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Piezo-optical response of Ge in the visible —uv range
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Using rotating-analyzer ellipsometry we have measured the three complex components Pqq(ur),
Pqq(u), and P44(u) of the linear piezo-optical tensor Psg~(ur) of Ge in the 1.6 —5.6 eV photon
energy range. This was accomplished by applying static uniaxial stress to Ge crystals along the
[111]and [001] crystallographic directions, and monitoring the stress-induced changes in the dielec-
tric function e(ur) at room temperature. The real and imaginary parts of each component were
directly obtained. They show, in general, good Kramers-Kronig consistency. A comparison with
pseudopotential calculations of Pqq(u), Pqq(u), and P44(u) for strained Ge is also given. In addi-
tion, deformation-potential constants (Dq, Dq, Ds, Ds) and spin-exchange parameters (b J, , bJ~) were
determined for the E& —E& + D~ transitions; they show good agreement with prior work.

I. INTRODUCTION

The effect of external modulations on the optical prop-
erties of semiconductors has been a subject of active re-
search for a long time. It is possible to study effects due
either to differential modulations such as cubic perturba-
tions (like hydrostatic pressure or temperature changes)
or to noncubic perturbations like uniaxial stresses or elec-
tric fields. In particular, the effect of strains on the prin-
cipal optical transitions in Ge has been studied before,
using techniques such as piezo-electroreflectance, 2 stress-
induced birefringence, piezoreflectance, and ac-strain
modulation of the reflectivity. The effect of strains on
the optical response has also been studied theoretically
using group theoretical methods. However, a direct mea-
surement of the real and imaginary parts of the compo-
nents of the linear piezo-optical tensor using ellipsometric
techniques is still not available. The principal advantage
of such techniques, in contrast to reflectivity measure-
ments, is that no additional assumptions (extrapolations
at low and high energies required by the Kramers-Kronig
analysis) are needed to obtain the real and the imagi-
nary components of e(u) [i.e. , er(u) and e2(~)]. Another
advantage is that stress-induced macroscopic deforma-
tions of the sample surface leave ellipsometric measure-
ments largely undisturbed, since ellipsometry is a self-
normalizing method with respect to either incident or
reflected light intensity.

In this paper, we present, ellipsometric measurements
of the linear optical response functions of Ge under uni-
axial stress. These measurements allowed us to obtain
directly the experimental value of the complex compo-
nents Pqq(~), Pq2(~), and P44(~) in the visible —uv range
(- 1.66 to —5.5 eV). To the best of our knowledge this
work represents the first application of spectral ellipsom-
etry to the determination of piezo-optic functions.

From the theoretical point of view, it is possible in
principle to obtain the piezo-optical tensor by calculat-
ing the dielectric function of the strained crystal from its

electronic structure using any standard band-structure
calculation technique. We have performed such calcula-
tions with the empirical pseudopotential method (EPM)
and found reasonable agreement with the experimental
data.

In this paper, we first focus our discussion on the
experimental results obtained, including the determi-
nation of the deformation-potential constants for the
Eq —Eq + AEr transitions (Sec. II). The theoretical pre-
dictions for the piezo-optic functions obtained from the
pseudopotential band-structure calculations are reported
and discussed in Sec. III.

We conclude this introduction by mentioning that the
variation of the dielectric tensor of semiconductors with
stress is receiving renewed interest in branches of semi-
conductor physics such as strained superlattices, Raman
scattering by folded acoustic modes in such superlattices,
and the design of optomechanical devices. On the other
hand, ellipsometry is emerging as a powerful tool for in
situ characterization of the growth process of semicon-
ductor layers. Our results should help in the interpre-
tation of growing processes when the Ge overlayers are
stressed due to lattice mismatch on different substrates.

II. EXPERIMENT

A. Experimental setup and samples

Rotating-analyzer ellipsometry (RAE) is a well-
established technique to measure the complex dielectric
function e(~). Details about the technique are discussed
in the literature. Essentially, the ellipsometric mea-
surements provide the frequency-dependent complex re-
flectance ratio between s- and p-polarized light. These
values can be converted to e(u) assuming a model for
the reflection process. In particular we exploit the fact
that for weakly anisotropic semi-infinite samples with a
large dielectric function, the ellipsometric data provide
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a good approximation to the projection of the dielectric
tensor onto the intersection of the plane of incidence and
the sample surface. In the following we will empha-
size only those general aspects of the apparatus and the
experimental procedure of particular importance for the
present work.

The optical path was kept in air and the angle of in-
cidence was set to 67.5'. We used a Xe lamp as a light
source and a 2400-lines/mm grating with the slits of the
monochromator at 1 rnm (monochromator length= 0.75
m). The polarizer azimuth was fixed to 30' with respect
to the plane of incidence. The light reflected by the sam-

ple was modulated by means of a Rochon prism rotating
at 2200 rpm. The signal was obtained using conventional
photo-counting techniques as an average of 150 revolu-
tions of the analyzer per duty cycle and 70 revolutions
per dark cycle. Mirror optics was used to collimate and
focus the light. The sample was optically aligned using
a visible laser (He-Ne) with the monochromator set to
zeroth-order reflection. All data were taken with a mesh
between 10 and 20 meV. Conventional calibration proce-
dures have been followed. s The complex reflectance ratio
is automatically converted to c(u) assuming the simplest
model for the reflection process, that is, a sharp interface
between an infinite medium and air. All measurements
were done at room temperature. Technical details of the
ellipsometer itself are given in Ref. 11. Measurement in
air has the advantage for ellipsometry that no additional
depolarizing effects due to optical windows are present,
but the price to be paid is the presence of an oxide layer
on the surface which may vary with time.

