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A model is proposed for the line shape of the optical dielectric function of zinc-blende semi-
conductors. For comparison with previously proposed models, this model is used primarily with
spectroscopic ellipsometry data (but also transmission data below 1.5 eV) to obtain an analytic
room-temperature dielectric function for GaAs. It is found to be more generally valid than the
harmonic-oscillator model, the critical-point (CP) model, or the model of Adachi. It is applicable
over the entire range of photon energies, below and above the lowest band gaps, incorporates the
electronic band structure of the medium, and exactly satisfies the Kramers-Kronig transformation.
It goes beyond the CP parabolic-band approximation in that it correctly takes into account the
full analytic form of the electronic density of states and thus does not require the use of arbitrary
cutoff energies. Also, it allows one to go beyond the usual approximation of Lorentzian broadening,
which is known to be incorrect for elements and compounds above very low temperatures. For these
reasons, it results in excellent quantitative agreement with experimental results for the dielectric
function and for its derivatives with respect to photon energy, much better than that given by ear-
lier models. Finally, the parameters of the model are physically significant and are easily determined
as functions of composition for semiconductor alloys. Application of the model to the fitting of
spectroscopic data on GaAs strongly suggests that spectroscopic ellipsometry does not measure the
true bulk dielectric function. It also supports the conclusion that the line-shape broadening in GaAs
at room temperature is more nearly Gaussian than Lorentzian.

I. INTRODUCTION

Measurements of optical properties long have been
a powerful tool in studying the electronic structure of
solids. Today, a knowledge of the refractive indices
and absorption coef5cients of semiconductors is espe-
cially important in the design and analysis of heterostruc-
ture lasers and other wave-guiding semiconductor de-
vices. The dielectric function, e(u) = ei(u) + iraq(u),
fully describes the optical properties of any homogeneous
medium~ 6 at all photon energies hu.

Spectroscopic ellipsometry (SE) is an excellent tech-
nique with which to investigate the optical response of
semiconductors and, in particular, to measure the spec-
tral dependence of the dielectric function. However, val-
ues for e(ur) obtained from experimental data have the se-
rious deficiency that they are not expressed as functions
of electronic critical-point energies E&, alloy compositions
z, or even the photon energy hu. The construction of ac-
curate model line shapes is necessary in order to express
e(~) as a function of h~ or of z and the E~ for an alloy
series. Thus, the accurate modeling of e(w) provides a
decisive advantage in simulating the dielectric function
of multilayer systems and in designing optoelectronic de-
vices.

An accurate model for e(io) also is necessary for the
accurate fitting of SE data or even of modulated spec-
troscopy data obtained by thermoreflectance, piezore-
flectance, or any form of electroreflectance. In partic-
ular, it is required for the accurate determination of

critical point energies Ez and line widths I'&, and for
the detailed characterization of optical materials. To
be useful for these purposes, a model for e(io) must ac-
curately describe both e(cu) and its first three deriva-
tives with respect to photon energy. There are two
reasons for this. First, the obtaining of accurate val-
ues for the Ez and I'z from SE data requires the fit-
ting of second or third derivatives of that data. Second,
electroreflectance and photoreflectance 2 line shapes
contain contributions proportional to the first and second
derivatives of e(u), for which the standard critical-point
parabolic-band (CPPB) model is not accurate, as well
as the Franz-Keldysh-Aspnes contribution propor-
tional to the third derivative.

Early models for e(io) either have been purely phe-
nomenological or have relied upon the parabolic-band
(PB) approximation. The phenomenological modelsis is
provide fits to e(io) which are numerically more ac-
curate than those given by models which incorporate
the parabolic-band approximation. However, the phe-
nomenological models completely fail to reproduce ei-
ther the line shape of e2(io) near the Eo critical point or
the line shape of the derivatives of e(u) near any critical
point. Furthermore, because of their phenomenological,
nonphysical character, they cannot be expected a priori
to provide satisfactory fits to the dependence of e(u) on
physical parameters such as alloy composition, temper-
ature, strain, or electric field. The models based on the
PB approximation are more satisfactory in some respects,
but do not yield good fits to e(cu) and still violate the full
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critical-point structure of the electronic density of states,
which is imposed by topological considerations. More
recent composite models, 2 which augment a CPPB
model with phenomenological contributions at higher en-
ergies, fail to overcome fully the deficiencies of the earlier
models. In particular, it has been shown that these mod-
els require~o the assumption of large contributions to e(w)
from indirect transitions —an assumption which is easily
shown to be false. Finally, all previous models incor-
porate the assumption of Lorentzian broadening, which
is known to be wrong for elements and compounds.
None of these models are capable of fitting accurately
both the the dielectric function and its derivatives.

In this paper we present a new model for e(a) which (i)
yields excellent simultaneous fits to e(ru) and its deriva-
tives with respect to energy, (ii) fully incorporates the
analytic form of the joint density of the states J,„(E)
between each pair of valence and conduction bands, (iii)
yields accurate values of the critical-point energies and
line widths, and (iv) allows one to go beyond the approx-
imation of Lorentzian broadening. This model allows one
to express e(u) as a function of alloy composition, as did
the model of Adachi and its generalizations, but
does not require the imposition of arbitrary cutoff ener-
gies or the assumption of large contributions to e(~) from
indirect transitions, as did that model.

In Sec. II we present the formalism of the dielectric
function for a bulk solid in the absence of line broadening.
Then, we show how this formalism is generalized prop-
erly to take line broadening into account either within a
Lorentzian or a Gaussian approximation. In Sec. III we
briefiy review the previous models for e(~). In Sec. IV,

I

we develop our new model. In Sec. V we show how to
apply our model to the calculation of an analytic e(~),
and compare the results of our model with experimental
data for GaAs, for e((d) and its numerical first, second,
and third derivatives. A comparison of the fits obtained
from our model and shown in Sec. V to those obtained
from previous models and shown in Sec. III shows that
our model is vastly superior numerically as well as ana-
lytically. In Sec. VI we summarize the strengths of our
model, consider ways it could be improved and present a
new physical result based on our fittings of GaAs spec-
troscopic data.

II. THE OPTICAL DIELECTRIC FUNCTION
WITH LINE BROADENING

The basic formula for the transverse dielectric func-
tion in the absence of line broadening has been derived
by several authors 2 by calculating the transition
probabilities. However, the proper method of introduc-
ing line broadening is not obvious within that formalism.
On the other hand, it is quite obvious within the various
formalisms used to derive the longitudinal dielec-
tric function. We introduce line broadening using the
formalism of Ehrenreich and Cohen. s This is justified
because the transverse and longitudinal dielectric func-
tions become identical in the form in the limit of infinite
wavelength (or zero wave number), the appropriate limit
to consider for optical response.

In the absence of line broadening the longitudinal di-
electric function is given by the formula

8xe2
e)(wq) = i —lim , ) ) ~(c, k v, k)') („)

c,k v, k'

~k, k -q
h~ + E,(k) —E„(k') + ig) (2.1)

Here,

dr u,'i, (r)u„i,i(r),(c, kiv, k') =—1 (2.2)
unit cell

fl and 4 are the volumes of the solid and of the unit cell, respectively, and u, i,(r) and u„i,i(r) are the usual periodic
parts of the Bloch functions in the conduction and valence bands, respectively. The sums over c and v go over all
conduction (c) and valence (v) bands, the sums over k and k' go over the first Brillouin zone, and il is a positive
infinitesimal.

For small q, perturbation theory yields the result

/(c, kiv, k')/ = /(c, k/v, k + q)/
ii'hqP, „(k) )

(, mE,„k )
where m is the free-electron mass, E,„(k) = E,(k) —E„(k),

(2.3)

1
P,„(k) =— u ~(r) p&u &(r) d'"

and p& is the component of the momentum operatar in the direction af q. Substitution af Eq. (2.3) inta Eq. (2.1)
leads to the final result

8zh e (P,„(k) ( 1 1
ei(~) = 1 —limo-o m' (,E,„(k) (h~ —E,„(k)+ ig h~+ E,„(k) +ig&

' (2.4)
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This result can also be expressed in the form

OO

(s —,„( )+i()) d f(a +E „)E+'f)+ .-o ~ - (Ekq 0 )
k, c,v

(2.5)

which can be derived directly within a Green's-function formalism. s The optical dielectric function is identical with
this dielectric function, except that the direction of the momentum is in the direction of the electric field of the light
for the optical dielectric function. The summation over k in Eq. (2.5) can be replaced by an integration over the
energy E = E,„(k) by introducing the joint density of states, J,„(E).One finds the result

8xh e~ P

JEST

~ co OO

e(es) = 1+ i ) J,„(E)dE (

'"
(

ds e'(" s+'e(' — de e'(" + +'"1')
0

(2.6)

for the optical dielectric function, where P,„(E)is an average of P,„(k)over the surface in k space given by E,„(k) = E,
with the direction of p& in the equation for P,„(k) taken to be along that of the electric field of the light. Equation (2.6)
is valid in the absence of line broadening and of indirect transitions. In actuality, due to defect scattering, electron-
phonon scattering, electron-electron scattering, etc. , the line width is finite. Formally, this results from the replacement
of the infinitesimal g by a function y(s), which yields the result

