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The persistent current in microscopic and mesoscopic Hubbard rings threaded with magnetic flux is
studied as a function of the flux and the Coulomb repulsion parameter U. For microscopic rings having
very large U, we find that as the flux is increased by one quantum, a magnon hole traverses the magnon
sea, generating a periodicity of 1/N, in the persistent current, but with no changes in the overall spin
magnetization, in contrast to the earlier suggestion of Kusmartsev. For non-half-filled mesoscopic rings,
we use methods developed by Woynarovich for the zero-flux case to build a rather complete picture of
the variation of persistent current with magnetic flux. We find the periodicity to be a half flux quantum
or a whole one, and show how the critical flux values at which the current reverses vary with system pa-
rameters. We show how the behavior characteristic of microscopic rings goes over to that of mesoscopic

rings as N, /U increases.

I. INTRODUCTION

Recently, several authors have examined the behavior
of microscopic and mesoscopic Hubbard rings threaded
by magnetic flux and, in particular, have examined the
persistent currents generated in such rings by the flux.! ™3
The Hubbard ring is interesting as an example of a
strongly-correlated-electron system that is solvable using
the Bethe ansatz.® It has been argued to be a good model
for the optical properties of such quasi-one-dimensional
conductors as TTF-TCNQ,7 various aromatic molecules,
and systems of connected quantum dots.* It is also possi-
ble that understanding its properties might be helpful in
analyzing the physics of the Aharonov-Bohm effect in
mesoscopic metal rings.?

In this paper we map the persistent current as a func-
tion of magnetic flux for Hubbard rings over a wide range
of ring sizes and values of the Hubbard Coulomb-
repulsion parameter U. For convenience we usually plot
the ground-state energy as a function of the threading
magnetic flux; the persistent current is then just minus
the slope of this curve. For a Hubbard ring, the effect of
a small magnetic flux is to twist the boundary conditions
on electronic eigenstates through an angle ® proportional
to the flux. A flux quantum corresponds to a twisting an-
gle of 27, and so ® /27 measures the threading magnetic
field in units of the flux quantum hc/e. Evidently, the
ground-state energy E,(P) of the electronic system is
periodic in ® with period 27. (By “ground state” we
mean the lowest-energy state of the system for a given an-
gle of twist, which is in general not the state given by fol-
lowing adiabatically the quantum state lowest for zero
twist as the angle is increased. A trivial counterexample
is provided by a single noninteracting electron.)

Very recently, Kusmartsev* has pointed out that for
microscopic Hubbard rings with very strong Coulomb
repulsion U between electrons, that is, U/N, >>1, where
N, is the number of electrons in the system, the ground-
state energy varies with a surprisingly short period,
A®=27/N,.. He states that this oscillation is driven by
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spin-flip processes, the number of spin-up electrons jump-
ing by 1 for each period, so that the spin magnetization of
the system varies over its maximum possible range as the
flux increases by one flux unit. We examine these small
Hubbard systems in Sec. III and confirm Kusmartsev’s
result that the ground-state energy (and hence, of course,
the persistent current) does oscillate with the shorter
period as ® increases. However, we do not agree with his
assertion that the spin magnetization varies over a wide
range as the flux changes by one quantum. It is true that
if U is actually infinite, the energy levels, including the
ground state, become degenerate with respect to spin
magnetization, and so Kusmartsev’s choice of the succes-
sive ground states is as good as any other. Nevertheless,
in the physically interesting situation of large but not
infinite U, the degeneracy is broken, and we find that over
the whole range of ®, states having total spin 0, J, or 1
(depending on the number of particles present) have
lower energies than the spin-magnetized states discussed
by Kusmartsev.

To see what happens when an increasing magnetic flux
threads these small Hubbard rings with large U, consider
the Bethe-ansatz equations (2.3) (given below) for U going
to infinity, giving (3.1) (following Kusmartsev). The point
to note is that in this limit, the magnon sea contributes
the same constant phase shift to each of the charge (or
holon) momenta, so that its effect is the same as that of
an added fractional flux proportional to the total momen-
tum of the magnon sea. Now, on increasing the external
twist angle ® on the system (i.e., the magnetic flux) from
zero, the lowest-energy state of the system for a particu-
lar ® is given at large U by generating a compensating
momentum in the magnon sea, that is to say, a momen-
tum which will counterbalance as much as possible the
extra holon phase shift ® and, hence, minimize the in-
crease in energy of the holon distribution. Of course, for
finite U, there is some energy cost associated with creat-
ing momentum in the magnon sea. However, for large U,
the spin degrees of freedom are equivalent to those of a
Heisenberg antiferromagnetic chain with coupling of or-
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der N./NU. Thus, for large enough U, it is always worth
creating momentum in the magnon sea, which costs ener-
gy of order N,/NU, because the consequent lowering of
energy of the charge Fermi sea is independent of U in
leading order. It is of order 1/N. As discussed in Sec.
ITI, the energetically most economical way to create a
given magnon momentum less than 7 is to create a single
des Cloizeaux—Pearson excitation, that is, a single hole in
the sea. As ® is increased, this hole moves from one Fer-
mi point to the other.