The uniaxial stress was applied with a hydraulic-stress
machine developed especially for that purpose. Our ap-
paratus is not yet able to measure in vacuum and pro-
vides only compressive stress.

The bulk material used to fabricate the samples was
conunercial high-purity Ge with a resistivity of 40 Oem
at room temperature. Crystals were cut with the longest
side in the [111]and [001] directions and oriented using
Laue x-ray diffraction. The sample surfaces were me-
chanically polished and treated immediately before the
measurements with a wet chemical etching previously
suggested.

B. Data evaluation

The optical properties of strained cubic crystals are
described, in general, by syrrunetric second-rank ten-
sors n;z(u) and k,z(u) (optical constants), or e (ui) and

e2„.(cu). In the following we shall concentrate on the effect
of a noncubic perturbation (uniaxial stress) on the optical
properties of Ge. Measurements in which the symmetry
of the crystal is lowered by the uniaxial stress are of par-
ticular interest; the properties involve a larger number of
functions which can be discussed in terms of the lowered
symmetry and the appropriate selection rules.

For a cubic crystal, the variation of e2(cu) (to first or-

der) induced by a stress along either of the principal di-

rections [100] or [111]is given by

(Ac~~ (cu) 0 0

b, p2(~) = 0 b.e~+(~) 0

0 0 A2(~) )
where the third axis is taken parallel to the strain axis.
The corresponding change in ei(~) can be computed
from biz(~) using Kramers-Kronig analysis. For small
stresses the components Ee2(~) are assumed to be pro-
portional to the applied force per unit area X (stress).
For X along [001] or [111]the crystal becomes uniaxial;
this is not true for stress along [110] or a lower sym-
metry direction. The case of a general stress direction
is described by the piezo-optical tensor P;zqi(~) which
connects the second-rank dielectric tensor e;z(~) to the
second-rank stress tensor X~~. The linear piezo-optical
tensor Pzg&(u) satisfies Pjpl = P&,p& = Pz&y = Pmni
i.e. , it can be specified in general by a symmetric matrix
with indices m, n = 1.. .6 (i=j=l~m=l; i=1, j=2~m=6
and index permutations). Here we are only interested
in the cubic case. For cubic crystals that belong to the
classes 432, 43m, and m3m the number of independent
P „(u)'s can be reduced. Germanium is included in this
case since its point group is m3m (Og). Only three differ-
ent P „(u)'s are needed in this case. i4 Different conven-
tions have been used in the past for the piezo-optic coef-
ficients, most of them relating b, [e, ](u) with the strain
tensor upi (or, alternatively, with the stress). i4 Since we

are measuring the dielectric function itself using a direct
method, we found it more convenient to use "piezo-optic
coe%cients" that relate the change in each component of
the tensor, b, c,

& (u), to the stress tensor. We thus use the
definition

because it is the natural choice for our experiment and
the primary output of the theoretical calculations. In our
measurements the stress (X) [Pa] has been applied in the
[111]and [001] directions. For each direction, and each
stress, we performed two measurements to find the com-
ponent of c(cu) in the direction parallel and perpendicular
to the stress. For the crystal stressed along [111],mea-
surements of e(~) were performed on the (211) face, while
for the stress along [001], they were taken on the (100)
face. From a first measurement we obtained c~~(~) and
from a second one c+(~), for each stress direction. By
calculating the difference. of each spectrum under stress
with the unstressed spectrum e(~) we obtained Ac~~(~)
and Ac (a). The information that can be obtained from
each experiment is given in a compact form in Eq. (1).
The predictions of this equation for our experimental ge-
ometries are summarized in Table I. We have used the
convention that X is negative when the sample is com-
pressed.

In principle only three independent measurements are
needed to obtain all the components of the piezo-optical
tensor. We have measured four configurations, only three
of which are therefore independent. The additional set of
results can be used to check the consistency of the data
since it must lead to a linear combination of the three
independent components of P&(u).



45 PIEZO-OPTICAL RESPONSE OF Ge IN THE VISIBLE—uv RANGE 11 723

TABLE I. Proportionality between 6c(ur) and X for dif-
ferent crystallographic directions and polarizations.

X

[001]
[111]

Face

(100)
(211)

Longitudinal
[001] Pi i X
[111] 3(Pi& + 2Pi2 + P44)X

[001]
[111]

(100)
(211)

Transverse
[010]
[011]

PggX

a (Pi i + 2Pi2 —1/2P44)X

d(t) = dy + (do —dg)exp( —nt), (2)

where do is the thickness of the oxide layer at t = 0, dg
the corresponding saturation value, and a a constant to
be fitted. We interpolated the different values for the
layer in the strained samples using a fit for do, dy, and
a. The fit was performed with the values for d(t) ob-
tained from the three-phase model in three to four un-
stressed spectra taken at different stages of the exper-
iment. The agreement between the experimental d(t)
and the value predicted by Eq. (2) after the fitting was
always better than 20%. Every stressed spectrum was

After c(u) has been obtained for all configurations and
several stresses, we fit the variation of e(u), for fixed

cu, as a function of the stress to a straight line. From
the slope of this fit we obtain the corresponding piezo-
optical tensor component. The dependence of e(u) on X
is usually linear up to (X( 500—700 MPa except very
close to interband critical points. The samples break in
general when [X( 1000 MPa.