8 h p OO

e(~)=1+e ' ) d (E)dE( '"' ''(
( der«e -s"e('»' — dee'«e +E+'e(»)

)

(2 7)

In order to obtain a usable formula for e(u), we expand 7(s) as a power series in s = t/h, where t is time, and
truncate the series after the first two terms:

p(s) = I'+ 2o~s. (2.8)

In previous models for c(u), for simplicity 7(s) has been replaced by the constant I'. This approximation, which is
referred to as Lorentzian broadening, yields the result

8 h
2

C)0

(2.9)

However, it has been found theoretically that for the case of line broadening induced either by electron-phonon
scattering ~ or by dilute impurity scattering, s s 7(s) is best approximated by 2o2s, where 0 is the root-mean-square
scattering t matrix. This result has been supported by studies of the line shape of e(u) near the Ei critical points of
GaAs and CdTe. 2 This approximation yields the result,

e(ts) =1+( ) j„(E)dE~ "' '
(

dee'(" &+ ' ')' — de '" + + ' 1)
0

(2.10)

It is known as Gaussian broadening because of the Gaus-
sian time decay in Eq. (2.10). Lorentzian and Gaussian
broadening each are a special case of Eq. (2.8).

Equations (2.9) and (2.10) form the basis for our mod-
eling of e(u). Notice that the factor 1/E in Eqs. (2.7),
(2.9), and (2.10) is kept inside the integration as the effect
of line broadening is introduced. If the dielectric function
is derived by calculating the transition probability with-
out the efFect of line broadening, it leads immediately to
the formula

8vr~h e2
&2(~) =

for the imaginary part of e(u), which also can be ob-
tained from Eq. (2.7) in the limit 7(s) ~ 0. In some
papers in which line broadening is introduced phe-
nomenologically starting from Eq. (2.11), the formula
obtained for c2(~) contains a factor I/u~ rather than
the factor f) /E~. This mistake leads to a value of c(~)
which goes to infinity as u approaches zero, rather than
to the correct value of zero. Other authors ~ have
proposed approximations to circumvent the divergence
arising from the spurious factor I/u . However, this di-

vergence never appears if line broadening is introduced
properly, as is done here.

P E
x ) J,„(E)dE! '"

! 6(h~ —E)
III. PREVIOUS MODELS

FOR THE DIELECTRIC FUNCTION

= 8 P,„h~ J„h~
c) tr

(2.11)
In the past, models for the dielectric function either

have been purely phenomenological or have relied upon
the CPPB approximation. Among the phenomenologi-
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cal models both the Lorentzian oscillator and the har-
monic oscillator i (HO) are well known. These models
approximate the continuum of transitions possible be-
tween band states in a solid, with the resultant critical-
point structure, by a small discrete set of transitions
and thus do not fully incorporate the band structure.
In this respect, the CPPB models, largely developed by
Cardona and Aspnes, 7 s more accurately represent the
band structure. Recently, Adachi~ developed a new
model for e(u) in which a CPPB model is augmented
by discrete HO transitions at higher energies. However,
none of these models are capable of describing the di-
electric function and its derivatives simultaneously. Here
we briefly review the HO model of Erman et al. ,

is the
CPPB model, the model of Adachizo and more recent im-

provements in those models, pointing out those features
in each model which limit its validity.

In the harmonic oscillator model of Erman et al. ,

e(~) is given by

e(~) =1 —) AgI
i, hid —Ei, + iTy

h~+ Ei, + iI'p) ' (3.1)

where FI, is the energy of a harmonic oscillator and I'p

is its linewidth. Equation (3.1) is much simpler than
Eq. (2.9) and corresponds to replacing J,„(F)in Eq. (2.9)
by a sum of Lorentzians. In principle, each single transi-
tion from a lower band to a higher band could be repre-
sented by a harmonic oscillator, but in practice the min-
imum possible number of oscillators is used to represent
the dielectric function. This model fails to describe e(w)
below or around the band edge at Eo because e2(4/) has a
broadened square-root singularity at the band edge with
little background, whereas the HO model yields only a
sum of Lorentzian peaks for e2(u). Figure 1 shows the
result of fitting I (u& ), the dielectric function of GaAs as
determined from the spectral data in the manner detailed
in Sec. V. Following Erman et al. , seven harmonic oscil-
lators were used. The numerical derivatives of L(uz ) also
are compared with those of the fit. The fit to L(~~) is

excellent between 2.6 eV and 5 eV, but is not good near
Eo or above 5 eV. The resultant numerical derivatives
of that fit fail to fit the numerical derivatives of L(cu&),

[L(ul)jf„"„. Furthermore, in order to obtain this fit to
L(cu&), one is forced to include transitions at 3.48 eV and
3.836 eV which do not correspond to true critical-point
(CP) transitions. This model contains 21 free parame-
ters, with e(cu) depending nonlinearly on 14 of the '21.

The root-mean-square (rms) fractional error ou of this
fit to L(sr~), defined by

) Ie(~,. ) —L(~,.) I

) .IL(~ )I'
(3.2)

is 2.6%. Restricting the fit to the range from 1.5 eV to
5.0 eV results in an excellent fit to L(wz), reducing the
rms fractional error ou to 1.0%. These values of oo are

better than those obtainable with the CPPB model but
more than twice as large as those which can be found
with the new model proposed here. The values found for
the energies and line widths of the peaks are shown in
Table I for both fitting ranges.

Because the HQ energies Ey are not simply related to
the CP energies E&, this model is not simply related to
the band structure. Moreover, the phenomenological line
widths I k in this model bear no relationship to true line
widths and are much broader; thus they contain no use-
ful information about sample quality. Recently, Terry
has substantially improved the HO model by allowing the
contribution of each oscillator to have an arbitrary phase
angle. He used nine oscillators, and thus 36 free parame-
ters, with the resultant e(cu) depending nonlinearly on 27
of the 36, but did obtain an excellent fit to L(uz). How-

ever, even this improved version of the HO model still
sufkrs from the basic weaknesses discussed above.

The CPP B model was originally developed by
Cardonas and Aspnesss and has been used by many au-
thors to investigate the optical properties of solids. This
model gives an accurate representation of the derivatives
of e(u) of order higher than first order, because the crit-
ical point structure is greatly enhanced in those deriva-
tives. Thus, its use enables one to determine the CP
energies and line widths quite accurately. However, this

0 ——

V-(~&)l-. (I)

tL(~&)l". (2)

0—

tL(~g)) n.m
. (3)

0—

3 4

Photon Energy (eV)

FIG. 1. Fit to L(sr~) obtained from the seven-harmonic-
oscillator model. The bullets and the plus signs are the real
and imaginary part of L(u&), respectively. The solid lines in

L(uz) show the fits obtained with the Ho model. The first
three numerical derivatives of L(u~) and of the fit to L(u~)
also are shown. It is clear that the derivatives of the fit do not
provide a good representation for the derivatives of L(u~)
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TABLE I. The values in eV of the energies and line widths of the peaks in the HO model for
the dielectric function of GaAs for fittings to L(co~) over the ranges (a) 1.0 eV & )'iu & 6.0 eV and

(b) 1.5 eV & h~ & 5.0 eV.

Energy
range

(a)
(b)
(a)
(b)

Parameter
E~
E~

r,

1
2.916
2.915
0.084
0.072

2
3.127
3.117
0.231
0.248

3
3.484
3.485
0.265
0.292

Peak index
4

3.836
3.896
0.321
0.610

5
4.598
4.488
0.462
0.294

6
4.871
4.845
0.154
0.310

7
7.587
9.28
2.377
0.463

model gives only a very poor representation of the dielec-
tric function itself and is not suitable for the description
of the dielectric function or its first derivative with re-
spect to photon energy, temperature or pressure.

Within a CP model, e(cu) in Eq. (2.9) usually is given
by the approximate formula

8xe~.(~) = I — ' ) P' dE '( ) . . (3.3)m2+~ i hv —EyiI'.' 2

eter. The parametrization of the value of () (Ref. 39)
is justified in the literature as representing the effect of
excitons near the CP energy. However, this justification
is at best questionable, because 8& is found to be very
near its theoretical value for the Eo and Eo+ A0 crit-
ical points, at which one might expect excitons, but is
found to be very different from the value expected the-
oretically for d = 2 and d = 3 at the E~ and Ey + Ay
critical points, near which one does not expect excitons.

Here, the sum over c and v in Eq. (2.9) is replaced by a
sum over the critical points j, which implicitly contains
a sum over c and v. In this model P,„(E) in Eq. (2.9)
is considered to be constant near any critical point and
is replaced by the constant P&. The second term in the
second set of large parentheses in Eq. (2.9), being much
smaller in magnitude than the first term near any crit-
ical point, is usually neglected. Finally, the factor E
in Eq. (2.9) is replaced by (hu) ~. This is justified only
if the spectral range of the contribution of each CP is
limited to the region ~Fuu —Ez ~

&& Ez near the CP. This
approximation leads to a serious analytic error, a diver-
gence in e(~) as td ~ 0, as well as quantitative errors.
Also, note that the usual neglect of the second term in
the second set of large parentheses in Eq. (2.9), although
it is not so serious as the previous approximation, does
prevent e2(u) from going to zero as td ~ 0, as it should.

