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Nonlinear screening of a totally occupied Landau level
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The quadratic-response function of the particle density to a static harmonic potential is calculated for
a totally occupied Landau level. Then, with use of a variational approach, it is shown that the linear
component of the density response is dominant for any wave vector q of the external potential and for a
large range of amplitudes, including those which remove the gap up to the next Landau level. The con-
tribution of the nonlinear components does not exceed a few percent if q ( lz and may be statisfactorily
described by the quadratic component if q (2' ', where 1& =(Ac!eB)' is the magnetic length.

I. INTRODUCTION

The two-dimensional electron gas in a perpendicular
magnetic field has peculiar screening properties. Its
linear longitudinal dynamic dielectric response was ex-
tensively analyzed for all magnetic-field strengths and
temperatures in the middle 1970s.' In particular, in the
static limit, for high magnetic fields and low tempera-
tures, the screening length has an oscillatory dependence
on the chemical potential; for large wavelengths, the
screening is perfect when the highest Landau level is par-
tially occupied and the screening is absent when this Lan-
dau level is totally occupied. ' The two-dimensional (2D)
electron gas has been considered as a perfect planar sys-
tem' as well as in a slab model, their static screening
properties being essentially the same.

Another peculiarity of the screening consists in its non-
linear behavior. Since the electrons involved in the long-
wavelength screening are only limited to those contained
in the partially filled Landau level (if there is one), a po-
tential which is linearly screened by a half-filled level
might be nonlinearly screened if the level becomes almost
empty or full, since the number of available electrons or
holes might become too small for a linear response. Con-
sequently, an external nonuniform electrostatic potential
could induce, in the system, metalliclike regions (with
strong screening) and dielectriclike regions (with weak
screening). ' This leads to a special interpretation of the
percolative description of the quantum Hall effect.

Let us consider the model of strict two-dimensional
electron gas, the electric neutrality being ensured by a
uniform background of positive charges. In order to
define the response functions, let us suppose the external
electrostatic potential

V'"'(r)= Vcos(q r)

is small enough so that the electron density be given by

p(r) =p0+ Vy(q) cos(q r)+ V e(q) cos(2q r)+. . . ,

quadratic-response function. The expansion (1.2) holds
independently of how the electron-electron interaction is
included in the response functions.

Neglecting completely the electron-electron interac-
tion, the linear-response function of the two-dimensional
electron gas partially filling the lowest Landau level has
the simple form' '

~(0)(q) e q /2v(1 —v)
21TT

(1.3)

Here the upper label refers to the absence of the interac-
tion and the lower one to the lowest Landau level, v being
the filling factor of the level and T the temperature (in en-
ergy units) which is assumed to be small.

Throughout this paper the magnetic units are used:
the cyclotronic energy fico, =fieB/mc—= 1 and the mag-
netic length ls ——(fic/eB)'/ =1. The electronic charge e
and Boltzmann's constant are also taken equal to unity.

With the same assumptions as for the linear-response
function, the quadratic-response function may be given
by

v(1 —v)(1 —2v) 3qi/2
g (1.4)

The low-temperature singularities of the response func-
tions (1.3) and (1.4) support the arguments for the non-
linear behavior of the screening. Taking the electron-
electron interaction into account, the linear screening
breaks down if the amplitude V of the external potential
is of order T+2v(1 —v)/q for an electron gas strongly
confined in the plane. If a weaker confinement is con-
sidered, as given by a triangular well, the breakdown be-
gins for a V of order T, which means any external poten-
tial is nonlinearly screened at low enough temperatures.

If the electrons totally fill a Landau level, their screen-
ing ability diminishes. For the lowest Landau level the
linear-density-response function of noninteracting elec-
trons is' ' '"

(1.2)

where p0 is the unperturbed density and r=(x,y); g(q) is
the usual linear-response function and e(q) is the

2 — 2
m —1

~(0)(q) 'q q /2 12m» m!m 2

It gives no screening in the q ~0 limit,

(1.5)
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e '= lim 1 — y' '(q) = 1
2K

q~O q
(1.6)