It should be noted that since the magnon momentum is
itself quantized, it cannot perfectly compensate for the
effect of a smoothly increasing twist angle ®, and from
(3.3) it is evident that this remaining imbalance leads to
the energy oscillating with the short period 27/N.. The
picture is somewhat complicated by the parity require-
ments (integer or half odd integer) on the numbers of
charges and spins. It is necessary to deal with the four
possibilities separately, as they lead to different sets of
ground-state configurations. A full analysis is presented
in Sec. IIL.

Thus, for large enough U in a microscopic ring, the
function E,(®) has a sequence of N, parabolic segments
between zero and 27. The analysis outlined above en-
ables us to identify the states of the system corresponding
to these curves However, it also suggests how E(®) will
change as U becomes smaller or the size of the system in-
creases. It is a good initial approximation just to add the
appropriate magnon energy to each parabolic segment.
This clearly means that, as U decreases, segments corre-
sponding to higher magnon energies are raised and their
share of the range in ® shrinks and disappears. Beyond a
certain point, only two segments remain: those corre-
sponding to magnon momenta zero and 7. By numerical-
ly solving the Bethe-ansatz equations, we have confirmed
that this is indeed what happens, even when higher-order
terms are included. For example, we find that for 16 elec-
trons on a chain having 32 sites, there are only two seg-
ments remaining if U is less than 100. This means that
for U below this value, there are no holes in the sequence
of magnon quantum numbers in the lowest-energy state.

Since the relevant parameter in determining the num-
ber of segments is N, /U from the discussion above, it
certainly seems safe to conclude that for mesoscopic rings
having U in the range of physical interest (U < 100, say),
there will be no holes in the magnon distribution in the
ground state. This implies that we can construct Ey(®P)
for mesoscopic rings by extending some of the work of
Woynarovich on the finite-size corrections to the
ground-state energy of a Hubbard ring with the usual
periodic-boundary conditions (no flux).° Among other
things, Woynarovich found that the energy changes in
these rings when the particle sea and/or the magnon sea
is shifted over by discrete amounts (i.e., particles or spin
quantum numbers are moved from one Fermi point to
the other). But this is precisely what happens (for parti-
cles) when a magnetic flux is introduced through the ring,
except that the flux gives a continuous shift rather than a
discrete one. Woynarovich found the energy of the set of
states generated in this way to vary as the square of the
displacement, with a coefficient that could be expressed in
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terms of the Fermi velocities and the dressed charge.
(The dressed charge, a renormalization factor, can be cal-
culated from the Bethe-ansatz equations. '°) Using his re-
sults, we can map out exactly the lowest-energy state of
the system as a function of the magnetic flux. The graph
is a sequence of parabolic segments, as it would be for
noninteracting fermions, but the interaction changes both
the curvature of the parabolas and their relative minima,
so the segments are in general of different lengths. In
fact, we find that the parabolic segment centered at the
origin for a ring of 4n electrons disappears entirely near
half filling. Another important difference from the
noninteracting case is that the allowed quantum numbers
for the particles can be either integer or half odd integer,
depending on the numbers of excitations present, and this
affects the ordering of energy levels at a given flux, as dis-
cussed in detail in Sec. IV.

It is instructive to compare the E,(®) derived for
mesoscopic rings using Woynarovich’s approach with
that following from our approximate analysis, and exact
numerical work, on microscopic rings. The connection is
clear. The mesoscopic E,(®) given by (4.14) has two
parabolic segments centered at zero and 7. That at 7 is
raised by v, /N, the magnon energy of a 7 magnon in a
finite system. This is just what we found above on extra-
polating the microscopic analysis. (It should be noted
that in both microscopic and mesoscopic cases, what we
refer to as the magnon energy here means the energy in
the spin degrees of freedom. Introducing that same mag-
non into a system constrained by periodic-boundary con-
ditions would cost more energy, because of the holon-
phase shifting. That is the same effect, with opposite
twist, as increasing ®, which is what we have introduced
the magnon to compensate.) However, the change in cur-
vature of the parabolic segments, in other words, the
dressed charge, is not given by our simple approximation
of just adding the magnon energy, although it is a 1/U
effect. This point is discussed in more detail in Sec. III.

Finally, we consider the exactly half-filled Hubbard
ring. The curvature of the energy as a function of flux
near the origin, which is essentially the Drude weight
measuring the low-frequency optical response of the sys-
tem, has been analyzed by Fye et al.? They find it to be
negative (paramagnetic) for rings with 4n sites, positive
for 4n +2 sites, and exponentially vanishing with increas-
ing system size. Stafford, Millis, and Shastry> emphasize
what they term a rather peculiar property, namely, that
for N electrons on a ring of N =4n sites, the distribution
of charge quantum numbers, which must be integers in
this case, is necessarily not quite symmetric, going from
—N/2 to N/2—1 or —N/2+1 to N/2, giving a
ground-state momentum of . Unfortunately, our
methods based on Woynarovich’s results do not work for
the half-filled case. This is because there is no headroom
at the Fermi surface to insert extra particles—that is
why the charge excitations have a gap. We did, however,
note one unexpected point concerning the distribution of
momenta in the ground state. Even though the distribu-
tion of quantum numbers may not be symmetric in the 4n
ground state, as discussed above, the distribution of mo-
menta is. The reason is that one of the momenta is exact-