In the immediate vicinity of any three-dimensional
(3D) CP of type M&, E,„(k) is a parabolic function of
k. Thus, each 3D CP is characterized by a square-root
singularity, the Mo and M2 two-dimensional (2D) critical
points are characterized by a discontinuity in J,„(E),and
each one-dimensional CP is characterized by an inverse
square-root singularity. Excluding the only remaining
type of CP, the 2D Mi CP, which does not occur, the
derivatives of e(~) can be represented within the CPPB
approximation by the equation

(h~) L(ur )

K&~)'L(~i)l(')
0—

Ks~)'L(~i)l(')

f(s~)'L(~;)l(')

I I

3 4
Photon Energy (eV)

(3 4)

where C& is a constant, and d& is the dimensionality of
the CP. In the neglect of many-body effects, the phase
angle 0& is given by the equation

x'
0~ = —

(& —"~)

However, usually 0& is treated as an adjustable param-

FIG. 2. Separate fits of the CPPB model to (bur~) L(~~)
and to its first three numerical derivatives. The bullets
and the plus signs show the real and imaginary parts of
[(hu~) L(sr~)]„„,respectively. The solid lines show the re-
sultant fits. The insets show the fits to the second and third
numerical derivatives with the scale expanded by a factor of
20 and 10, respectively. The glitches in the second and third
derivatives of L(u~) seen at 1.37, 1.5, and 3.5 eV in our fig-
ures result from the joining of different sets of data or of data
from regions having different spacings in energy; they have no
physical significance.
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In Sec. VI we propose a different, more physically rea-
sonable explanation for the anomalous values found for
the 0& at the E1 and E1+A1 critical points and many
higher-energy critical points.

Equation (3.4) is known as the standard analytical
representation and has been widely used to fit the
line shape of the derivatives of c(~). Rigorously speaking,
it is not valid for n = 0. However, it is conventionally
used even for n = 0, ignoring the contributions to e(u)
associated with any CP, j, for very large ~h~ —E~ ~, and
making the change

for n = 0 for those critical points with d&
——2.

Figure 2 shows the results of independently fitting
(hu)~L(uz) and each of its first three numerical deriva-

tives, [L(~z)]„"„,by (hu)~e(u&) of Eq. (3.4) and its nu-

merical derivatives, [(hu)~e(u&)]„"um, within the standard
analytical representation, Eq. (3.4). This figure shows
that the CPPB model provides a good, but not excellent,
representation for the experimentally measured dielectric
function, particularly below Ei for Li(uz), the real part
of L(uz), and provides an excellent fit to its second and
third derivatives. However, as is shown by Fig. 3, fitting
the imaginary part of (hu)sL(u&), (hu) L~(cu&), and its
first three derivatives simultaneously makes the fits to
(hu) I2(u~) and its first two derivatives poor and the

fit to [(h~) L2(u&)]„„only fairly good. In these fits
seven critical points were used between 1.0 eV and 6.0
eV, and, as is customary, the values of the 0~ were left
free. The values chosen for the dimensionalities dz, the
values found for the parameters E& and I'& for each criti-
cal point, and the rms fractional errors e„and 0. defined
by

at the Eo and Eo + 40 critical points and choosing
C&(Eo + 4o) = 0.5C&(EO), he was able to reduce the
number of free parameters in his model to 14, less than
the number in either the HO or the CPPB model. How-
ever, he was forced to pay a high price for this reduction
in the number of free parameters. First, as is shown in
Fig. 4, his model does not provide a good fit to either
c(u) or its derivatives. Also, his model violates the full
CP structure of J,„(E) imposed by topological consider-
ations, thus requiring the adoption of artificial cutoffs in

J,„(E). Furthermore, in order to obtain fits which are
not very poor in the energy region between Eo+ Ao and
Ei, he was forced to assume a contribution to eq(u) from
indirect transitions much larger than that from direct
transitions and 2—3 orders of magnitude larger than is
physically correct. Finally, he treated line broadening in
a manner which violates the analytic properties of i(~),
as has been discussed in Sec. II above.

More recently, Adachi has obtained improved fits
to L(~) by introducing excitonic eff'ects at the Ei CP,
increasing the number of parameters in his model to

0—

[("~) L2(~j)la~~~,

(3.6)

and

[(h~) L x(uri)]PJ~

3
2 1 ~ 2 (3.7)

are shown in Table II. Thus, these fits contained 28 ad-
justable parameters, with c(u) depending nonlinearly on
21 of the 28. The dependence on n of the values found
for the E& and I'& clearly indicates the existence of short-
comings in the CPPB model.

The model of Adachi combines features of the HO
and CPPB models and thus has some of the virtues and
some of the faults of each of those models. Adachi treated
the Eu, Eo+Ko, and Ei(L) critical points within a CPPB
model and mimicked the effect of the next three criti-
cal points, which are broader and close in energy, by a
single HO transition. He explicitly included the effect
of indirect transitions below Ei(I), but neglected the
Ei(L) + Ai(L) critical point. By also setting I' = 0

I I

3 4

Photon Energy (eV}

FIG. 3. Simultaneous fit of the CP PB model to
(hu~) j,(uz) and its first three numerical derivatives. The
bu[lets and the Eilus signs are the real and imaginary parts
of Khu~) L(&d~)]„„~~, respectively. The solid lines show the
resultant fit. The insets show the fits to the second and third
numerical derivatives with the scale expanded by a factor of
17 and 8, respectively. The glitches in the second and third
derivatives of L(m~) seen at 1.37, 1.5, and 3.5 ev in our fig-

ures result from the joining of diferent sets of data or of data
from regions having difFerent spacings in energy; they have no

physical significance.
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TABLE II. The dimensionalities assigned each CP and the valuethe values of the CP energies and line
widths of GaAs o taxne y ingG A b d b fitting spectral data with the CPPB model given by Eq. 3.4 . The

of eV. The first four columns of values were found by fitting e nume
'

values are given in units o e . e rs
nth derivatives of the spectral data with respect to photon energy wit t e numeric n

f = 0 . . . 3 ~ The values in the last column were foun yof the CPPB model for r(u), or n
h d and its first three numerical derivatives. Values for ~0~ j+ 0~simultaneously fitting the ata an i s rs ree

' . o

I Eo I' ], and I'[Eo(I') + Ao(r)] could not be found by fitting and were xe a e v ues
eV, 0.005 eV, and 0.005 eV, respectively, which are not listed below.

Critical
point
E.(r)
Ei (A)

Ei(A) + Ai(A)
Eo(6)
E2(X)
E2 (E)

3
2

2

2

2

2

0

1.348
2.806
3.105
4.447
4.195
4.939

Order of the
1

1.348
2.896
3.115
4.462
4.524
4.974

derivative, n
2

1.404
2.911
3.131
4.452
4.803
5.006

3
1.403
2.918
3.153
4.472
4.812
4.996

Simultaneous St
1.429
2.914
3.132
4.431
4.738
4.951

r[E (A)]
r[E, (A) + ~, (A)]

r[E,'(~)]
I'[E2(X)]
r[E2(~)]

0.079
0.002
0.004
0.311
0.010

0.036
0.044
0.073
0.426
0.135

0.036
0.063
0.079
0.335
0.139

0.042
0.061
0.067
0.068
0.133

0.038
0.063
0.085
2.375
0.141

rms fractional error 4. 2%%uo 7.0'%% 12.5% 15.2% 18.2%
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FIG. 4. Fit to L(uj) obtained from the model of Adachi.
In (a) the plus signs show L2(uj). The dotted line is ob-
tained assuming i ~ j o e a
contribution from indirect transitions. The solid line shows
the final fit, in which the region below Ei is improved y as-

' ~t b tion from indirect transitions, w ich is unphysica ~

In (b) the dots show Li(ui), and the solid hne s ows e
parametrized analytical form for ei&~&~u &~obtained by Adachi
from the Kramers-Kronig relationship.

I I

3 4
Photon Energy (eV)

Fit to L(uj) obtained from the improved model
of ienkins. The bullets and the plus signs show the real and
imaginary parts of L(~j), respectively. The first three nu-
merical derivatives of L(cuj) and of the fit to L(cuj) also are
shown. It is clear that the derivatives of the fit do not provide
a good representation for the derivatives of L(&uj)
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19. However, this would appear highly unphysical, es-
pecially for the fitting of room-temperature data; the
room-temperature lifetime of an excitonic resonance at
E~ should be far too short for the resonance to signifi-
cantly afFect e(w). Also recently, Jenkins~2 has proposed
an improved version of the model of Adachi which con-
tains 20 parameters and in which the matrix elements

P(E) in Eqs. (2.6)—(2.11) decay exponentially with in-
creasing energy away from any critical point. This modi-
fied model yields excellent fits to L(to) without introduc-
ing excitonic effects at E~, but still does not yield good
fits to the derivatives of L(td), as is shown in Fig. 5. Fur-
thermore, it still contains most of the unphysical features
of the original model of Adachi.