II. DENSITY RESPONSE-PERTURBATIVE
APPROACH

A. Response functions

Let us consider a two-dimensional system of nonin-
teracting electrons in a perpendicular magnetic field plus

e being the dielectric constant in the random-phase ap-
proximation (RPA) (this result being valid for any Lan-
dau level). This is in strong contrast with the perfect
screening behavior in the case of partial filling, i.e.,
6(RPA) 1

However, for shorter wavelengths of the external po-
tential the density modulation (1.2) may be comparable
for the two types of filling. This is the case of the modu-
lation produced by a periodic microstructured gate ob-
tained by micr olithographic techniques in small de-
vices. '

In this paper the quadratic-response function 8'„'(q)
for the nth Landau level totally occupied is calculated us-
ing the second-order perturbation theory (Sec. II). Then,
in Sec. III, an attempt is made to estimate the conditions
in which the density modulation produced by the exter-
nal potential (1.1) may be described satisfactorily by the
linear- and quadratic-response functions. To this end the
local particle density is calculated for the lowest Landau
band totally occupied using variational wave functions.
The linear component of the density response is dom-
inant in a large range of external potential amplitudes V,

including those which remove the gap between the first
two Landau bands, and for any wave vector q; for q & 1

the contribution of the nonlinear components is at least
one order of magnitude smaller; for q &2 the linear- and
the quadratic-response functions are sufficient to describe
the full density response. If the gap is removed, a certain
filling factor of the next band is necessary in order to
prevent the depopulation of the first one, whose contribu-
tion to the total density response may be described as
above. The electronic spin is ignored throughout the pa-
per.

the external potential (1.1). The two axes in the plane
may be chosen so that the external potential varies only
in the x direction, as long as the boundary conditions can
be neglected. In the Landau gauge and in magnetic units
the vector potential is then A=(0,x) and the electrons'
wave functions are

$(x,y)=Ly ' 'e'"~y(x), (2.1)

with the system being considered enclosed in a large rec-
tangular box, i.e., ~x

~

& L„/2 and ~y~ & L~ /2. The unidi-
mensional wave functions y(x) are the eigenfunctions of
the perturbed-oscillator Hamiltonian (in magnetic units}

H = —— +—(x —k) + Vcos(qx),
1 d 1 2

dx
(2.2)

where k=(2m. lL~)X(integer) from periodic boundary
conditions on the y axis and ~k~ &L~ from box
confinement.

In the unperturbed basis, i.e.,

Ly
' e'"~f„(x —k),

in which

1 —x /2
I/2 n 1/2 e Htt(x},

(n 2" n!)
(2 3)

)Iik, n'k' Vntt'(k@kk'

This means nondegenerate perturbation theory may be
used and, consequently, the eigenfunctions of the reduced
Hamiltonian (2.2) are given, up to the second order in V,

by

H„(x) being the Hermite polynomials, due to the particu-
lar choice of the coordinate axes, the matrix elements of
V'"'(x) are diagonal in k:

V„'"'(k)
tp„k(x) =f„(x—k)+ g f (x —k)—

pyg (~pg) pyg (~ pg)

V„'"'(k)

n —m
f„(x—k)

Vext(k) Vext(k) Vext(k) Vext(k) f (x —k),
(n —m )~ t&„~ (n —m)(n —p)

(2.4)

where the unperturbed energies are c„=n +—,'.
The density of noninteracting electrons for a totally oc-

cupied Landau band E„k is

in (2.5) and keeping only the term linear in V, the density
Auctuation is obtained as

p„(x)= f dkiq„„(x)i', (2.5) 5p„(x)= Vy'„'(q) cos(qx), (2.6)

in the thermodynamic limit (as L,L ~ eo). Using (2.4) y
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TABLE I. Coefficients rsee Eqs. (2.7) and (2.9)j in the power series for the linear-response function y„(q) aud for the quadratic-
response function e„(q) of the first three Landau levels. For the coefficients ao, with m =0, 1, ..., and 7, etc., see Eq. (1.5).

m
1
m
2

bm0
bm

bm

1

1

3
9
15

—5/8
—11/8

5/6
—61/6

—247/6

5.56x10 '
5. 14x 10-'
2. 19X 10

1.34
3.15 x10'