45 PERSISTENT CURRENT OF A HUBBARD RING THREADED . ..

ly at 7 (for zero flux), well away from the others in a finite
system. It is immediately apparent, on inspecting the
Bethe-ansatz equations (2.3) below, that this is the
momentum value corresponding to the quantum number
N /2. When the flux moves away from zero, this particle
rapidly descends, and the overall energy drops, although
by a much smaller amount than the single-particle contri-
bution as a result of backflow in the rest of the Fermi sea.
For this system no level crossings take place as the flux
varies. The (4n+2)-particle systems vary in a similar
way, except that the maximum energy as a function of
flux is now at 7 rather than at 0. This rapid movement of
an isolated root as the twist angle varies through a sym-
metry point is closely related to that found by Sutherland
and Shastry for the Heisenberg-Ising chain. !!

II. BETHE-ANSATZ FORMALISM

We first review the standard Bethe-ansatz solution to
the Hubbard ring. The Hamiltonian of the model is

N . .
H=— 2 2 (e _leA¢;+l,U¢j,o+e’eA¢I',a¢j+l,a)

j=l o

N
+U 3 njn;y . (2.1)

j=1

Here N is the number of lattice sites of the ring,
n j’o=¢},0¢j,a is the number of spin-o electrons at site j,
and U >0 is the on-site Coulomb repulsion. 4 =®/N is
the vector potential for the magnetic flux. We have
neglected the interaction of the spin of the electrons with
the magnetic field. We will study rings with a fixed num-
ber of electrons. The current in the ring at zero tempera-
ture is given by!?

O0Ey(®)
e

Jj= (2.2)
where we used units #=1 and e=1.

The eigenstates of a chain with N, =N, + N electrons
and N, =N, down spins are characterized by the momen-
ta k; of charges and the rapidities A, of spin waves. For
a chain with twisted-boundary conditions, the Bethe-
ansatz equations are®!

. N 4(sink; —Ap)
Nkj=2mI,+®— 3 2arctan — v |’
B=1
N (2.3)
< 4(A,—sink;)
> 2arctan | —————
<~ U
j
N
s 2(Ay—Ag)
=27J,+ 3 2arctan e 7B
=1 v

Here N is the number of sites in the ring. The quantum
numbers I; and J, are either integers or half odd in-
tegers, depending on the parities of the numbers of down-

and up-spin electrons, respectively:
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_ N,—N,+1
N 2

The energy and momentum of the system in a state corre-
sponding to a solution of (2.3) are given by

NC
E=-27% coskj ,
j=1

N;
1},=T (mod 1), J, (mod1) . (2.4)

(2.5)

27
:W [21j+ %Ja .
j

III. MICROSCOPIC RINGS

We study in this section a small chain with very strong
on-site repulsion, U/N,>>1. As discussed by Kusmart-
sev,* in the limit U/N,— «, the sinkj terms in (2.3) can
be neglected, leading to
+o . (3.1

1
Nkj=2'rr Ij+72Ja

¢ a

Equation (3.1) is identical to that describing a set of
noninteracting spinless fermions on a ring threaded with
a flux:

1
N,

c

o /27 + (3.2)

3Ja -
a

If the I;’s are consecutive quantum numbers, the energy

of the state is

2T

N

P 1

NS
Ey(®)=—E,cos —+—3J,+D. ||, 3.3)
a

2w N,

c

where D, is defined by D, = (I, +1;,)/2,and E,, is a
positive constant:

E —> sin(7N,/N) (3.4)
m % sin(w/N) '
We assume in the following that the system is not exactly
half filled, for if it were, the above expression for E,,
would be zero. The energy E,(®) can be minimized for
® by choosing the set J,, such that
N,
: 2p—1 @ 2p+1
Jo=—p for 2= <= 4+p <L 5
Z Jammp for S <o D <N 3.3

It is evident from (3.3) that, with these J,, the graph of
Ey(®) as a function of ® is a sequence of identical para-
bolic segments (strictly, parabolic in the limit of large N),
giving a function with period 1/N, of a flux quantum.
The problem is that this infinite-U system is highly de-
generate. There are many ways of choosing sets of J,’s
to give the same sum—one can adjust the total number
of down spins, following Kusmartsev. There are, howev-
er, other possibilities. For example, gaps can be intro-
duced in the magnon quantum-number distribution. The
question to resolve is what states are the lowest-energy
states when U is large but finite and the degeneracy is lift-
ed. To find out we examine the leading-order 1/U
corrections to the Bethe-ansatz equations for infinite U.
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This 1/U expansion is actually quite tricky, as we shall
discuss later. On examining the Bethe-ansatz equation
(2.3), we note that, for large U, the A,’s will be of order
U, whereas the sink ;s are, of course, of order unity; for a
small system, the A,’s will be widely scattered and, with
one possible exception, will have |A| >>1. With this pic-
ture in mind, we expand the arctangent functions to lead-
ing order in sin(k;) /U and define scaled variables x, by

x,= lim (2A,/U) . (3.6)