The above brief discussion of the existing models for
the optical dielectric function of semiconductors (the HO,
CPPB, and composite models) clearly shows that each
of these models is incomplete. It also provides a clear
motivation for the development of a new model and a
list of tests to be applied to any new model.

IV. THE NEW MODEL FOR THE DIELECTRIC
FUNCTION

The model for e(~) proposed here meets the need for
a model which is capable of simultaneously accurately
fitting e(~) and its first three derivatives. As has been
pointed out in Sec. III, no existing models can do that.
Furthermore, unlike all existing models, it correctly de-
scribes the full analytic behavior of e(td), with no unphys-
ical features.

The development of this model contains two basic
steps. The first is to find a simple functional representa-
tion for W,„(E) = P,„(E)2J,„(E). This representation
must fully satisfy the CP behavior of W,„(E)with no ar-
tificial cutoffs, it must be capable of accurately mimicking
W,„(E) for any zinc-blende semiconductor, and it must
allow the integral in Eq. (2.9), which gives Lorentzian line
broadening, to be performed analytically. Finally, it mu. t
allow one to find a good analytic approximation to the
integral in Eq. (2.10), which gives Gaussian line broaden-
ing. Given such an analytic representation for W,„(E),
the second step is to analytically perform the integrals
in Eqs. (2.9) and (2.10), even if only approximately for
the case of Eq. (2.10). We find a final expression for e(cu)
which combines the results for Lorentzian and Gaussian
broadening, with a parameter which gives the Gaussian
fraction of the broadening at each critical point.

We develop our model for e(u) starting from the funda-
mental equations (2.9) and (2.10). First, we consider the
analytic structure of W,„(E) Because P,„(E)is. a slowly

varying function of E with no singularities, we need only

consider the analytic structure of J,„(E) In general, in.
three dimensions there are four possible types of critical
points. They are designated Mo, . . . , M3, with the sub-
script denoting the number of negative eigenvalues of the
effective-mass tensor at a given critical point. Each type
has a square-root singularity.

For zinc-blende semiconductors the conduction and va-

lence bands are very nearly parallel for long distances
along symmetry lines through many of the M~ and M2

critical points in the optical region of energies. This
means that one eigenvalue of the inverse effective mass is

essentially zero at those critical points. For that reason,
many authors have treated 3D M~ and M2 critical points
as 2D Mo and M2 points, respectively. However, even if
two bands are exactly parallel for a long distance along
some syrrvmetry line, producing a 2D critical point, there
musk also exist a 9D critical point of the same energy at
that point in k space where the two bands become non-

parallel. This situation is shown schematically in Fig.
6.

We have found that an excellent fit to [L(a&)j "„can
be found using the theoretical values given for the phase
angles 8& in Eq. (3.5) if one assumes a superposition of 2D
and 3D critical points at the 3D M~ and Mp CP energies.
On the other hand, if one assumes only 2D or only 3D
critical points at those energies one must treat the 0& as
free parameters in order to obtain even a rather good
fit. The assumption of only 2D critical points at those
energies gives a somewhat better fit than the assumption
of only 3D critical points. These results are physically
reasonable, given the situation shown in Fig. 6.

The assumption of both a 2D and a 3D CP at many
3D My and M~ critical points obviates the need for arti-
ficial cutoffs in J,„(E). Because it gives a discontinuity
in J,„(E) as well as a square-root singularity at 3D Mi
and M2 critical points, it allows the total J,„(E)for any
given pair of conduction and valence bands to be written
as the sum of independent contributions from the three
following types of energy ranges: (1) the range of ener-

gies between any pair of connected 3D Mo and M~ points
(type I), (2) the range between any pair of connected 3D
Mi and Mq points (type II), and (3) the range between

any pair of connected 3D M2 and Ms points (type III).
The resultant J,„(E) is shown schematically in Fig. 7
for the simple case in which there is only one region of
each type. For a zinc-blende semiconductor, one needs
to consider at least three pairs of bands —the heavy-hole,
light-hole, and split-off valence bands, each paired with

the lowest conduction band. For each of these pairs of
bands one must have at least one Mo, two Mq, two M2,
and one M3 critical point, with some degeneracies or near
degeneracies. The critical points and their connections
are discussed in the next section for the case of GaAs;
that case is representative of most zinc-blende semicon-

„E (k)
tilt e e-dim ens i on a1 C P

two-dimensional CP
I
I

I

I

I

L

FIG. 6. Schematic figure showing 2D and 3D critical

points at the same energy, as for instance at Et(A) along

the A line. E,„(k) is very nearly constant as one moves away

from L, until one reaches k„, at which point E, (k) begins to
decrease approximately as (k —k„), giving a 3D CP at k«.
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+).(p G )n
II

FIG. 7. Schematic drawing of Jc„(E)for the simple case
in which there is only one region of each type (simple cubic
structure), but with both 3D and 2D critical points at Ei and

ductors, at least over the optical range of energies.
The contribution to W,„(E) from each of the three

types of ranges above can be written as the product of a
function which gives the correct CP analytic properties
and a slowly varying analytic function of E which can
be well approximated by a low-order polynomial. Specif-
ically, those contributions can be taken to have the fol-
lowing forms:

W, (E) = gE-E.
x [pi(E) —qi(E) QEi —Ej, (4.1)

Wn(E) = pn(E)~ (4 2)

Wiii(E) = VEs —E
x[pni(E) —Vni(E) v E —E2j . (4.3)

Here, pp, p&&, ~~~, q~, and qppp are analytic functions of
E which are well approximated over the optical range of
energies by low-order polynomials, p„(E) = P„p„„E",
q (E) = Q„q„E" for v=I, II,III. The total W,„(E)
then has the form

Wc„(E) = ) Wi(E) + ) Wn(E) + ) Wiii(E),
I II 1II

(4.4)

where the sums over I, II, and III go over all connected
pairs of Mo and M~ critical points, connected pairs of My
and M2 critical points, and connected pairs of M2 and
Mq critical points, respectively.

Having found an analytically correct model for
W,„(E), it remains only to perform the integration in
Eq. (2.9) or Eq. (2.10) after substituting Eq. (4.4) into
those equations. For the case of Lorentzian line broad-
ening, Eq. (2.9), the integration can be performed an-
alytically in each range upon approximating the slowly
varying analytic functions p~(E) and q~(E) by polyno-
mials of degree of five or less. The integrations are carried
out in the Appendix, giving the result

2h~ —E~ lD = I' exp —o. .
2 r; (4.6)

for I'& in Eqs. (A9)—(A14), for j = i or f, leads to an-
alytic functions K„, F„, G„, and It„which accurately
mimic the numerical results given by Eqs. (Al) —(A4) for
the Gaussian case, for appropriate values of n&. Since
a& ——0 gives the exact result for the Lorentzian case,
varying the value of nz interpolates between the cases
of Lorentzian broadening and Gaussian broadening. The
value of e& which most closely mimics the exact results
of Gaussian broadening is not exactly the same for the
four functions K„, F„,G„, and I&„and depends slightly
on the value of n, but is approximately 0.2 in all cases.
Therefore, we use the same value for a& for all of the II„,
F„,G„, and I&„which occur at the CP j.

This completes the specification of our model. This
model overcomes the deficiencies embodied in previous
models, (i) yielding excellent fits to c(u) and its deriva-
tives with respect to u, (ii) fully incorporating the an-
alytic form of J,„(E) between any pair of valence and
conduction bands, as well as the values of Ez and I'~,
and (iii) allowing one to go beyond the approximation of
Lorentzian broadening. If the o& are treated as free pa-
rameters for the more important critical points and the
p„(E) and q„(E) are approximated by first- or second-
order polynomials, the model yields excellent simultane-
ous fits to I (uz) and its first three derivatives, as is shown
in the next section.

V. APPLICATION TO GaAs

In applying the model developed in Sec. IV above to
GaAs, fits were made to the same set of spectral data,
I(uz), as was fit in Sec. III using previously published
models. The data, which covers the range from 1.0 to 6.0
eV, was determined as follows. Values for both the re-
fractive index n and the extinction coefficient k between
1.5 eV and 6 eV were taken from the Handbook of Optical

+).(p & —
q F)m~

III ),.
(4.5)

where the functions K„, F„, G„, and I&„are defined in
the Appendix and the summations over I, II, and III are
defined as in Eq. (4.4).