3.04 x 10-'
—6.03 x 10
4.33 X 10

—1.62 x10-'
—9.96

1.91x10-'
1.32 x 10-'
7.53 X 10
6.81x10 '

1 ~ 57

1.16x10-'
3.76x10-'
1.14x10 '

—1.05 x 10
—1.49 x10-'

6.50x10-'
1.48 X 10
1 ~ 56x 10
6.07 x 10-'
1.14x 10-'

3.34X 10
6.20x10-'
1.93x10-'
5.02 x 10-'

—8. 11x10-'

—22 n!+(0)(q) e
—

q i2
1T (&p) (m n) m

(mWn)

2
e 0 && g amq2m

277 m( ~0)
(mWn)

m —n

q
2

2
Lm —n

ll

2

(2.7)

L~ being Laguerre's polynomials. Some coefficients a„ofthe power series are given in Table I. An integral representa-
tion of Eq. (2.7) may be found in Ref. 13.

The four terms proportional to V given by (2.4) in (2.5) are expressed as infinite sums of terms each containing an in-

tegral of the form

f dk fdx, fdx2 cos(qx, )cos(qxz)f (xn&
—k)f&(x, k)f&(x2——k)fr(x2 k)fr(x —k)f (x —k) . —

After a lengthy but straightforward calculation, ' the quadratic-response function [see Eq. (1.2)] is obtained as

8(0)( )
—3z y ( ) k —nl k —

n( )L m —
n( )L k —

m(4
4n.

k (k —n)(m n) k!—

Zk n

+2/ k —nl k —
m( )L m n(&}1 k ——

n(4&)
(k —n)(m n) k!—

7

2k —n k+n
&k —nl k —

n(z}L (&}Lk —
n(4&) g &k —

n(L k —
n(&))2L

k (k n) k—! " " " „(k—n)2k!
(2.8)

6
8' '(q)= q e g bmq™

3277 m (+0)
(2.9)

where b„are constants which may be found in Table I.
The question which arises now is how large the exter-

nal potential may be for the density fluctuation (of in-
teracting electrons) to be described only by its first two
harmonics in the form

where z=—q /2 and k, m ~0, k, mAn. The rearrange-
ment of the terms in the power series of Eq. (2.8) trans-
forms it into

5p(r)= Vg(q) cos(q r)+ V 8(q)cos(2q r), (2.11)

the response functions y and e including the electron-
electron interaction.

The interaction will be taken into account in RPA.
This means considering in the density response the nonin-
teracting response functions (y' ' and 8' ') instead of the
interacting ones (y and 8), but replacing the external po-
tential (1.1) with the total (external plus induced) one
which, in our case, must have the form

5p„(x)= Vy„cos(qx)+ V 8„cos(2qx) (2.10)
V"'(r) = V, cos(q r }+Vz cos(2q r) . (2.12)

and the other higher-order response functions to be
neglected. The answer to this question, at least in the
case of the lowest Landau level, will be given in Sec. III.

For the moment, let us consider the influence of the
electron-electron interaction on the response functions g
and e in the random-phase approximation.

B. Random-phase approximation (RPA)

Let us consider the density response to the external po-
tential (1.1) approximated by its first two harmonics, each
one in the leading order in V,

+ V2&' '(2q}cos(2q.r), (2.13)

where the first two terms represent the linear and quadra-
tic responses to the first harmonic of the "external" po-
tential (2.12) and the third term represents the linear
response to the second harmonic.

The self-consistency of Eqs. (2.12) and (2.13) is ensured
by Poisson's equation

Following this prescription, the density fluctuation re-
stricted to the first two harmonics is obtained as

5p(r)= V, y' '(q)cos(q r)+ V, 8' '(q)cos(2q r)
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Vtot( r ) Vext( r ) + P5 (r')
/r —r'/

which leads to

(2.14)

V, = V + V,y("(q),
q

V2= —[V,e' '(q)+ V2y' '(2q}] .
q

(2.15}

Introducing Eq. (2.15) in Eq. (2.13) and comparing with
Eq. (2.11),we obtain

~(RPA)( )
x"'(q)

~(0)(q)27T 0
(2.16)

e(RPA)( )—
lr (Q)( )

q
1 ——y' '(2q)

q

(2.17)

i.e., the usual random-phase approximation of the linear-
response function and

III. DENSITY RESPONSE-VARIATIONAL
APPROACH

A. Variational wave functions and energies

If the amplitude V and the wave vector q of the exter-
nal potential are small enough, the eigenstates of the re-
duced Hamiltonian (2.2) may be considered to be of the
oscillatory type. Hence a variational wave function for
the electrons in the lowest Landau band (n =0) may be

1/4
C00

qo~(x) = exp[ —~no(x —ko) /2], (3.1)

as the RPA for the less usual quadratic-response function
(see also Ref. 7).