Since the sample was kept in air during the measure-
ments, the presence of an oxide layer on its surface was
unavoidable. After etching the crystal and mounting it
in the stress apparatus we had a residual oxide layer of
about 10 A for the [001] and 20 A for the [211] faces.
In order to find the exact oxide thickness for the un-

stressed samples we fitted our data using a three-phase
model (substrate/oxide/air) in which the bulk values for

e(~) from Ref. 13, and the dielectric function for amor-

phous GeOp tabulated by Devyatykh et al. , were
used as fixed values. This procedure, which has been
widely used in the literature, 3 was performed in a region

1 eV around 4.2 eV (Eq transitions) since the penetra-
tion depth of light is near its minimum there and thus
the ellipsometric parameters are most sensitive to surface
layers. The assumption of an amorphous GeOz layer on
top of a mechanically polished surface turns out to be
good for the evaluation of optical data. The thickness of
the oxide layer at the end of a complete series of mea-
surements (10 to 15 spectra taken at different stresses in
ascending order, taking about 30 h in total) was in the
range between 25 and 35 A. This was detected by taking
another X=O spectrum at the end of the series and again
employing the above-described procedure.

We assumed a growing law for the oxide layer d(f) as
a function of time of the form

numerically corrected after the experiment using the fit-
ted thickness d(t). This means fitting the data with a
three-phase model (see above) but leaving the thickness
and optical constants of the oxide film fixed, and vary-
ing e(ur) of the substrate. With this method we obtained
e(u) for the bare surface at difFerent stresses. The im-
portant assumption here is that the dielectric properties
of the oxide layer are not modified when the stress is be-
ing applied. This is a reasonable assumption, at least
for GeOz (Ref. 15), which is an insulator with critical
points far from the visible region. Its dielectric function
has only a real component and is also smooth and flat in
the experimental region of interest. Also, we believe that
the applied stress to the bulk of the crystal is not felt
as much on the oxidized surface. Possible effects due to
the surface layer are further minimized by obtaining the
piezo-optical functions from the slope of e(u) vs stress for
fixed ~. We checked that different assumptions for the
oxide layer did not much influence the final result.

In general a noticeable effect of the stress on the
critical-point transitions is expected due to the symme-
try breaking of the crystal point group. Consistency with
the Kramers-Kronig relation should hold for the so ob-
tained components of the piezo-optical tensor since they
are derivatives of the linear susceptibilities with respect
to the applied stress.

Several optical functions, such as the refiectivity, are
related to ~i(~) and e2(~) We h. ave calculated some
of them in order to compare our data with previous
works in this area, in particular ac-modulated strain re-
flectance and piezoreflectance. We do not discuss piezo-
optical measurements performed with techniques such as
electroreflectance, 2 since they involve a more complicated
modulation process which makes difficult a direct com-
parison of the measurements. The measured differential
reflectivity as a function of the strain can be compared
with our data, taking into account that a change in the
dielectric function e(u) induces a change in the reflectiv-
ity given by

a R~~ ~(~)' ' = ~&(Re[~ '(~)l)+ P&(™[&'(~)])
R(~)

where ot and P are the Seraphin coefficients and
~~

and
J refer to the direction of the component of the dielectric
tensor with respect to X.

However, deformation-potential constants derived
from piezo-optical data can be compared easily with re-
sults of electroreflectance. The evaluation of those
constants for the critical point transitions Eq —Eq + Aq
is given in the following subsection.

C. Evaluation of deformation-potential constants
for the E~ —E~ + A~ critical points

Ellipsometry yields directly the dielectric function of
the investigated sample with very high numerical preci-
sion and is therefore the most appropriate technique to
investigate the characteristics of optically allowed inter-
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band critical points. The nature of the Eq —Eq + Aq
transitions in Ge has been discussed for the first time by
Phillips. The corresponding structure in optical spectra
is now known to arise from transitions in the A direction
of the Brillouin zone (BZ) (111).The dimensionality of
the transitions has also been extensively discussed in the
literature. 9 Here we use the model of Ref. 19: each
of the transitions E~ and Eq + Aq is produced by a mix-
ture of a 2D minimum and a saddle point which can be
expressed by

e(~) - C —ln(E —her —iI')exp(iP), (4)

d2~(~)ll & Ill '-L e

(E —h~ —iI')2 '

(
d2q(~) II »

(E+ 61 —h~ —iI')2 '

where I&' and I&'+& are the so-called strengths (orll, ~ ll, ~

amplitudes) of each critical point and
~~

and 3 refer to
the appropriate component of e(u) with respect to X.
The phase P has been forced to be the same for both
transitions during the fits. From the simultaneous fits
of the real and imaginary parts of the second derivatives
in the range 1.8 eV & h~ &2.7 eV we obtained the en-

ergy thresholds for both transitions E~ and E~ + E~ as
a function of the stress (X) for both components of e(a)
(~~ and J ).