U

For large but finite U, the k;’s in (2.3) have leading 1/U
corrections:

sk — 2sin(k;) 1 3.7)
J NU " 7‘,—+x‘21 s .
where the x, satisfy the equations
NS
2N, arctan(2x,)=2nwJ,+ 3 2arctan(x,—xg) . (3.8
B=1

The corresponding correction to the energy is easily ob-
tained from (2.5):

4 | X% N
— in
Egn =3y | 2570 | 21552
1
=—J3 (3.9)
=

We note that the energy E,, and Eq. (3.8) are just the
energy and Bethe-ansatz equations of an antiferromagnet-
ic Heisenberg spin chain of exchange coupling J, with N,
sites and with N, spins down.

Finding the lowest-energy state of a Hubbard chain
with sufficiently large U in a magnetic field is thus re-
duced to finding the state of lowest energy of a Heisen-
berg spin chain with a certain momentum
|

11’--':INC:_(NC_I)/Z»---!(Nc—l)/z »
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q =273J,/N,. This problem has been studied by des
Cloizeaux and Pearson.!* For zero momentum the state
of lowest energy of the Heisenberg chain is the singlet
state. However, for a given nonzero momentum, the
lowest-energy state is the des Cloizeaux—Pearson spin-
wave excitation, a triplet state described by real {x,},
with a hole in the distribution of the quantum numbers
{J,}. Creating a single-hole excitation of this kind is the
most energy-efficient way of generating a given total mag-
non momentum, because the spin-wave energy plotted as
a function of its momentum curves downward below its
low-energy linear form, so it would cost more energy to
produce the same momentum using several excitations.
In particular, we find that for finite U, the states in Ref.
4, where the total spin magnetization undergoes large
fluctuations as P increases, have higher energies than the
single-hole states with the same magnon momentum.
States with complex A, are also found to have higher en-
ergies than these states (compare the remarks of Woy-
narovich in Ref. 9). For large U this follows from a con-
sideration of the corresponding states of the equivalent
finite antiferromagnetic Heisenberg chain. Translating
the quantum numbers back to the Hubbard model, we
find that, for U >>1, the states minimizing the energy for
nonzero flux depend on the values of N, N; (mod 4).

A. N.=4n+2,N,=2n+1

In this case, from (2.4), the I ;s are half odd integers
and the J,’s are integers. For zero flux, the quantum
numbers I;’s and J,’s are both distributed symmetrically
about the origin. For nonzero flux, the new ground state
has a hole in the J,, distribution. The ground state for a

chain with flux
(2p —1)/2N,. <P /27 <(2p+1)/2N,

is

(3.10)

Jiseoody ==(No+1)/2,=(N;=1)/2,.. ., —(N,=2p +1)/2, = (N,=2p —3)/2, ..., (N, = 1)/2..

The J, from the hole at —(N;—2p —1)/2 has been
moved to the left Fermi surface. This is a state with a
magnon excitation of momentum —2wp/N and is the
lowest-energy  state from  approximately & /27
=(2p —1)/2N, to ®/27=(2p +1)/2N,. We say ‘“‘ap-
proximately,” because different parabolic segments have
had their bottoms raised by different amounts of order
1/U, so the points of intersection will have shifted to this
order.

B. N.=4n,N,=2n

The I;’s must be integers, and all the J,,’s must be half
odd integers. The energy at zero flux is minimized by
taking

I
I;==N./2,—(N,~2)/2,...,(N.~2)/2,
—(N,—3)/2,—(N,—5)/2,...,(N;+1)/2 .

(3.11)

Jaz (3.12)

We note that one of the J,’s has been moved from the
left Fermi surface to the right one and the state has
momentum P=2wN,/N. For nonzero flux,
(2p —1)/2N_<® /2w <(2p +1)/2N, (approximately, as
discussed above), the ground state is the one with the pth
J, from the left moved to the left Fermi surface.

C. N.=4n+1,N,=2n

For this case the I;’s and J,,’s all have to be integers.
At zero flux the quantum numbers are
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L;=—(N,—1)/2,...,(N,.—1)/2,
J,=—N./2,...,—1,1,...,N, /2.

(3.13)

There is a hole at J,=0. This state has momentum zero.
For (2p —1)/2N,<®/2w<(2p +1)/2N,, the ground
state will be the one with J,=p moved to 0. We note in
particular that for ®=1/2, the J,’s are consecutive in-
tegers.

D. N.=4n—1,N;,=2n —1

In this case all the I;’s and J,’s must be half odd in-
tegers. For zero flux the ground-state quantum numbers
are

I;==N,/2,...,(N.—2)/2,
(3.14)
J,=—(N,—2)/2,...,— 4,3, . (N,+2)/2.

We note that there is a hole between —1 and 2. As the
flux increases, the hole will move to the right. For

(2p —1)/2N, <® /27w <(2p +1)/2N, ,

the hole is at J,=(2p+1)/2. At ® equal to half a flux
quantum, the J, quantum numbers all consecutive half
odd integers. Beyond that the I, quantum numbers will
all shift to the right by 1, and the hole in the J, distribu-
tion will move to the negative side.