The case of Gaussian line broadening is not as sim-
ple because the integral in Eq. (2.10) cannot be per-
formed analytically. However, we have been able to find
a functional representation which accurately mimics the
numerical integrals given by substituting Eq. (4.4) into
Eq. (2.10) with the p (E) and q (E) given by low-order
polynomials in E. The substitution of the quantity
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Constants of Solids from the spectroscopic ellipsome-
try data of Theeten and co-workers. This is the same
data as that later tabulated by Aspnes and Studna.
The data was given in steps of 20 meV up to 3.5 eV and
in steps of 40 meV from 3.5 eV to 6 eV. Values for k
were also taken from Ref. 40 between 1.37 eV and 1.5
eV in steps of 5 meV and 10 meV, but from the transmis-
sion measurements by Casey, Sell, and Wecht. Values
for n between 1.0 eV and 1.5 eV in steps of 20 meV
were calculated from the oscillator formula, with param-
eters determined by fitting the measured refractive index
by Pikhtin and Yas'kov and Marple. All the spec-
tral data for n and k were reorganized in steps of 20
meV, with the spline method used where interpolation
was needed. The values of L(u&) were then calculated
from the formula L(a&) = [n(u) + ik(~)j between 1.0
eV and 6 eV, assuming k = 0 between 1 0 eV and 1 37
eV. The glitches in the second and third derivatives of
L(ai) seen at 1.37, 1.5, and 3.5 eV in our figures result
from the joining of diA'erent sets of data or of data from
regions having diA'erent spacings in energy; they have no
physical significance.

As is discussed in Sec. IV above, the first step in ap-

plying our model to fit the spectral data is the determina-
tion of the critical-point structure of the joint density of
states, J,„(E),over a range in energy which includes the
range over which the data is to be fit. A band structure4
for GaAs showing the first three valence bands and first
two conduction bands is given in Fig. 8. The first three
valence bands are designated by v1, v2, and v3 and the
first two conduction bands are designated by t."1 and c2.
Using Schottky-barrier electroreflectance at 4.2 K, Asp-
nes and Studna identified thirteen critical points in

J,„(E) lying below 5.6 eV and having nonzero matrix
elements for optical transitions. From their identifica-
tion of E2, Eq + Aq, and E2 + Az transitions at 4.94,
5.01, and 5.34 eV, respectively, one would also expect

6

eV

an E2 + Ag+ 42 transition at 5.41 eV, which was not
seen. Using numerically difFerentiated SE data obtained
at 22 K, Logothetidis et al. observed the same critical-
point transitions, dift'ering only in their identification of
one transition. They assigned the transition labeled as
E2+ Ez in Ref. 47 to a general point P in the I'XUL
syrrimetry plane; that assignment does not require any
additional critical point.

In principle, we should include all thirteen of these
critical points in our model. However, only seven criti-
cal points are clearly evident in the room-temperature
data which we fit. Therefore, in order to reduce the
number of parameters in our model, we include only
seven critical points in our model. Those include the
four lowest-energy points —Eo(F), Eo(I')+ b,o(F), Ei(A),
and Ei(A) + Ai(A). Three of the remaining nine criti-
cal points identified in Refs. 47 and 48 were selected as
being most important, based on the following rules: (1)
The contribution of an Mi or M2 CP to any derivative of
e(u) is more important than that of any connected Mo or
M3 critical point, (2) the strength of the CP line shape
is stronger at any CP E& than at E& + 4& or Ez + b,&,
and (3) the strength of the CP line shape at any given
symmetry point in the Brillouin zone decreases with in-

creasing transition energy, due to a decrease in the matrix
element for optical transitions. These rules follow both
from empirical observation and from theoretical calcula-
tions. Based on these three rules and on the results of
Refs. 46 and 47, we selected the critical points Et(6),
Eq(X), and Ez(K) for inclusion in our model, in order
of increasing energy. Table III shows the connections be-
tween the seven critical points selected and the type of
each critical point.

Figure 9 is a schematic diagram showing the way
in which the total J(E) = P,„J,„(E) or W(E)
P,„W,„(E) is constructed for GaAs using these criti-
cal points. Figures 9(a), 9(b), 9(c), and 9(d) show the
CP structure of the contributions to W,„(E)which arise
from the pairs of bands (vl, cl), (v2, cl), (v3, cl), and

(vl, c2), respectively, considering only the seven critical
points which we include in our model for GaAs. Because
the Eo(F) CP is not visible in L(wz) or in any of its nu-

merical derivatives and thus is not included in our model
for the room-temperature dielectric function of GaAs,
the solid curve in Fig. 9(c) is replaced in our model by

Xp
TABLE III. The interconnections between the seven crit-

ical points used in fitting L(id~) for GaAs and the type of each
critical point.

Le-8-

-1P—

Xe

Xe

-12

L A ] X U, K K I"

FIG. 8. Band structure of GaAs from Ref. 46 showing
the bands we label vl, v2, v3, cl, and c2.

Band
pair

vl ~cl

v2~ cl

v3~ cl
v1~ c2

Critical
point
E,(r)
Ei(A)
E2 (X)
E2(~)
Ep (I')

Ei (A) + Ai (A)
E.(r) + ~.(r)

Eo (4)

3D
type
Mp

Mg

Mg

M2
Mp

Mg

Mp

Mg

Connected higher-energy
CP's below 6 eV

Ei(A), E2(X)
E2(~)
E2(Z)

Ei(A) + Ai(A)
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the dashed curve, which shows no Eo(I') CP. Figure 9(e)
shows the form of the resultant total W(E), which is split
into six independent segments. The first of these con-
tains an infinite discontinuity in slope at Eo(I') + Eo(I');
all of the others are continuous. The first segment is the
sum of one curve (I) between Eo(I') and Ei(A) having
the form of Eq. (4.1) and a second curve (I') between
Eo(I')+h.o(I') having the same form, but with qi (E) set
to zero. The second, third, and fourth segments all have

I

the form

W„(E) = p, (E) —q„(E)QE„—E, (5.1)

Wvi(E) = pvi(E) —qvi(E) y'E —E2(~).

The above analysis leads to the equation

(5.2)

with E„=Ei(A) + b.i(A), Eo(di), and Ez(X), respec-
tively. The fifth segment has the form of Eq. (4.2), and
the sixth has the form

8xh e
c(u) = 1 — ) [ (pnHn —qnFn)i + (pnHn)i' + (pnGn —qnI&n)ii + (pnGn qn~&n)iii

+(pnGn —qnl~n)iv+(pnGn)v+(pnGn —qnHn)vi)+) tnE", (5.3)

where the last term gives the contribution to ei(u) from
the critical points above 6 eV. A fitting to Lz(uz) and/or
any or all of its first three numerical derivatives suffices
to determine all of the free parameters in this equation
except for the b„'s. It is more appropriate to use Lq(w&)
to determine the parameters than to use Li(uz) because

Lz(uz) is much more directly related to W(E). Thus,
we determine from Lq(uz) all of the CP parameters and
the coefficients in the polynomials p(E) and q(E) in each
energy range.

Fittings to the nth derivative are done by minimizing

E2(X) ~q(
I

I
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I
~ ~

I I

I I

I I

I I
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Ei(A)+5 i (&)
I I

I I

I I

~

I

I
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~
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)
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FIG. 9. Schematic drawing of the contributions of the
pairs of bands (a) (vl, cl), (b) (v2, cl), (c) (v3, cl), aud (d)
('vl, c2) to (e) the total J(E) or W(E). The roman numerals
label the difterent regions in energy which are separated by
discontinuities in J(E) or W(E).

the rms fractional deviation 0'„defined in Eq. (3.6) with
respect to the free parameters in our model for e2(u),
with uniform weighting of all points in energy. In per-
forming simultaneous fits to L2(uz) and its first three
numerical derivatives, we minimize the overall rms frac-
tional deviation o defined in Eq. (3.7). The fittings are
performed using the method described in Ref. 7. In per-
forming simultaneous fits to Lz(u&) and its first three
derivatives, faster convergence is obtained if the CP pa-
rameters are first obtained from a fit to [L2(wz))„„,with
all of the polynomials reduced to constants, before per-
forming the full simultaneous fits.

It follows from Eq. (5.3) that the specification of ez(~)
within our model requires the specification of twelve poly-
nomials in energy as well as the specification of the CP
parameters at the seven critical points we have chosen to
include in the model. If each polynomial were replaced
by a constant and if all of the a& were set equal to zero
(Lorentzian broadening) or 0.2 (approximately Gaussian
broadening) or some intermediate value, this would leave
26 free parameters for the fitting of L2(uz ) and its deriva-
tives. Allowing p(E) to become a quadratic function of
E and q(E) to become linear in E in region I, but sup-
pressing the unimportant 3D contribution at E2(E) only
increases the number of free parameters to 28. This is
the same number of parameters as was used in the CPPB
model fits to e(u) shown in Figs. 2 and 3 and is 8 fewer
than were used in the HO model as improved by Terry.
In this version of our model, e(u) is a nonlinear function
of only 14 of the parameters as compared to 14, 27, 21,
and 13 of the parameters, respectively, in the HO models
of Erman et al. and of Terry, the CPPB model, and
the model of Jenkins.