The effect of X. on the critical-point energy can re-
sult in (i) shifts due to the hydrostatic component of
the strain, (ii) intraband splittings of degenerate states,
and (iii) interband splittings of the various equivalent
k's if k = k, = ki, $0 (see Ref. 2 for details). The
shifts and splittings of critical-point energies for a par-
ticular direction of X can be described by appropri-
ate deformation-potential constants. The deformation-
potential concept is rather old; it was introduced by

where E is the critical-point energy (threshold or gap),
I' the broadening, and P takes into account the amount
of mixture (0& p & 3/2). 23 23 2s If no exciton effects are
present at the critical point, and if the chosen dimen-
sionality is correct, P is restricted to one of the values

/=0, 1r/2, 1r for 2D critical points, and represents a geo-
metrical characteristic of the electronic bands in the k
space at that energy. For Ei and Ei + Ei P would be
zero, corresponding to an interband minimum. Exciton
effects can be included phenomenologically using inter-
mediate values of $.2s Our fits gave P 60' at room
temperature for the unstressed samples, in good agree-
ment with previous results. ' Since E~ and Ey + Ay
are very close, it is necessary to fit both critical points
at the same time. In fact, the second derivatives of c(u)
(real and imaginary parts) are fitted instead of c(~) itself.
This is done to enhance the spectral structure related to
the critical points. The 2D fits of the second derivatives
for each component of e(u) were thus performed with the
functions [using Eq. (4)]

8ardeen and Shockley in 1950.
Using the appropriate excitonic basis, it has been

shown2 3 that the effective Hamiltonian (including spin-
exchange interactions) for Ei —Ei +41 has the following
eigenvalues (for X~~[001]):

E1(X) Ei(0) + (3) Di (Sil + 2S12)X

, (D3)'(Si 1
—S12)'

3

y 2 xl/2 ( 3)(» —S»)
1

and

Ei + Ai(X) = (Ei+ b, i)(0) + (3) ' D,'(Sii + 2S12)X

x 2 x ( 3)'(S» —S»)' 2

g 2 i 1/2 ( 3)(S» —S»)
1

(8)

E, (X) = Ei(0) —(3) ' D', (Sii + 2S12)X

+ (12) '/ D, S44X

(Ei+ Ai) (X) = (Ei+ b.i)(0)
—(3) ' D,'(Sii + 2S12)X

+(12) '/DS X (10)

where the deformation potential D5 represents the inter-

valley effect of a [111]shear strain.
Using again the appropriate excitonic basis and ex-

panding in powers of (K(X)/Ei), the eigenvalues for the
triplet become

where D& is the deformation potential for hydrostatic
strain, D33 represents the intraband effect of a [001] shear
on the top valence bands, and bJ, , and bg, are the spin-
exchange terms. S;& are elastic-compliance constants.
The expansions of (7) and (8) hold when 61 ))intraband
term)&spin-exchange term.

The difference observed between the critical energies
of Eq and Eq + Aq for polarizations parallel and per-
pendicular to X~~[001] cannot be understood on the ba-
sis of one-electron theory. However, by including the
spin exchange for the electron-hole interaction this dif-

ference can in principle be explained. Experimentally
it is observed that the spin-exchange terms are some-
what different for Ei and Ei + 61. Such a difference can
only be explained by assuming additional mixing with
other states not included in our description. These spin-
exchange terms are in general very small and diKcult to
measure.

For X~~[I ll] the stress introduces a preferential direc-
tion [111] (singlet) and leaves the other three valleys
[111], [111],and [111] as equivalent (triplet). The ef-
fective Hamiltonian for the singlet has no off-diagonal
interband elements and its eigenvalues (neglecting the
contribution of exchange interactions) are23 30
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E, (X) = Ei(0) —(3) ' D,'(Sit + 2Sig)X
—(12) '~ DsSqqx

D5 2

(2)
~

(Ds)
27 ( ~ 44

and

(Ei + &i) (X) = (Ei + At)(0)
—(3) '~ Di(Sii + 2Si2)X
—(12) '~'D,'S44X

+(—„)i iS„X +".f(D&)'l
i

D3 is the deformation potential that describes the in-
travalley effect in the valence bands. It produces nonlin-
earities in the dependence of the triplet energy on stress
which are equal and opposite for Et and Ei+ b, t. Sym-
metry considerations indicate that the triplet is seen for
both components of the dielectric tensor (~~ and J ) when
X~~[111]. On the other hand, the singlet is seen only for
the perpendicular component. 2 Exchange terms due to
the coupling of the electron and the hole in the exciton
basis can also be included in the Hamiltonian, but their
effect seems to be small in this case since it is not ob-

servedd

experimentally.
We fitted the energy position of the critical points,

as obtained from the best fit of the second derivatives
of c(cu), to a line or a parabola in order to obtain the
relevant deformation-potential constants. The principal
assumptions made for the evaluation of the deformation
potentials were (i) the excitonic contribution described
by P is the same for both transitions and (ii) b, i is not
a function of X. We took the value of A~ ——0.202 eV ob-
tained at room temperature as fixed.