In Figs. 1(a) and 1(b) the response functions for the
lowest Landau level yo(q) and eo(q) in the noninteracting
and random-phase approximations [Eqs. (1.5), (2.7), (2.9),
(2.16), and (2.17)] are plotted together with the response
functions given in the variational approach in Sec. III.

0.20
(a)

where the frequency (tto=coo(k)) 0 and the equilibrium
position ko=ko(k) will be given by the minimum-energy
condition. (In the absence of the perturbation, ttto =—1 and

ko —=k.}
The lowest Landau band appears as

0.15—

E

~ 0.10
CO

I

0.05

~ ~o

/

E =—co + +—(k —k)1 1 1 2
pk 4 0 2 0

+ Vcos(qko)exp q

4p
(3.2)

0.000 2

q (units of (8 )

~~~~
1 +Oa

2

coo= 1 —
q V cos(qko )exp

4cop
(3.3a)

whose stationary points (coo, ko) satisfy the nonlinear sys-
tern

0.03
ko =k+ q V sin(qko )exp q

40
(3.3b)

0.02—
E

O

O
CD

0.01—

0.000 2
q {units of (&1)

FIG. 1(a) The linear-response function and (b) the
quadratic-response function of the lowest Landau level for
noninteracting electrons (dashed lines) and in random-phase ap-
proximation (solid lines), together with the variational approxi-
mation (dotted lines), versus the wave vector q; m.u. means
"magnetic units. "

If the external potential is smooth enough one may
perform a parabolic approximation of the potential ener-

gy terms in the reduced Hamiltonian (2.2). This means
neglecting all powers higher than 2 in the local expansion
of V'"'(x) around a shifted oscillation center ko, which,
together with the shifted frequency cop, will appear as
solutions of Eqs. (3.3) with the exponential factors drop-
ping out; this could be anticipated by the smoothness
condition q (&1. The eigenfunctions of the approximate
Hamiltonian will then be obviously (3.1), but the corre-
sponding eigenvalues will differ from Eq. (3.2) in the first
tenn which will be replaced by cop/2. Thus the eigenval-
ues will coincide only if q V ((1which may be interpret-
ed as another smoothness condition. Therefore, by
choosing variationally both the shifted oscillation center
and frequency, the Gaussian wave functions (3.1) are
pushed beyond the local parabolic approximation in a
larger domain of q and q V. As we shall see, the response
functions gp

' and ep ' will be reproduced by the varia-
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TABLE II. The largest perturbation V,„ in the variational
approach and the amplitude V* that removes the gap between
the first two Landau bands (Fig. 2).

q

max
VQ

0.1

100.0
0.50

0.4
7.2
0.54

0.7
2.7
0.64

1.0
1.6
0.84

1.3
1.2
1.3

1.5 1 ~ 8
1.0 0.91
1.6 1.6

tional wave functions with good accuracy for q ( 1.5.
Let us concentrate now on the solutions of Eqs. (3.3).

A brief inspection of Eq. (3.2) shows at least one
minimum for any fixed k, and only one if V and q are
small enough so that the oscillating term is not too large.
In the following we shall be interested only in the case
when Epk(cop, kp) has a single minimum. This means the
system (3.3) has only one solution (cop(k), kp(k) ). cop and

(kp —k) being even and periodic functions of k, with a
period 2m. /q, their relevant domain is [O, m/q]. Consid-
ering in Eq. (3.3a) that cop=cop(kp ) and combining it with
(3.3b), we may express k =k(kp), the relevant interval
being again [O, m. /q]. Because kp(0) =0 and
k(rr/q )=m. /q, the condition in which (3.3) has only one
solution for fixed k is

B. Electron density

The one-to-one relationship k++ko allows one to ex-
press the electron density of the lowest Landau level with
all the states occupied as [see Eq. (2.5)]

pp(x) = f dkp ~cppk(x)
1 dk 2

277 0
(3.8)

The first two energy bands are plotted in Fig. 2 for
three different (q, V) values. They have the same symme-
try properties in k space as the external potential (1.1) has
in r space. Figure 2 yields information on the size of the
gap between the Landau bands as a function of the exter-
nal potential parameters. The gap vanishes for V= V*,
