be slightly but systematically lower
than the measured values. This is not surprising, because
the measurements were performed at cr =

—,'. We there-
fore do not expect their results to coincide exactly with
any of the nearest-neighbor E3 fixed points, but they
should get closer for higher k, because Re ~k 2k+&
when k grows, and indeed they do. The comparison
could be improved by repeating the experimental deter-
mination of the mobility fixed points at the appropriate
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TABLE I. Experimental data o.„"on the location of mobili-

ty fixed points, obtained in Ref. 35 by studying temperature-
driven flows in the o. plane at o.

~
= —', compared with the imagi-

E3
nary part o. of the E3 fixed point of SL(2,Z) associated with
the appearance of the new phase. The errors are estimated in
Ref. 36.

k
2k+1

MFP
XX &xx

1

3

2
5

3
7

4
9
5
11

0.15+0.03

0.055+0.01

0.025+0.005

0.013+0.003

0.01+?

0.1237

0.0456

0.0221

0.0129

0.0084

values of 0.~~.
Although the authors of Ref. 35 also attempted to lo-

cate the delocalization fixed points, their criteria appear
to be somewhat arbitrary and the statistics seem inade-
quate at present to resolve the details of the scaling dia-
gram. We also need a better understanding of the way in
which the RG flow in very strong magnetic fields is
pushed out of the (energetically) forbidden even denomi-
nator regions, particularly for transitions that cross
even-denominator fractions.

VI. SUMMARY

In summary, by postulating that the quantum Hall sys-
tem is invariant under modular (duality) transformations,
we are led to a phase diagram and an associated RG flow

diagram which are consistent with current observations
of both the integer and the fractional quantum Hall
effect. An important feature of this symmetry is that the
critical exponents associated with transitions between in-

teger and between fractional levels should all be the same,
in agreement with existing observations. This is achieved
while maintaining the original hierarchy generation
scheme of Laughlin, Haldane, and Halperin. Determina-
tion of the critical exponents requires the identification of
a particular model within the class possessing SL(2,Z)
symmetry. ' The duality hypothesis is also in qualitative
agreement with the observed temperature dependence of
the transition between integer levels. Moreover, the pre-
dicted appearance of new fractional phases is in quantita-
tive agreement with experiment.
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