Since we are fitting the real and the imaginary parts
of c(u) in a region of the order of 1 eV around the
critical-point transitions, our method is potentially more
accurate with respect to previous ones, for example, the
three-point method used to evaluate the Schottky-barrier
electroreflectance.

C
O 22
O
C

O
~~

2

tD

O

-1-8
2 3 4 5

Photon energy (eV)

FIG. 1. Real and imaginary parts of e(u) for X = 0 after
corrections for the GeO& layer. Solid symbols are data from
Ref. 13 which we are using as a reference spectrum to obtain
the oxide layer on the surface.

24—

p x 1p6pa
p Pa
p6Pa

related to differences in the polishing procedure. We an-
ticipate their effect to be small for our purposes.

Figure 2 shows, in an expanded scale, the behavior of
ez(~) for three different stresses ~X~=0, 217, and 435 Mpall

along [001]. From linear fits of ei(~) and e2(u) vs ~X~,
(see inset in Fig. 2) at fixed photon energies we extracted
the main results of this paper which are shown in Fig. 3.
Pit(u) has been obtained from e(~) parallel to the stress

along [001], i.e., belzo&l(~), and Pts(~) from b,clos, )(~)
(see Table I). P44(u) is extracted from the difference be-
tween the parallel and the perpendicular components of
the dielectric tensor for X along [111],i.e. ,

D. Results
C)
O 22— 20

We first show in Fig. l the real and imaginary parts of
the dielectric function obtained for the unstressed case.
They have been corrected for the contribution of the ox-
ide layer as explained in Sec. II B. These results are the
starting point for our experiments. In Fig. 1 we include
the experimental values from Table III of Ref. 13, ob-
tained with a very clean surface at room temperature.
The height of eq(m) at the E2 transitions (hw 4.2 eV) is
the same since we forced the values to agree with those of
Ref. 13 in our fitting procedure (see Sec. II B). However
some small differences exist near the E1 —Eq+ Aq transi-
tions [relative heights of Ei and Ei+ Ei in ci(u)]. These
small differences, which cannot be compensated with the
assumption of a homogeneous overlayer with known e(u),
are sometimes associated with roughness at the surface

20—

'5.0'

14—

12

10
50 200 400
stress (10 Pa)

2.2 2.4 2.6

Photon energy (eV)

FIG. 2. e (cg) for three diS'erent stresses. X was applied
along [001] (or equivalent directions). The inset shows El (M)
and e2(ur) vs X for a fixed photon energy (her=3 eV) within
the linear variation range.
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[111]( ) [111](
II

P44(~) = 2

As mentioned before, it is possible to use one of the four
measurements for a self-consistency check of the piezo-
optical functions. For example, we may obtain P44(cu) us-

ing 4'E[]]y]
and subtracting the appropriate contribution

of Pii(~) and Piq(ur) found in the measurements with X
along [001] (see Table I). It is also possible to check such
a consistency by calculating the hydrostatic contribution
for both crystallographic directions [(6e[[+2b.a )/2] (Fi
component). We checked the self-consistency in both
ways and found it to be good.

The piezo-optic functions P;&(u), as derivatives of
e(~)'s, are constrained by Kramers-Kronig dispersion re-
lations between their real and imaginary parts. In the
case of e(~) it is often difficult to obtain fully satisfac-
tory Kramers-Kronig consistency checks because of the
restricted experimental frequency range and the need to

extrapolate the data to infinite and zero frequencies. For
differential quantities, such as the P~(~) s, with strong
structure at critical points, the influence of the extrapola-
tions is less important. We performed such a verification
using Im(P, 1) to calculate Re(P;z), using

Re[P;, (~)] = (—2/ir)P " dA+ C,0 1m[P,~. (0)]
(14)

where C is a constant and P means the principal value of
the integral. We did not include in the numerical evalu-
ations of Eq. (14) data above 5.6 eV and below 1.66 eV,
and assumed that most of their eH'ect is taken care of by
the ad Iaoc constant C. It is therefore expected that the
result of such numerical evaluations will dift'er somewhat
from the measured ones at both ends of the spectra. Re-
sults showing a satisfactory comparison between experi-
mental and calculated Re[P,&(ur)] using Eq. (14) are given
in Fig. 4 for each component of the tensor. The close
agreement provides additional confidence to our experi-
mental results.

4. 1 5.0—

-0.9-
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-5.9 ' '' I I I ~ I I I I I I I ~ I I I I I I I I I I I I I I ~ I I I I I I ~ I I I I I I I a I ~ I a a

P~2 (~)

Il
p I

I I

I I

I
I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~ I

2.5-
3

6$
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I I I I I I I I I ~ I I ~ I I ~ I I I I I I I I I I I I I I I I I I I I I I I I ~ I I ~ I I i I

-5.0—

J
I I

I

I

I

II

P44 (III)

8.0— Re (Pl.4, (&))--- KK [Im(PI, &(e)]

KK elm(P~2 (R))
3 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

-25.0—
Real part--- Imaginar y part

I
I

I

I

I

I I

I,I

—1 2.0—

-45.0 ' '
1

aaaala a aaaaaaalaaaa a a ~ aalaaaaaaa ~ alaaa
3 4 5

Photon energy (eV)