which is shown in Table II. If V') V,„ it may be es-
timated by extrapolation. The accuracy of the energy
bands is not very important here. It depends, of course,
on the trial wave functions whose validity will be estab-
lished through the density response in Sec. III B.

The inhuence of the electron-electron interaction upon
the energy-band structure may be considered in RPA. In
the linear approximation, this means considering
Vi = V/e' ' [Eq. (1.6)] instead of V in the energy-band
expressions (3.2) and (3.7).

k(kp) &0,d
(3 4) i.e., from (3.1) and (3.3),

which means there is a one-to-one correspondence be-
tween k and ko. The maximum amplitude V,„ that still
satisfies (3.4) is given in Table II for different wave vec-
tors q.

The wave functions in the second Landau level will be
chosen in the form

' 1/4

1
pp(x) = dkp cop277'"

—
q /2a)0

q V sin (qkp)e
X 6)0

8cop+q (1—cop)

Xe
—a)(x —k )

(3.9)

CO)

4n. exp[ —co,(x —ki) /2] This being a periodic function of x, a Fourier expansion
is valid:

XH, (co', i (x —k, )), (3.5)

where coi=coi(k) &0 and ki =k, (k). The orthogonality
of the full wave functions (2.1) of the second Landau
band on those of the first one is ensured by the integral
over y for different values of k, but for the same k it re-
quires

k)=ko .

The energy band is obtained as

E =—co + +—(k —k)
3 1 1

1k 4 1
CO)

0

(3.6) 3
~O~

o 1.0
Vl

C

uJ

0.5

+ Vcos(qkp) 1—
2co )

exp q
4' )

(3.7)

and the frequency corresponding to a minimum energy is
given by the equation

0.0
~ ~ ~ J ~ ~~

2

co, = 1 —
q V cos(qkp ) 1—

6co i
exp q

4' )
(3.6')

which has a single coi(kp) solution for all the values of V
and q which will be used below.

qk

FIG. 2. The first two Landau bands generated by a harmonic
perturbation in the variational approximation for q =0.7 and
V=0.6 (solid lines), q =1.0 and V=0.8 (dotted lines), and

q = 1.8 and V =0.8 (dashed lines).
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1
po(x)= + g p& cos(lqx),2' I ) 1

(3.10)

where other terms are excluded by the parity condition
imposed by the external potential, the Fourier coefficients
being

p&
= f dko cos(lqko)

/2Q)p

q V sin (qko)e
X ct7O

gcoo+q (1—coo)

—I q /4cop
Xe (3.11)

p, = Vy' '(q)+ V o '(q)+O(V ),
where

(3.12)

The last expression is obtained by integrating
po(x)cos(lqx) from Eq. (3.10) over an infinite number of
periods in order to obtain the Fourier transform of
exp[ —coo(x —ko) ].

The response functions yz '(q) and 80 '(q) may now be
derived from Eq. (3.11) by making a perturbative expan-
sion. It may be seen from (3.11) and (3.3a) that the ap-
propriate small parameter for the particle density is
u =q V. According to the discussion in Sec. IIIA, this is
because a small perturbation should be characterized by
u «1 rather than by V«1.

After a direct power expansion we get for the ampli-
tude of the first harmonic 0.15

PV

0.1 0—

~0

~0
~0

~0

~0

the second term in the square brackets of (3.11) may be
neglected and expanding the I-dependent exponential we
can see that each harmonic has a global q factor not in-
cluded in u, except the first harmonic given by u cos(qko )

contained in coo.

Thus, the two response functions given by the varia-
tional approach, i.e., Eqs. (3.13) and (3.16) differ
significantly from the "exact" ones obtained perturbative-
ly, i.e., Eqs. (1.5) or (2.9) (for n =0), only for wave vectors
larger than =1.5, see Figs. 1(a) and 1(b). This is the
effect of the special choice of the variational wave func-
tions (3.1) which, as we can see, are satisfactory not only
if q V is small enough, but also if q is small enough. Ac-
cording to the discussion in Sec. III A, they include only
to some extent the corrections to the local parabolic ap-
proximation.

In Figs. 3(a) and 3(b) the amplitudes p& and p2 of the
first two harmonics are plotted versus V and V, respec-
tively, for three values of the wave vector q. An almost