What we have done in the above analysis is to find, by
evaluating the leading term in 1/U for a small system,
just which of the many degenerate (at infinite U) states
has lowest energy at finite but large U. At the same time,
we have determined approximately what the energy split-
ting is and how the parabolic segments are moved up and
down relative to each other by amounts equal to the ap-
propriate magnon-energy differences. We wish to exam-
ine the range of validity of this picture as we go to small-
er U or to larger systems. From (3.9) we see that the en-
ergy cost of creating the magnon has order of magnitude
N_./NU. From (3.3) the untwisting of the boundary angle
made possible by creating the magnon lowers the energy
of the k distribution by an amount of order 1/N. Thus
the relevant parameter in assessing the reliability of our
picture is N, /U. It is also clear from our remarks before
Eq. (3.7) why this is so. For mesoscopic systems,
N_,>>U, and many A/’s are of order unity. In this case,
taking only the leading-order term in the Taylor expan-
sion for each of them and adding is clearly not a reliable
approximation.

Despite these limitations the analysis gives a picture of
Ey(®) as a function of P, in good agreement with numer-
ical results from infinite U down to U of order 50. The
main point is that the sequence of parabola bottoms—
and for infinite U there are N, of them per period —are
raised by amounts of order 1/U, reflecting the magnon
energy at the appropriate momentum. Those parabolic
sectors raised least therefore become the lowest-energy
states over larger and larger intervals in ®. Thus sectors
corresponding to large spin-wave energies disappear from
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the Ey(®) curve, until finally only two sectors remain:
those corresponding to magnon momentum zero and 7.

The above picture can be verified for small chains by
direct diagonalization of the Hamiltonian for various flux
values. Figure 1 gives the ground-state energy of a ring
of eight sites and four electrons, calculated by both direct
diagonalization and minimization of energy of states
within the sector of real A using the Bethe ansatz, with
the same result. As can be seen, for very large U
(U=200 in the figure), there are four cusps and four par-
abolic segments in the energy-versus-flux curve in one
flux quantum, as many as the number of electrons in the
ring. However, for smaller U, the width of some of the
segments gets smaller and smaller, until at some U they
are taken over by others.

The assumption that only real A appear in the ground
state for any flux thus proves to be correct for large U,
where a map to the Heisenberg model is possible, and for
small chains, where direct diagonalization of the Hamil-
tonian is possible. As will be seen in the next section, the
assumption is also correct for large systems, in which
case the energy of various states can be analytically cal-
culated up to 1/N. We therefore assume it to be true for
any chain size and U and minimize the energy of the sys-
tem by using only real A for various sizes of the chain.
This is, of course, much more feasible than allowing gen-
eral complex A. Figure 2 is the ground-state energy
E(®) calculated for chains with U=100 and density
n,=0.5. The energy for the chain with four sites has four
pronounced cusps. For the chain with eight electrons,
the energy has eight parabolic segments in a period, but
some become very narrow, while the segments around
®=0 and 7 widen. For 16 electrons, these two branches
take over the whole period.

As mentioned above, these two sectors correspond to
the singlet ground state of the spin chain and the spin-
wave state with momentum g =, respectively. These
two states have the same energy in the thermodynamic
limit, as indicated by the spin-wave dispersion relation.
However, for finite chains, the spin-wave state has an ex-
citation energy proportional to 1/N,. For large yet finite
chains, this spin-wave excitation energy scales as a func-
tion of the chain size N the same way as the energy

Energy

FIG. 1. Ground-state energy E (®) for a chain of eight sites
and two spin-up and two spin-down electrons for the Hubbard
repulsion U=20, 40, and 200.
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Energy

FIG. 2. Ground-state energy E(®) for chains with U=100
and density n,=0.5. For the chain with 4 electrons, the energy
has 4 pronounced cusps in one period. For 8 electrons there are
8 parabolic segments, but some are very narrow. For 16 elec-
trons there are only two segments. Larger chains also have two
level crossings. Note that the energies have been scaled.

reduction achieved in E, by the partial flux cancellation.
As a result, for large chains, the widths of the two sectors
at ®=0 and 7 approach values independent of the size of
the chain. However, the width of the two sectors is
dependent on the on-site repulsion U and the density of
electrons.

Again, for chains with U >>1, this relative width is
easy to find, at least in certain limits. For very large U,
the magnon energy is negligible, and the two sectors
should have almost the same width. However, for chains
with density close to half filling, E,, in Eq. (3.4) is propor-
tional to the hole density and is very small. The magnon
energy in this case becomes dominant, and the sector
with a magnon of ¢ =7 will not be the ground state for
any flux value. In this case the ground-state energy will
have only one parabolic sector in the whole period.

In the next section, we will discuss mesoscopic chains
with N >>1 and N/U >>1. In this case the k; and A, be-
come continuously distributed on the real axis. We can
analytically discuss the flux dependence of the ground-
state energy without resorting to the 1/U expansion. We
will find that any chain with N /U >>1 has qualitatively
the same behavior as chains with N/U >>1 and U >>1,
independent of the value of U.