I I I a

6

—32.0
1

I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

2 3 4

FIG. 3. Real and imaginary parts of the three indepen-
dent piezo-optical components of Ge. The error bars that are
shown on top of each curve correspond to Re[P,I(u)] at the
corresponding energy. The error bars at the bottom are for
the imaginary part.
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FIG. 4. Consistency checks for the experimental and
Kramers-Kronig-computed [with Eq. (14)] real parts of the
components of the piezo-optics] tensor P,I (a4r).
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From the complex c(u) measured for different stresses
we calculated related optical properties to compare them
with previous results. For both samples we evaluated
the refIectivity for each component of the dielectric ten-
sor (parallel II and perpendicular J to X); the results are
plotted in Fig. 5. The refIectivity for each case was calcu-
lated using the values for c(u) corrected for the presence
of an oxide layer. We also calculated (I/R)dR/dX nu-

merically for X along [111]using eI&&&}(a) and obtained
the result displayed in Fig. 6. In order to compare them
we summarize some previous results in Fig. 7. Our real
and imaginary parts of Pq4(~) (Fig. 3) can be compared
with the result obtained by Kramers-Kronig analysis of
piezoreflectance data. Results of such evaluations near
Eq —Eq + Aq are included in Fig. 7(a). In contrast
to our data for the piezo-optical constants, those given
in Fig.7(a) are in arbitrary units as is expected from
piezoreflectance. Previous determinations of the stress
dependence of the polarized reflectivity in the region near
Eq —Eq+ b, q (Ref. 4) are included in Fig. 7(b) as well
as b, R(u)/R(u) (Ref. 5) for one particular direction in
Fig. 7(c), as seen with ac-strain-modulated reflectivity.
Figure 7(b) can be compared favorably with the calcu-
lated reflectivity components shown in Fig. 5 for XII[001],
even if the strains are not exactly the same. The re-
sult of Fig.7(c) should be proportional to the calculated
(1/R)dR/dX shown in Fig.6. The same structures are
observed at the critical points, as expected. The offset

CO
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0.5

Ge

X —0.5

-2.5
1 .6

I I I I I I s I I I I I i I I I I I I I I I I I I r i I

2.6 3.6 4.6

Photon energy (eV)
FIG. 6. Calculated derivative of the reflectivity with re-

spect to X along [ill], using Eq.(3) and the parallel compo-
nent of e(u) in that configuration. The features are similar to
those obtained with ac-modulated strain reflectivity.

between both results is artificial; it is due to the fact that
the absolute zero is arbitrary in Fig. 7(c) (Ref. 5). The
sign reversal between the curves of Figs. 6 and 7(c) is
irrelevant.

In Fig. 8 we show the hydrostatic component of the
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FIG. 5. Calculated refiectivity for both [111] aud [001]
stresses using the e(u} components in the direction II aud J
to X=435 Mpa in each case.

FIG. 7. (a} Real and imaginary parts of P&4(u) obtained
by piezoreflectance and the use of the framers-Kronig rela-
tions (Ref. 22). (b) Dependence of the refiectivity as a func-
tion of the polarization (~~,or J to X}near Ei —Ei + Ai from
Ref. 4. Results correspond to XI~[001]. The unstressed reflec-
tivity is in a different scale (right}. The stressed results for
the Ii aud J polarizatious with respect to X are obtained with
a fixed strain component along the stress axis (0.4%} (com-
pression). (c} ac-strain modulation of the refiectivity from
Ref. 5.
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tensor [Pii(u) + 2Pi2(u)], and also [Pii(ui) —Pi2(cu)],
i.e., the irreducible synunetry components of P~(ui) for
X along [001] (I'i and I'i2 components).

The critical-point analysis to obtain the deformation-
potential constants of the Eq —Eq + A~ critical points
was performed as follows.

1. X)([001] . We define Ei and Ei + Ai by averag-
ing the two eigenvalues of Eqs. (7) and (8), to elimi-
nate the contribution of b~, and bJ, . Likewise, the sum

~(Ei+Ei + b, i) is independent of the nonlinear intraval-

ley terms oc (Ds) . This sum can be fitted to a line to
obtain Di. The values of z(Ei + Ei + Ai) as a function
of the stress are displayed in Fig. 9. The value of D&

found in this manner is given in Table II. Those of Eq
and E~ + L~ can be used to obtain D3 by fitting their
dependence on X with a parabola. These fits are also
shown in Fig. 9. The values for D3 obtained from both
curves are given in Table II. Following Chandrasekhar
and Pollak, bg, and bJ, were calculated using results
for Ei and Ei + b, i for one direction (~~ or J ) with the
value of D3 obtained above. The agreement with the
room temperature data of Ref. 17 is quite good (see Ta-
ble II).

The strengths of the transitions for both critical points
have also been calculated using perturbation theory.
With the notation of Ref. 2 we have

I~ +~ (X) = IE ~~ (0)(l —ni),

I~, (X) = I~, (0)(1 —1/2cai),

I~ +~ (X) = Ix yw (0)(1+1/2ai), (18)

W

4.465

4.435
mm ~~~ mw

~i)

where crt ——6EippgLi and bEzop g——8/3Ds(Sii —+i2)X.
These are linear expansions in e~. In Fig. 10 we

show the values obtained for the ratio of strengths
[(Il~/I~)~, ~,+ra, ] as a function of stress. The solid curve
represents the predictions of Eqs. (15) to (18) with the
value of D33 obtained above. The agreement with the
measured stress dependences of the strength ratios is re-
markably good.