Fits obtained from our model using only this minimum
number of parameters, with all the o&'s set to zero, are
shown in Figs. 10 and 11. The values found for the pa-
rameters E& and I'& for each critical point and the rms
fractional errors o„and 0 are shown in Table IV. All
of the critical point energies except E2(X) and all of the
line widths except I'(Eo) and possibly I'(Eo+b, o) are de-
termined with confidence. The uncertainty of E2(X) is
due to the fact that its structure is located between two
dominant critical-point structures and its strength in the



11 760 KIM, GARLAND, ABAD, AND RACCAH
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FIG. 10. Separate fits of our model to L2(u~) and its first
three numerical derivatives, assuming only Lorentzian broad-
ening for each CP and using 28 parameters, the same number
as in the fits of Figs. 2 and 3. The dots show the imaginary
parts of [()in~) L(u~)](„"„~~.The solid lines show the resultant
fits.

I I

3 4

Photon Energy (eV)

FIG. 11. Simultaneous fit of our model to Lq(~~) and its
first three numerical derivatives, assuming only Lorentzian
broadening for each CP and using 28 parameters, the same
number as in the fits of Figs. 2 and 3.

TABLE IV. The dimensionalities assigned each CP and the values of the CP energies and line
widths of GaAs obtained by fitting spectral data with the new model given by Eq. (5.3). The values
are given in units of eV. The first four columns of values were found by fitting the numerical nth
derivatives of the spectral data with respect to photon energy with the numerical nth derivatives of
the new model for e(u), for n = 0, . . . , 3. The values in the last column were found by simultaneously
fitting the data and its first three numerical derivatives. Values for Ep(I') + Ep(r), I'[Ep(I')], and
I'[Ep(I') + Ap(r)] were determined by fitting [L2(u~ )]„„and were fixed at those values 1.745 eV,
0.005 eV and 0.009 eV, respectively, for the other fittings.

Critical
point
E.(r)
Ei(A)

Ei(A) + Ai(A)
Et(&)
E2(X)
E2 (E)

d2

3
2

2
2

2

2

0
1.423
2.894
3.175
4.476
4.714
4.994

Order of the
1

1.414
2.894
3.175
4.476
4.742
4.994

derivative, n
2

1.408
2.916
3.176
4.478
4.794
5.004

3
1.411
2.928
3.175
4.472
4.751
4.996

Simultaneous fit
1.412
2.910
3.170
4.483
4.769
5.000

I'[Ei (A)]
I'[Ei(A) + Ai(A)]

r[E,'(z )]
r[E~(x)]
r[E'(E)l

0.031
0.065
0.087
0.136
0.131

0.032
0.066
0.084
0.129
0.131

0.031
0.079
0.084
0.106
0.119

0.042
0.079
0.089
0.114
0.121

0.029
0.073
0.086
0.120
0.129

rms fractional error 9.8% 9.4% 11.2% 13.7 jp



45 MODELING THE OPTICAL DIELECTRIC FUNCTION OF. . . 11 761

derivative spectra is much smaller than that of the other
two. The line width I'(Ep) cannot be determined from
these fittings because it is much less than the spacing be-
tween succcsslve grata polllts lil m(id~ ), therefore, wc liavc
fixed it at the estimated value of 5 meV. &(Ep + Ap)
is also less than the spacing between data points, but
is large enough to be fairly well determined. The fits
shown in Figs. 10 and 11 are better than those shown
in Figs. 1—3 obtained from the HO and CPPB models
and are vastly superior to the 20-parameter fit of Jenk-
ins shown in Fig. 5. The superiority of the fits obtained
using our model as opposed to those obtained using the
CPPB model with the same number of free parameters is
confirmed by a comparison of Tables II and IV. The use
of our model yields smaller rms fractional errors in the
fits and gives values for the CP energies and line widths
which are more nearly independent of n. Furthermore,
even this simplest version of our model preserves the cor-
rect analytic structure of e(u) for all of the critical points
considered, unlike the other models. Finally, our model
permits the fits shown in Figs. 10 and 11 to be substan-
tially improved with almost no increase in the diSculty
of fitting. This can be done by allowing more of the p(E)
and q(E) to be low-order polynomials in E, rather than
being approximated by constants. This leads to no in-
crease in the number of parameters with respect to which
e(u) is nonlinear.

Figure 12 shows the improved simultaneous fit to
Lz(uz) and its first three derivatives obtained by allow-
ing five more free parameters in the determination of the
p„'s and q„'s. Iil region I q(E) was wHowed to became
a quadratic function of E and in regions I', II, III, and
IV the p(E)'s were allowed to become linear functions of
E. This reduced the overall rms fractional error in our
fit, o, from 13.8% to 8.6%. The contribution to o from
noise in the derivatives of Iz(pJ&) is approximately 5%%uo,

so this is an excellent fit. Almost al] of the small remain-
ing inaccuracy in the fit above 2 eV can be eliminated
by further increasing the number of free parameters in
the polynomials p(E) and q(E), keeping the Lorentzian
approximation.

Our simultaneous fit to Lz(uz) and its first three
derivatives can be somewhat further improved by allow-
ing the parameters oz to become nonzero, i.e. , by allow-
ing an admixture of Gaussian and Lorentzian line broad-
ening. Figure 13 shows the result of a simultaneous fit
to Lz(uz) and its first three derivatives in which nz was
treated as a free parameter at the four lowest-energy crit-
ical points. This added four parameters to the 33 used
in the fit shown in Fig. 12. The values found for the
n&'s were as follows: ct(Ep) = 0.18, ct(Ep + b, p) = 0.15,
n(Ei) = 0.002, n(Ei + h, i) = 0.0'2. The values of the
line widths I'& were found to increase slightly with in-
creasing values of the o&. The final values found for the

Ls(~q). L2

0—

[Lq(wry)]«
(s

Q

0—

0—

[L2(wy)]„„
(s

0— [L2((ul)]„~~. (2)

0—

0

[L2(~l)]am~. (3)

0— M ~
V~ ~

3 4
Photon Energy (eV)

3 4

Photon Energy (eV)

FIG. 12. Simultaneous fit of our model to L2(uz) and its
first three numerical derivatives, similar to that of Fig. 11,
but with five more free parameters with respect to which c(u)
varies linearly. The dots show Lz(u~) and its first three nu-
merical derivatives; the solid lines show the fit.

FIG. 13. The simultaneous fit of our model to Lq(w~)
and its first three numerical derivatives, allowing a mixture
of Lorentzian and Gaussian broadening for the four lowest-
energy critical points. The arrows show the position of the
seven critical points used in the fit.
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TABLE V. Values of the CP energies E~, line widths I'~, and Gaussian broadening factors a&-, determined through simul-

taneously fitting L2(urz) and its three derivatives. The zero values were fixed to reduce the number of free parameters.

Critical point
E, (eV)

I', (meV)
O.j

E.(r)
1.411
5.0

0.18

E.(r) + ~.(r)
1.748
8.8
0.15

Ei(L)
2.930
43.9
0.002

Ei(L) + &i(L)
3.171
77.5
0.018

Eo(&)
4.478
76.2

0

Ei (X)
4.811
111.3

0

Ei(K)
5.003
125.8

0

CP parameters Ej, I'j, and nj are given in Table V. The
final values found for the p„and q„ in each region are
given in Table VI. In this fit u was reduced to 6.5 %.
Taking the values of the CP parameters Ej, I'j, and nj
from this fit and allowing only the 19 coefficients in the
polynomials p(E) and q(E) to vary, we found an excel-
lent fit to Lz(uz) with an rms fractional error, op, of only
0.4%. The fit is not shown because the curves for L2(u&)
and ez(u&) fall exactly on top of one another. Figure 14
shows the separate contributions to Lz(u&) of each of the
seven different regions we consider.

Unfortunately, because e(u) is rather insensitive to the
values of the nj 's, their values from our simultaneous fits
to L2(ur&) and its derivatives should not be trusted. Bet-
ter values could be obtained by fitting only the second
and third derivatives of L2(~y); however, even those val-
ues are rather uncertain, and those fits are difficult be-
cause of the highly nonlinear dependence of L2(u&) on
the oj's. The best determination of the oj's using this
model would be to fit absorption data for h~ ( Ep, with
all parameters except the oj's determined from our si-
multaneous fittings of Lz(a&) and its derivatives. That
procedure leads to a value of approximately 0.2 for n(Ep)
(completely Gaussian broadening) and an approximate
lower limit of 0.1 for o. at Ep + Ap, Ey and Eq + Aq,
lending support to our previous determination that the
line broadening in GaAs at room temperature is primar-
ily Gaussian. However, the best determinations of the
Gaussian versus Lorentzian character can be made from
fits to the second and third derivatives of L(u&) within
the CPPB model, within which Gaussian broadening can
be simulated more easily and more accurately.