IV. MESOSCOPIC RINGS

In the thermodynamic limit, the momenta k; of the
electrons and rapidities A, of the magnons are continu-
ously distributed on the real axis, and the Bethe-ansatz
equations can be reduced to a set of integral equations,
making them much easier to solve. This is the standard
approach for finding the ground-state energy of a large
system, for example. However, it has to be used carefully
for the problem we are considering. The persistent
current has an order of magnitude equivalent to that gen-
erated by a single electron at the Fermi level. In other
words, for a noninteracting gas, this would be the current
resulting from moving all the electrons to the right in
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momentum space by just one quantum state—a 1/N
effect. In fact, the change in the ground-state energy aris-
ing from such a shift is down by a factor 1/N? from the
total ground-state energy, since to leading order the ener-
gy gained in the shift at one Fermi point is lost at the oth-
er. This implies that simply replacing the sum over mo-
menta in the Bethe-ansatz equations by an integral will
miss the effect we are looking for, since that introduces
an error of order 1 /N2,

Fortunately, a complete analysis of these finite-size
corrections for the usual periodic-boundary conditions
has been carried out by Woynarovich,® and it is not
difficult to adapt his work to the case of twisted-boundary
conditions. Woynarovich succeeded in calculating the
energies of those states which resemble the ground state
in that both momentum and spin quantum numbers form
consecutive sets; that is to say, there are no holes in the
distributions. (He later went on to add low-energy excita-
tions, but these are not relevant to our present considera-
tions.) These hole-free states differ from the standard
half-filled nonmagnetic Hubbard ground state in that
they may have different total numbers of particles, N,
and of down spins, N, and they also may be shifted off
center, by displacements D, and D;, respectively. It is
easy to see that for the states under consideration these
quantum numbers can be written in terms of the max-
imum and minimum occupied single-particle and -mag-
non quantum numbers I, I, Jmax and J;, as fol-
lows;®

Imax_Imin+1:Nc’ Imax+Imin:2DC ? 4.1)
Jmax_Jmin+1:Ns’ ‘Imax+Jmin:2Ds .

Woynarovich found that, to order 1/N, the energy of a
hole-free distribution defined as above is

E—N +27rvc (Nc—ncN)Z+ 2 p 4+ 2 : 1
Y 48 1P+ 12
2
2mvs | 1| N 1
+ —~|—=——N,| +iD}—— 4.2
N |22 ¢ ™ 12 “2

Here v, and v, are the so-called holon and spinon ve-
locities, that is to say, the speeds of excitations near the
Fermi points in the charge and spin distributions, £ is the
dressed charge, and n, is the ground-state density in the
thermodynamic limit. These parameters can all be found
as functions of the electron density and on-site repulsion
strength by solving some integral equations, as has been
shown by Woynarovich.

The important thing to note in Eq. (4.2) is that the en-
ergy has a simple quadratic dependence on the four pa-
rameters N, D, N, and D;.

Now adding a phase twist ® to the boundary condi-
tions in the Bethe-ansatz equations is equivalent to a uni-
form shift in the quantum numbers I, —1;+®/2m. Evi-
dently, then, the generalization of (4.2) to twisted-
boundary conditions is just to replace D, by D.+® /2,
giving
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2mv. | (N,—n.N)
E=Ne¢_ +
N 4£2
2
® D 1
2D+ —+— | ——=
6D 21 2 12
2
2mv, |1 | N, 1

— | = — ip2—— 4.3
¥ 1213 N, | +1D; 2 (4.3)

It is clear from this equation that the curvature con-
stant, the coefficient of ®?, is just the charge-stiffness con-
stant discussed in Refs. 1-3. That is, we define the
charge-stiffness constant by

2
3

D= yal

4.4

The analogous spin-stiffness constant J); is defined by

US
27’

for the systems that we consider. (For systems having
finite spin magnetization, the dressing factors are more
complicated.) The spin stiffness becomes relevant when
the lowest-energy state for a given flux has a shifted mag-
non sea.

It is now straightforward to find how the ground-state
energy of the Hubbard ring varies with the magnetic flux
enclosed. For a given total number of electrons, N, and
given magnetic flux & threading the system, the expres-
sion for the energy in (4.3) is minimized by appropriate
choice of the other quantum numbers. Obviously, as P is
increased from zero, at certain values the best choice of
these other quantum numbers will change, and so the
graph of ground-state energy as a function of ® will be a
sequence of parabolic segments.

The only other complication in this analysis is a book-
keeping one—the quantum numbers I; and J,, and
hence the displacements D, and D, are integer or half
odd integer, depending on the parities of the numbers of
electrons and of down spins, so one must consider sepa-
rately the different possible total numbers of electrons
modulo 4.

The physics of the problem is contained in the curva-
ture of the parabolic segments, that is to say, the second
derivative of total energy as a function of ®, and the
switch points, or level crossings, the values of ® at which
the lowest-energy state moves from one parabolic seg-
ment to another one defined by a different set of quantum
numbers. These determine the periodicity of the energy,
and hence of the persistent current, as a function of the
threading magnetic field. It is evident from (4.3) above
that these points are determined by the Fermi-point ve-
locities and the dressed charge, which in turn can be cal-
culated from the total electron density and on-site
Coulomb-repulsion parameter U.