Iz (X) = Iz, (0)(1+ni),
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FIG. 9. (a) -'[Ei + Ei + Ei(X)] vs X. The slope is pro-

portional to D& and the obtained value is shown in Table II.
(b) and (c) correspond to Ei and Ei + Ea and can be used to
obtain D3 by fitting both with a parabola. The sohd curves
are the best fits in each case.
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2.0 X parallel to [100l
also reported in Ref. 2. The linear expansions of the
intensities with respect to X are given by
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where oq ——bEttt/At and bE»& —gl/6Ds(S44)X.
In Fig. 11(c) we also show the experimental ratios
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FIG. 10. Intensity ratios for each of the critical points
Et and Et + Ea as a function of X~~[001]. The solid curves
represent the theoretical predictions obtained with Eqs. (15)
to (18) and the value of D3 evaluated from the shift of the

energy thresholds for both CP's.
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Conversely, the stress dependence of these ratios allows
us to obtain the sign of D3 which cannot be ascertained
from the fits of the critical points energies since it de-
pends only on the square of 03. Figure 10 shows that
D3 is negative. It should be kept in mind that X is ac-
tually negative (compression), meaning that a positive
slope in the figures corresponds to a negative D3.

2. X~~[111]. In this case we analyze the component
of e(~) parallel to X (triplet only), for which the
deformation-potential constants D&, D&, and D3 are im-
portant. From Eqs. (11) and (12) it is clear that the
values for

&
[ETt + (Et + At)T] are independent of the

intravalley term proportional to D3. They can be fitted
to a straight line to obtain DI using the value for D&
that had been previously found (X~~[001]). The result is
shown in Fig. 11(a). The Dt so obtained is displayed in
Table II.

The dependence of E~+ on X for X]~[111]is shown in

Fig. ll(b) with the solid line representing the best linear
fit. The curvature introduced by the quadratic effect of
the intravalley term is very small. This is in agreement
with previous results;2 D3 is masked by the linear portion
and the experimental uncertainties. In view of the large
experimental errors it is not possible to extract a mean-
ingful value of D3 from E& . We obtained D3 from the
dependence of the peak strengths on X.. The strengths
for X along [111]and for all possible configurations are

2.125

(b)
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FIG. 11. Energy thresholds and intensity dependence for-

the triplet for X]~[111]. In (a) we show the stress depen-
dence of 2[Et + (Ea + Et) ]. (b) and (c) display Et and

the intensity ratio I& /I& +~ . From the latter we obtainedEa E1+
D3 —3.1+0.9 using a linear fit. E& is plotted with the best
linear fit (solid line) and the theoretical prediction [Eq. (11)]
(dashed line) using the obtained D3 (see text for details).
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(Eg + b, g/3)(Eg + AI)2
+~+a& ( ) (E )2(@ + 2+ /3)

(23)

(I& /I& +& ) as a function of X~~[111]. The theoreti-
cal prediction is given by the ratio of Eq. (19) to Eq.
(20). Since a2 is small, we can assume a linear behavior
for this ratio and fit the experimental data to a straight
line. The best fit is shown in the same figure. From
the slope of this fit we obtained D3 ———3.1 + 0.9. This
value is reinserted in Eq. (11) and plotted together with
E+& in Fig. 11(b) (dashed line). The agreement is good
within the experimental error. In this case we have ana-
lyzed only the stress dependence for the ratios of parallel
intensities because the perpendicular components, mix-
tures of singlet and triplet, are not subject to simple anal-
ysis. However, the strength ratio (I~, /I~, +a, ) at X=O
can be compared with theoretical predictions. Within
the framework of the microscopic one-electron model of
Ref. 35 the strength ratio at X=O is given by

The obtained value for Dss obtained from (Iz /Iz +z )
is in agreement with some previous results but dis-
agrees with the value reported in Refs. 17 and 31. We
believe that our result is more accurate than the earlier
ones; we shall return to this matter in the discussion of
results.

With respect to the phase (P), which gives the exci-
tonic character of the critical point, we found that fox
the best quality data used in the numerical analysis of
the derivatives of e(u), the phase remains constant in
the range 50' —60'. This suggests that the excitonic
character of the critical points E1 and E1 + A1 is not
changed significantly by the stress. The binding energy
for such excitations can be modified if the effective dielec-
tric function changes drastically or if the effective mass
is strongly affected. The stress-induced changes in e(u)
are too small to affect t;he binding energy seriously. The
strain-induced changes in the effective mass can also be
estimated to be small.

This model predicts a strength ratio 1.12, which un-
derestimates the experimental result. This theoretical
estimate can be improved by adding the "linear terms in

kr'1 11] as discussed in Ref. 36. The main effect of those
terms is to increase the transverse mass for the E1 gap
and decrease that for E1 + L1. The corrected strength
ratio in this case is 1.64, which compares remarkably
well with our experimental determination at X=O (see
Fig. 11).