The effect of allowing the nj's to be nonzero is seen
most easily at energies hu & Ep. Figure 15 shows a
blowup of the range from 1.2 eV to 1.7 eV for three fits
to Lq(uz). Each fit was made over the entire range from 1

eV to 6 eV, and only the 19 coefficients in the polynomials

p(E) and q(E) were allowed to vary. In the first fit (the
dotted line) the CP parameters were those obtained in
the Lorentzian fit shown in Fig. 12. The second (the
dashed line) was the best overall fit to Lz(v~) alone with
op ——0.4 %%uo. The third (the solid line) was similar to the
second, but with nj ——0.2 at Ep and Ep + Ap and nj:0 ~ 1
at all higher critical points. This figure clearly shows that
one must assume at least partially Gaussian broadening
to obtain a reasonable fit to Lz(uz) for hu ( Ep. Very
close to Ep, it also shows the effect of excitons, which
were not included in our model.

After the CP parameters and the p„'s and q„'s are de-
termined by fitting Lz(uy) and its derivatives, ci(~) be-
come a function only of the coefficients in the polynomial
b = P„b„E"in Eq. (5.3). Figure 16 shows the simulta-
neous fit to Li(uy) and its first three derivatives obtained
using the parameter values from the fit to L2(u&) shown
in Fig. 13 and allowing 6 to be a quadratic function of E.
The fit has an overall rms fractional error 0 =8.7'%%uo, 2.2%
greater than for the equivalent fit to L2(cu&) and its first
three derivatives. A large part of the increased error in
fitting occurs near Ep, where Li(u&) does not show the
proper CP behavior. This is because n(u&), and hence to
a large extent Li(ay), was determined from a HO model
in the absence of experimental data. Thus, we believe
that the large error in fitting the derivatives of Li(~~)
near Ep arises from errors in Li(u~) itself, not from any
problem with our model.

Figure 17 compares Li(u&) with the functions ei(~)
obtained from our best fit of ez((d) to Lq(id~) for two
cases: (1) the case in which b = 0, a zero-parameter
calculation of ei(~), and (2) the case in which b(E) is
allowed to be a linear function of E, a two-parameter fit
to Li(uz). The first case gives an rms fractional error
op —1.5%%uo, the second gives op ——1.15%. Allowing b(E)
to become a cubic function of E decreases o.

p only an
additional O. l%%uo.

TABLE VI. Values of the coefticients p„and q„determined in each region through simultane-
ously fitting L2(uz) and its three derivatives, which are multiplied by 8xh e /m . The zero values
were fixed to reduce the number of free parameters.

Region
I
II

II
III
IV
V
VI

po
13 795.3

21.2
2 427.2
903.8
270.4
258 ~ 9
88.4

p1
—7820.7
—11.8
—711.6
—157.6

0.0
0.0
0.0

p2
1077.2

0.0
0.0
0.0
0.0
0.0
0.0

qo

8077.0
0.0

593.2
299.9
210.7

0.0
17.2

—3243.4
0 ' 0
0.0
0.0
0.0
0.0
0.0

q2

239.9
0.0
0.0
0.0
0.0
0.0
0.0
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FIG. 14. Contribution of each of our six regions to rq(u).
The dotted line shows La(u~), which is indistinguishable from
the total ez(~).

VI. DISCUSSION AND CONCLUSIONS
V- i(~&)l-. (3)

We have shown that the new model proposed here
is more generally valid than the HO model as used by
Erman el al. ~ or as improved by Terry, ts the CPPB
model or the composite model of Adachiso as im-

proved by Jenkins. First, our model is applicable over
the entire range of photon energies, below and above the
lowest band gaps. Second, it gives the correct analytic
structure of J,v(E) or W,„(E) at every critical point
considered, unlike other models, and it exactly satisfies
the Kramers-Kronig relations. Third, it allows one to
go beyond the approximation of Lorentzian broadening,
which is known to be incorrect for elements and com-
pounds at room temperature. Also, it contains fewer
parameters with respect to which c(u) is nonlinear than

0—

~ ~

I I

3 4

Photon Ener~ (eV)

FIG. 16. Simultaneous fit of our model to Li(~~) and its
first three numerical derivatives. The parameters obtained in
the simultaneous fit to Lq(u~) and its first three numerical
derivatives were fixed; the only free parameters were bo, b&,

and bs in Eq. (5.3). The arrows indicate the positions of the
seven critical points used in the fitting.

1.00

0.75—

~ ~

~ ~
~

~ ~+ ~
~ ~

0.50—
15—

10-

0.25—
~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

0.00
I

1.2
I I

1.4
Photon Energy (eV)

I

1.7

0-

-10

FIG. 15. Blowup of the region near Eo for three different
fits of our model to Lz(u~). Each fit was performed over
the entire energy range from 1 eV to 6 eV. The bullets show
Ls(ca~). The dotted curve shows the Lorentzian fit of Fig. 11.
The dashed curve shows the best fit to Lz(w~), using the CP
parameters of the fit shown in Fig. 13. The solid curve shows
the effect of choosing n~ = 0.1 (5070 Gaussian broadening)
rather than a~ = 0 at the three higher-energy critical points
as well as at Ei(A) and Ei(A) + At(A).

I I

3 4

Photon E&ergy (eV)

FIG. ]7. Zero-parameter calculated ei (u) and two-
parameter fit to L (u ).iT~he plus signs show L (~j).i
bullets show ci(uy) as calculated from the best fit to L2(~i)
with no free parameters (all b„'s equal to zero). The solid line
shows ri(cg) as calculated allowing bs and bi in Eq. (5.3) to
be free parameters.
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any model except the seven-peak HO model of Erman
et al. , thus giving better convergence and less possibility
of finding false minima in fittings. Finally, even within
the Lorentzian approximation and with less than or ap-
proximately the same number of free parameters as in
other models, it yields better fits to spectral data and
gives more reliable values for CP parameters.

Not only is it the only model proposed thus far which
yields simultaneous good fits to the the dielectric func-
tion and it;s derivatives; it yields individual fits to the
dielectric function and to its derivatives which are bet-
ter than the best previous individual fits (although the
fit to the dielectric function itself is not significantly bet-
ter than the excellent fit obtained using the method of
Terry.

For all of these reasons, this model should provide an
excellent interpolation scheme for predicting the dielec-
tric function of semiconductor alloy series, given the mea-
sured dielectric function L(uz) at the end points of the
alloy series and at one or two intermediate points.

It also should provide excellent predictions for n(~) at
all energies hu below the energy gap Ep of any semicon-
ductor, given L(u~) over a reasonable range in energy
including Eo. Finally, given k(cuz) for a reasonable range
of energies below Ep, say 200—300 meV, it should provide
a good prediction for k(u) all the way down to u = 0.
We have tested these expectations and have found them
to be fulfilled; our results will be published elsewhere.

Having established the value of our model for e(u), we

must now ask if any new physics is manifest in the re-
sults of our fitting to L(~~) and its derivatives for GaAs.
The answer is yes. Our model is unique in its ability to
predict W(E). We found to our surprise that the fitting
of our model to L(uz) and its derivatives for GaAs yields
discontinuous drops in W(E) at the Mi critical points
Ei(A), Ei(A) + Ai(A), and Eo(A), as is shown in Fig.
18. We know from the analytic properties of J,„(E)that
these discontinuities should be positive, rather than neg-
ative, at Ei(A) and Ei(A)+ Ei(A) and should be ) 0 at
Ec(6) 49 This is b.ecause these discontinuities arise from
a two-dimensional Mp critical point, as was discussed in
Sec. IV and shown in Fig. 6. Thus the observed drops are
puzzling. They remain essentially unchanged when one
separately fits L(w&) of any of its first three derivatives.
Therefore, they cannot result from a failure to include
enough terms in the polynomials p(E) and q(E), because
the fits to the second and third derivatives of L(~~) are
essentially independent of those polynomials, so long as
they are slowly varying functions. We find these drops to
be essentially independent of the values of the n&, which
interpolate between Lorentzian and Gaussian broaden-
ing. These discontinuities can be made positive, as we

know they must be, only by introducing empirical phase
angles 8& at those critical points, as is done within CPPB
model. The values found for these phase angles must be
independent of the form of broadening assumed and of
all details of our model. They follow simply from the
analytic properties of the critical points.

What can be the origin of such phase angles? It has
been proposed that they arise from excitonic effects,
but one certainly does not expect excitons at room tem-

(eV )
250—

200 874 e2 2

m

150— ~ ~

50—

0—
1

I+I' .:II

I l

3 4

Energy (eV)

IV V VI

FIG. 18. The quantity (8rrh e /m ) W(E) calculated
from the fit shown in Fig. 13.

perature at the Ei(A), Ei(A) + b, i(A), or Eo(6) Mi
critical points. We also have found by numerical simula-
tions that such phase angles cannot arise from thin (& 10
A) surface overlayers or from surface roughness. Both
of those effects strongly influence the measured L(u&)
but have almost no effect on the phase of the measured

[L(uz)ln„m at the critical points. We suggest a very dif-
ferent explanation, which we propose to investigate in
detail, namely, that the phase angles arise from the fail-
ure of SE to measure the true bulk dielectric function at
energies far above Ep. At those energies the penetration
depth of light is small, so that SE probes only a thin layer
of material near the surface. Both the presence of a built-
in electric field in that region and the boundary condition
that all electronic wave functions must vanish at a sample
surface affect the reflection coeKcients of light and hence
the values of L(u~) calculated from SE data, especially
when that light penetrates only a small distance into the
sample under study. For semi-insulating or lightly doped
samples the primary effect on L(u&) is to introduce an
energy-dependent phase angle 8(E), intermixing the real
and imaginary parts of the dielectric function. ' ' We
have studied theoretically and experimentally the effect
of built-in electric fields and of surface termination on
the electroreflectance line shape and have found that
effect to be large. Previous authors have considered the
effect of surface termination on the reflection coe%cients,
but obtained somewhat unphysical results because they
ignored questions of wave-function coherence.