For the convenience of the reader, we summarize here
the equations derived by Woynarovich for computing the
Fermi-point velocities and dressed charge (for the case of
no net macroscopic spin magnetization) and solve them
analytically in some simple limits.

D=

(4.5)
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The dressed charge £ is given by

E=E(ky) , (4.6)
where £(x) satisfies the integral equation
1 sink _ , , ,
g(x)—1+;f_smk01<(x —x")E(x")dx" ,
(—lo|U/4) 4.7
E — ®© CXE — @ . .
(x) f‘w 2 cosh(@U /4) expliox)do
The holon and spinon velocities are given by
2mv. =¢ (ko) /p.ky) ,
. (4.8)
27y, = f_i exp 2 sink e.(k)dk
0
ko 27 sink -
T
X f_koexp i———U— p.(k)dk

Here p_(k) and €, (k) satisfy the integral equations

1

ko _
5 —cosk [ R (sink —sink")p, (k")dk’

(4.9)

-1
pll)=2—+

and

’ . 1 ko r . : ’ ’ ’

ec(k)=2smk+—coskf K (sink —sink')e_(k')dk’ .
27 —ko

(4.10)

These equations can be solved analytically in the follow-
ing limits.

A. Strong coupling limit

_ In the limit U >>1, the kernel of the integral equations
K —4min2/U. The Fermi velocities and & can be explic-
itly obtained:

__ 47In2

v, =2sin(mn,) |1 n.[2+cos(mn,)] |,

4 .
vs=;TT]—[21'rnc—s1n(2‘n'nc)] , (4.11)
E=1+ 4;?;' sin(mn,) .

We note that the charge-stiffness constant approaches the
finite value corresponding to free spinless fermions, while
the spin-stiffness constant goes to zero.

B. Close to half-filled chain

As is well known, a half-filled repulsive chain is an in-
sulator, and the charge stiffness 9, is zero. Close to the
half-filled limit, the charge stiffness is proportional to the
hole density:!*

v, &
D= ;ﬂ =4n,(1—n,)b/a®,
where b and a are two functions of U introduced in Ref.
14. On the other hand, the spin-stiffness constant is relat-

(4.12)
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ed to the magnetic susceptibility, which has been ob-
tained by Shiba in Ref. 15:

1 IQr/U)
2ry T I,2w/U)

2D, =v, = (4.13)
where I, is the Bessel function of imaginary argument of
order v. We see that in this limit the spin stiffness is a
nonzero constant, while the charge-stiffness constant goes
to zero as the density approaches the half-filled limit. In
general, the two stiffness constants are of comparable
value and have to be calculated numerically.

We now discuss the possible level crossings as the flux
through the ring changes. As always, the ground state of
an individual ring depends crucially on the parities of the
numbers of up- and down-spin electrons. Below we give
the ground state and its energy as a function of flux for
each of the four possible cases. Note that because
E(—®)=E(®), we only give the ground-state energy for
0O<P<.

C. N.=4n+2

In this case, N;=2n+1. There are odd numbers of
spin-up and spin-down electrons in the ground state. The
quantum numbers [ ; must be half odd integers, and the
J, are integers. From (2.4) this gives D, =0 (mod 1) and
D;=0 (mod 1). For ® close to zero, the ground state is
the state with D,=D,=0. We will call this state (0,0).

However, for ® close to , the state (0,—1) with D, =0,

D= —1 may have lower energy. The energies of the two
states are
— = Y 42
Ego(P)—E(0) 21rN§ o,
(4.14)
Eq_(®)—E(0)= = £(r— )2+ —=
01 27N N

Here E (0) is the ground-state energy at ®=0. These two
energy levels will cross at

;g
5 -
v

We first discuss the current for ® close to the origin. The
current is diamagnetic and is proportional to the flux. Its
magnitude is particularly easy to find in the two limits
discussed above. In the strongly repulsive -case,
differentiating (4.14) with respect to ® and using (4.11),
we find

(4.15)

4

-
®, =7+

41n2
7U

j=—2N—sin(1rnc) 1— [2n.m*+n m*cos(mn,)

+2sin(7n,)] [® . (4.16)

The first-order term is actually the current of a spinless
fermion ring with density n,. We see that for low density
the current is proportional to the electron density, while
close to half filling the current is proportional to (1—n,).
In fact, close to half filling, the current is always propor-
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tional to (1—n_) for any nonzero U, as can be seen from
(4.12). The current is maximum for quarter-filled rings.
Now we discuss where these levels cross.

In the strong-coupling limit, the spin stiffness is very
small, and these two levels cross at the point &, =m/2.
The energy is close to periodic in the flux with period half
a flux quantum. At the level crossing, the current
changes from a diamagnetic one to an paramagnetic one.
We emphasize that here the period halving is caused by
level crossing; none of the usual averaging has been intro-
duced.