perfect linearity is obtained for both families of curves,
for any V & V,„. The choice q =1.8 was made because
it provides the greatest ratio 8~ '(q)/go '(q); for larger
wave vectors this ratio decreases exponentially.

2
2

2

y' '(q}= — e 1+2' 8

8

rr' '(q)= e (9+q —
q )

512m

and for the amplitude of the second one

p = v'8'"(q)+o( v'),
where

6

80 (q)= q e & (3+3q )
327T

(3.13)

(3.14)

(3.15)

(3.16)

O

C

0.05
CL,

0.00
0.0

0.025—

0.5 1.0
V (units of $~~)

(b)

1.5

As a general rule, each term of the power series is pro-
portional to

V q
' +"exp[ —(1 +m )q /4], (3.17)

where m =l, 1+2,. . . , except the leading one, i.e., for
m =1=1 [Eqs. (3.12) and (3.13)]. The factor (3.17) is fol-
lowed by a polynomial in q . Formula (3.17) can be
guessed directly from Eq. (3.11) as follows: The power
expansion of the integrand without the factor cos(lqkp)
with respect to u —=q V gives for any fixed l a series of
terms proportional with u [cos(qko))" (n =m —2, m)
each one having a Fourier expansion in cos(pqko) with

p ~ n even or odd if m is even or odd. Therefore, the fac-
tor cos(lqko) will select the terms with m =1,1+2, . . . .
To any u a factor exp( —

q /4) must be associated apart
from the global factor exp( —1 q /4}. In the q~0 limit

0.020—
P4

I CQ

0.015—
O

c 0.010—
CV

0.005—

~0
~0

~0
~0

~ 0
~0

~0

~0
~0

~0
~0

r

r 00
~0

0.000
0.0 0.5 1.0 1.5

V tunits of h~&)
2.0

FIG. 3. The amplitude of (a) the first harmonic and (b) the
second harmonic of the density modulation given by the exter-
nal potential Vcosqx versus (a) V and (b) V for q =0.7 (solid
lines), q = 1.0 (dotted lines), and q = 1.8 (dashed lines).
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The third harmonic amplitude p3 is one order of mag-
nitude (or even more) less than p2 for any V & Y,„, at
least when p2 is significant compared to p, , and it be-
comes exponentially small faster than p2 when q is in-
creased [see (3.17)].

Therefore, we may conclude that in the variational for-
rnula (3.9) for the particle density of the lowest Landau
band totally occupied, the linear component [the first
term of (3.12)] is dominant for any wave vector q within
the whole range of external potential amplitudes V con-
sidered, i.e., 0& V & V~,„(see Table II). Of course, for
V & V* the second Landau level must have an appropri-
ate filling factor in order to keep the first one totally oc-
cupied. For q & 1 the correction due to the higher-order
components is at least one order of magnitude smaller
than the linear response, and for q &2 this correction
may be reduced to the quadratic response even if
Vm, „&V & V' (see Table II). For q )2 it would be ha-
zardous to estimate the contribution of the nonlinear
terms as long as the variational approach yields large er-
rors in the response functions (Fig. 1},but the linear com-
ponent should still dominate since all the other ones have
shorter exponential tails [see (3.17)].

So far, only the case of the lowest Landau level was
considered. If many Landau bands are totally occupied,
the contribution of each band to the local particle density
may be calculated using variational wave functions
describing higher excited oscillator states q&„„(x) as in

(3.1) and (3.5). The orthogonality conditions yield the
shifted equilibrium positions k„=ko for any n, and the
shifted frequencies coo =co2 =co4=, and
co J c03 605 . Hence, for any fixed k, the only
equations that need to be solved are those obtained

minimizing the energy of the first two levels, i.e., (3.3a)
and (3.3b) and (3.6'). Therefore, the perturbative
response functions will be reproduced only for wave vec-
tors q lower than those that occur in the case when only
the first Landau level is considered [as may be expected
since the strongest localized states (n =0) are the least
affected by the external potential]. This is the range of q
for which in any case 8'„'(q) «g'„'(q). For larger q both