In principle one could use our model to determine a
true bulk e(w) in either of the two following ways: (1)
One could introduce 0& as a free parameter at each CP in
the fitting of L(wz) and its derivatives, and then evaluate

e(u) by setting each 8& equal to zero, keeping the values
of all other parameters fixed. That would cancel out the
effect of the surface termination of wave functions on the
phase angles 0&, replacing them by their physically cor-
rect value, zero. (2) One could find the ratio of J,„(E)
just above each discontinuity to J,„(E)just below the
discontinuity from a band-structure calculation and use
those ratios as constraints on the choice of our parameters
when finding the values of the 0&'s, otherwise following
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method (1) above. Method (2) should yield an excel-
lent representation for the bulk e(u), as the constraints
introduced would make the determination of the fit val-
ues of the 8& quite precise. However, because there is a
strong interplay between the values of the discontinuities
in W,„(E)and the values of the 8&'s, it is not clear that
our model is capable of yielding accurate values for the
0&'s in the absence of any knowledge about the disconti-
nuities in W,„(E). Thus, the accuracy of method (1) is
questionable.

Finally, we ask how our model could be improved even
further. In principle, it could be improved by introducing
0& as a free parameter at each critical point. However,
in practice, that improves the quality of our fits only
marginally, and at the cost of introducing seven new pa-
rameters with respect to which e(u) varies nonlinearly,
which makes the convergence of our fits much slower and
less stable. Therefore, we have elected not to include
the 8& as parameters in our model. Second, in principle
it could be improved by including the effect of indirect
transitions. However, above the direct band gap indirect
transitions contribute only negligibly to e(u). Therefore,
the introduction of additional parameters to allow the
inclusion of indirect transitions is justified only in fitting
k(ui) or Lz(u&) below the direct band gap of an indirect-
band-gap semiconductor, and not at all for a direct-band-

gap semiconductor. However, our model could easily be
improved through the addition of an excitonic contribu-
tion to e(a) near Eo(l'). As is apparent from 12(u&) in

Fig. 15, that would significantly improve our fit near

Eo(F), although it would have no significant effect at
other energies. That could be done easily using formu-
las from the literature. Finally, it may be possible to
improve our treatment of non-Lorentzian line shapes.

In conclusion, we have proposed a model for the optical
dielectric function e(u), have shown in detail how to use
it in the fitting of spectral data, and have shown that it is
superior to previous models in several ways and inferior in
none. Further, we have shown how the use of this model
to fit SE data reveals a fundamental flaw in the usual
interpretation of that data. Finally, we have considered
the possible ways in which our model could be improved.
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APPENDIX: INTEGRATION OF EC}UATIONS
(2.9) AND (2.10)

Our new model requires the integration of Eqs. (2.9)
and (2.10) in closed form. Inspection of the functional
forms of the joint density of states given in Eqs. (4.1)—
(4.3) reveals that there are only four types of integrals to
be performed, with the integrals bounded above and be-
low by critical points. For convenience we designate the
subscripts on the energies and line widths by i (initial) at
each lower CP and by f (final) at each upper CP. Then

the basic four types of integrals to be performed are

H„{~)=
E,
Ef

QE —E,'
Z(~, E), (A 1)

(A2)

G„(~) =
Ef

dE Q(w, E),E2—n

JEST —E
dE ., E{~,E),

where

n is a small non-negative integer and @(h~ + E) is
broadening function. Its imaginary part becomes equal
to —7rb(hu 6 E) in the absence of line broadening. For
the case of Lorentzian broadening 4 {h~+E)assumes the
farm

4L, (h~ 6 E) = 1

h~ + E+ iI'(E) (A5)

For the case of Gaussian broadening it assumes the form

We consider first the case of Lorentzian broadening,
for which Eqs. (Al) —(A4) can be integrated analytically
in closed form if we choose the simple form

I'(E) = yE+P
for I'(E), with

Ey I'; —E;ry
Eg —E;

(A7)

(A8)

Although not accurate far from the critical points, this
simple form suffices because the integrals to be performed
are relatively insensitive to the values of I'(E) far from
the critical points. The substitution of Eq. (A7) into
Eqs. (A5) and (A6) enables one to perform the inte-
grals in Eqs. (Al) —(A4) analytically for n ( 5. Here
we shaw the results only up to n = 3, because we find
those results sufficient for accurately modeling the dielec-
tric function of semiconductors. Our results are written
in such a way that the computer generated numerical
values of all multiple-valued functions will be the cor-
rect values. Thus, for any complex energy z = ~z~e'~,
zo s = ~z(0 se'4'~ and lnz = ln~z~ + iP, with P chosen to
lie in the range from —vr to x.

For brevity we define the following quantities:

j =ior f, (A9)

Qq
—h~ + E~ + il ~, j =ior f, (Alo)

@&{h~+ E) = i ds exp{—i[ha 6 E+ia (E)s]s].
0

(A6)
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Tg = 2 in[+4, + Ef —E, —i(I'f —I', )] —lnEf,

(Al 1)

Ts = 2 ln[gbf +i Ef —E, —i(I f —I';)] —In~;,

(A13)

Tq = 2 in[/Of — Ef —E + i(I'f —I';)] —in+;,

T2 —2 In[~@, + i Ef —E, + i(I'f I )] in~If

(A12)

(A14)
Then, the desired integrals are given by the following
equations:

yl —~pgE; Y', —i+i '+ ~y~n; Yg —4v E; tan

(h~+ iP)~

Hl(~)= ~ .
I 1

. Tl+&
1

. T2
t' g~;

M+i ( 1 —iy I+ iy J

(1 —iq)gl —iq (1+iq)QI+ iV 1+V'

(A15)

(A16)

(A17)

Fp(~)= . , 0.5 E &I+ E & —V & v&f'E, E,
h~+i 2

I Ef E;

(
p. 5

' nf+ ' n; —~n;gnf,
heal + l ( Ef

P 5(b, + b f ) —gA QAf 0 5(Q + Af ) —~A+Of
Fg((u) = s.

(h~+ iP)(l —iy) (h~+ iP)(l+ iy)
0.5(A;+ b.f) —Qb.; gb, f 0.5(Q; + Qf) —~A;/Of

(A18)

(A19)

(A20)

(1 —ip)(In', —lnb, f) (1+ ip)(ln0 —ln Qf) 2(ln Ef —lnE;)
(h~+ iP)' (h~+ iP)' (hu) + iP)'

ln b„—ln Af ln 0; —ln Qf
h~+ iP h~+ iP

ln 6; —ln b,f ln 0; —ln Of+ r j1 —g7 1+ i7

(A21)

(A22)

(A23)

IVp(~) =
z zi/i —ipgb. f Ts+gl+iy+Of T4 —4+Ef ln

~
~~ — -t —1

~

(hu) + iP)2

( gb, f gnf
h(u +iP I Ql —ip gl+ip )

(A24)

(A25)

and

I~2(~) = i Ts+ OJ
(1 —ip)gl —iy (1+ ip)gl + ip

Ef —E,
+4 (A26)1+ 72

For the case of Gaussian broadening, Eqs. (Al) —(A4)
cannot be integrated analytically in closed form. To leave
these equations to be integrated numerically in the fitting

of experimental data would increase the computer time
by approximately 2 orders of magnitude. Therefore, we

must find an analytic approximation to the integrals in
those equations. From the form of

—(h~ + E)~ l
Irn(@G(h~ + E)}= — exp

2o E
(A27)

as compared to
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Im(@L (hio + E)] =—,(A28)
rE

(h~o —E)2 + I'2(E) '

it is clear that one can approximately mimic the exact
integrals given by Eqs. (Al) —(A4) in the Gaussian case

by replacing Fi for j = i or j = f in Eqs. (A8) —(A14) by

'Present address: Naval Research Laboratory, Washington,

D.C. 20375-5OOO.
'It should be pointed out that e(u) is modified by the band

bending present in the depletion region adjacent to any

semiconductor surface or interface, becoming position de-

pendent in the depletion region (Refs. 2—6), in which the

band bending destroys translational invariance in one di-

rection. That modification is significant for heavily doped

semiconductors for energies h,u near a critical-point energy.

Also, e{ur} is modified by surface termination effects near

the surface of a semiconductor (Refs. 3, 4, and 6}.A knowl-

edge of these effects, which are not considered in this paper,

as well as a knowledge of the bulk e(w), is important in the

design of wave-guiding semiconductor devices.
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