Near half filling, on the other hand, from (4.12) and
(4.13), the charge-stiffness constant is very small and the
spin stiffness is not small. It follows that, close enough to
half filling, the two levels in (4.14) will cross at some
point beyond ® =1, and in this case the state (0,0) will
first intersect (—1,0), which then becomes the lowest-
energy state, and (0,— 1) is never the lowest-energy state.
In this case the period of the current is one flux quantum.

For general U and filling, we have numerically calcu-
lated the level-crossing point .. Figure 3 is a contour
graph of the width of the branch of the parabola centered
at ®=1 as a function of U and the filling. We note that,
close to half filling, there is a region in the (U,n_) plane
where the width is zero; in other words, the level crossing
mentioned above does not happen at all, whereas for
large U and away from half filling the level crossing
occurs somewhere near ; of the flux quantum.

D. N.=4n with n integer

The ground state should have N,=2n. According to
(2.4), all the I;’s must be integers and all the J,,’s must be

half odd integers. We have
D.=1 (mod1) and D;=0 (mod1) . (4.17)

For ® around 0, the ground state should have D, =—1
and D; =1. The energy of this state is

1.0

0.8

0.6

0.4

Density

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(2/m)tan” (U /4)

FIG. 3. Width d of the local minimum centered at ®=0 for a
chain with 4n electrons. Close to the top of the graph (close to
half filling) is a region where the width is zero; this minimum is
never the real ground state, and the current is paramagnetic.
As the density is decreased and/or the repulsion gets stronger,
the width of that local minimum gets bigger. On the lines
shown in the figure, the width of the minimum is constant.
From top to bottom: d=0, 0.1, 0.2, 0.3, and 0.4 flux quantum.
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E(®)—E(0)= —g2g?+ %
27N N’

while for ® around m, the ground state should have
D.=—1 and D;=0. The energy of this state is

(4.18)

E(®)—E(0)=——&(r—®) . (4.19)
27N
These two energy levels cross at
o=7—_, (4.20)

where @, is given by (4.15). We note that the spectrum is
same as in Sec. IV C shifted by half a flux quantum.

E. N,=4n+1

In this case we assumed N, =2n (N;=2n-+1 will give
the same result). Then we have D, =0 (mod 1) and D, =1
(mod 1). The ground state for ® between zero and 7 is
the state with D, =0 and D, = —1. The energy is

v, T

— — ¢ £2(p_ 2
E(®)—E(0) 21TN§(¢ m/2)*+ aN

Extending the above formula to ® <0, we find that level
crossing occurs at =0 and ®==x. Unlike the level
crossings for chains with even numbers of electrons, these
level crossings are caused by the electron statistics and
also occur for free electrons.

(4.21)

F. N.=4n+3

The ground state in this case is D,=—1 and D;=1.
The ground-state energy is the same as in Sec. IV E.

Let us now summarize our findings concerning the per-
sistent current in mesoscopic Hubbard rings. For rings
with an odd number of electrons, the period of the
current is a half a flux quantum, independent of the in-
teraction strength. The current is paramagnetic around
P =0:

j=B(mw/2—|®|)sgn(®), B=v.E/mN , (4.22)

where sgn(x) is the signum function of x. There is a re-
normalization of the magnitude of the current due to the
interaction, but the periodicity and sign of the current are
the same as those of rings of odd numbers of free elec-
trons.

For rings with an even numbers of electrons, the
current is diamagnetic around =0 [except rings whose
density is very close to half filling, in which case the
current may be paramagnetic for a ring whose electron
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number is 0 (mod4)]. For a chain whose numbers of
spin-up and -down electrons are both odd, the current
will become paramagnetic at &, 7/2<®_ <,

—B®, |®|<d,

—B(r—|®]), &, <|®|<7, @.23)

j:

whereas for a chain in which the numbers of spin-up and
-down electrons are both even, the switch occurs at
T—d,,

—B®, |®|<7—,

—B(r—|®]), m—®,<|®| <. “24)

j=

An interesting observation is that for chains with strong
repulsion U >>1, the switch occurs at ®,~7/2. For
such chains the period of the persistent current of each
individual ring is half a flux quantum. A comparison
with the persistent current of free-electron rings'® shows
that in this case the current is drastically different from
the free-electron case. The current for a ring with 4n
electrons for small @ is, e.g., changed from a paramag-
netic one into a diamagnetic one.

For rings with not very strong interactions or with a
density close to half filling, the period of the persistent
current of an individual ring is still one flux quantum.
However, just as demonstrated by Loss and Goldbart,
and by Kusmartsev'® for free-electron rings, the average
current of a collection of rings with random numbers of
electrons has a period of half a flux quantum. Assuming
there are equal numbers of rings with even and odd num-
bers of electrons, a simple average of the current yields

B(sgn®—4®), |®|<7—D,
Jav= B(21ngnCI)——4<I>), 77'_(Dc<lq)|<¢’c
B(3msgn®—4d), . <|P|<7.

(4.25)

The period of the average current is half a flux quantum,
and the current is paramagnetic. The periodicity and
sign of the average current are the same as those of free-
electron rings.
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