oscillate around zero and may become comparable [Eqs.
(2.7) and (2.9) for n ~1]. Nevertheless, the resultant
quadratic-response function 8' ' (i.e., the sum of all 8'„o'

corresponding to occupied levels) is at least one order of
magnitude smaller than the resultant linear one y' '.
While e' ' has several changes of sign, y' ' is oscillating
but negative definite (see Fig. 1 of Ref. 10). The exponen-
tial tails start for wave vectors which increase with the
number of Landau levels. Therefore, if many levels are
considered, the estimations of the linear and nonlinear
contributions to the density response are qualitatively the
same as those already done for the lowest Landau level.

In Fig. 4 the density pp(x) is shown using the exact per-
turbative expressions for the response functions [Eqs.
(1.5) and (2.9) with n =0] renormalized in RPA [Eqs.
(2.16) and (2.17)]. The wave vector q =2.0 corresponds
to the maximum value of 8O '/go ' (see Fig. 1). The
amplitude V =2.3 of the external potential yields a total
linearly screened potential V& = V/e' '= 1.5. Consid-
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FIG. 4. Density modulation of the electrons totally occupy-
ing the first Landau level, produced by a harmonic external po-
tential with V=2.3 and q =2.0, in random-phase approxima-
tion (solid line); the dashed line represents the first harmonic,
the dotted line represents the second harmonic.

ering it as the external potential in Eqs. (3.2) and (3.7) for
the energy bands, still we may suppose a gap persisting in
the energy spectrum; this means Vi& V (q=2) (see
Table II). For these values of q and V, the largest devia-
tion of p(x} from the first-harmonic approximation is ob-
tained without populating the second Landau band, i.e.,
at very low temperatures.

IV. CONCLUSIONS AND DISCUSSION

The density response of a totally occupied Landau
band produced by a harmonic external potential has a
dominant linear component for any wavelength and for a
large range of amplitudes, including those yielding an
overlap with the next Landau band (as long as the former
band remains totally occupied).

For small wave vectors, the quadratic response is very
small because the quadratic-response function is propor-
tional to q . Any higher-order response is much smaller,
going like a higher power of q [see (3.17)]. Therefore, for
any q &1, the total contribution of the nonlinear com-
ponents amounts to at most a few percent. For wave vec-
tors q &2, the full response may be satisfactorily de-
scribed by the first two harmonics, in the forin (2.12),
within errors, no larger than a few percent, at least in the
case of the lowest Landau level.

If the lowest band is totally occupied and the next band
is totally empty, the density modulation has the second-
harmonic amplitude not exceeding 25% that of the first
one, a value obtained when the external potential gives an
almost vanishing gap, and considering the electron-
electron interaction in the random-phase approximation.

%"hen overlapping takes place, the lower level being
full and the upper one empty in the unperturbed state, a
redistribution of the electrons produces partial filled
bands. Their strong and nonlinear response discussed in
Sec. I enhances the nonlinear effects which may be seen
in Fig. 4. '

The temperature may prevent a Landau band from
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remaining totally occupied. Its inAuence may be estimat-
ed by considering the Fermi level in the middle of the gap

Emax+ EmiII
n n+1

(4.1)

E„'"and E„+"&being the highest and the lowest energies
of the nth and ( n + 1 )th bands, and the Fermi function

where A„=E„+&—E„'". If, e.g. , 6„=0.1, the contribu-
tion of the (n +1)th band to the density response will be
within at most a few percent for T=0.01 (which in SI
units means, e.g., T=1 K and B=5 T for an effective
mass as in GaAs).
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