E. Analysis of errors

In general, when the light intensity is strong enough,
ellipsometric data are well outside the regime in which
statistical errors are important. It is possible to obtain
smooth spectra and smooth derivatives up to second and
third order. However, since we are interested in small
stress-induced differences in the data, special care must

TABLE II. Deformation-potential constants and spin-exchange parameters for the E1 —E1 + b, 1 transitions, compared to other measurements.

D1 (eV)

-9.6 + 0.8
—8.2 + 0.7 '

0.8c ~

-99+ 05

-9.7 + 1~

—7.8+ 0.7

-8.1 + 0.8~

-8.6
-9.5 + 0.5

—10.7

—10.4 + 0.5
—9.2 + 0.5

0 scs f &gsh

D& (evl
11.3+ 1.1

5.9 +1.2

7.S + 0.8~

8.S + O.8

6,0

8.S + O. 6

—12.2 + 0.5

D3 (ev)
58+ O6
59+06

2.2+' ~-0.5
2.6 (at k = 0)

S.9 + 0.6~

3.0 + 0.3

3.4 + 0.3
3.6 + 0.4

+0.6 csj tg—0.2
62+04 c&h-0.1

D,' (eV)

6.1 + 1.5

1 5+0.6 f-0.3
6.4 (at k = 0)

5.7 + 0.6

2.4 + 0.3
2.5 + 0.4

—31+0 9"~ *

6 J (meV)
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FIG. 12. Nonlinearities for both eq(u) and cq(u) as a func-

tion of
l
X

~

at fixed photon energy. The nonlinear region has
been discarded for the evaluation of the P;&(~) components.

be taken. We tested the signal at fixed ~ to check the
statistical errors during a long period of time. It turned
out that for our setup the absolute statistical errors were
of the order of 10 z in e(u) at frequencies below 2 eV,
and of the order of 10 above. In calculating the errors
we assumed a constant statistical error of 10 ~ for the
full spectral range for both the real and the imaginary
parts of ~(~).

The applied force was measured with an accuracy of
0.5% and our stress apparatus showed a creeping of only

3 N after a given stress. The sample area was mea-
sured to within 0.02 mm2. This means a relative error
for the stress, assuming it to be homogeneous, of the
order of 20% at 40 Pa (the lowest stress applied) and
better than 2% for higher stresses. Th~; resolution of our
monochromator with the slits at 1.5 nun varies in the
range 1—10 meV for our experimental range.

The error bars that are shown in the figures for the
piezo-optical components were calculated assuming that
the stress is exactly known and including both the statis-
tical error for e(u) and the error in the slope of the linear
fit.

As we mentioned before, we sometimes reached the re-
gion in which the variation of e(u) with stress is no longer
linear. In those cases the behavior of e(~) above a certain
stress has been discarded for the fit to obtain the com-
ponents of P~(~). A typical nonlinear behavior of e(~)
at fixed photon energy is shown in Fig. 12. The num-
ber of points used for the fit of the components of P;~(~)
was different from one sample to another and for differ-
ent photon energies, but in any case we used at least five
different stress points (for fixed energy) showing a good
linear behavior to obtain the Py(~) s. A typical linear
fit is shown in the inset of Fig. 2. The nonlinearities of
c(~) are useful for the critical-point analysis and we used
in that case the full stress range until the sample broke
(X 1000 MPa) to analyze the Eq —Eq+ b, q transitions.

The error bars shown in the fits for the critical-point
parameters are obtained by numerical means and repre-
sent only the error of the fit. Our program uses a y test

to obtain the error in each case and the fitted parame-
ters are given with 95 —98% confidence. The errors for
the deformation-potential constants were calculated us-
ing the error for the fit and the error bar for each point.
In the case of D3 the nonlinearity of the curve introduces
a nonsymmetric error bar for these constants. This is not
the case for D3 because we obtained its value from the fit
of the intensity dependence (see above) which is linear in
D&. The data showed good reproducibility for different
samples. The measurements were repeated for a total of
four [001] and six [111] samples with the same surface
treatment.

III. PSEUDOPOTENTIAL CALCULATIONS
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FIG. 13. Experimental and calculated e2(~) for un-

strained Ge using EPM. Some typical critical points in the
visible —uv region are explicitly shown.

The application of the pseudopotential method to the
calculation of optical properties of semiconductors has
been extensively discussed. Our calculations were per-
formed without spin-orbit coupling. A few details of the
procedure are given below.

For an unstressed lattice it sufFices to perform band
structure calculations in the reduced first Brillouin zone
(i.e. , 4sth of the full BZ for diamondlike structures).
However, when the symmetry is broken due to the pres-
ence of stress, a lower point group obtains and sampling
of more points is needed. We use the full BZ taking 2361
points to avoid miscellaneous numerical problems at the
expense of redundant CPU time.

When the lattice is strained, lattice points in real space
change from r to r' = r + A(r), inducing a change in
the reciprocal space vectors from k to k* = k —A(k).
The values of the Fourier components of the pseudopo-
tential for the strained lattice were linearly interpolated
between the nearest well-known values for the unstrained
latticess ss (for G = y 3, ~8, /11). In this way, we have
obtained the pseudopotential that allowed us to calculate
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x).
2

x b(E, (k) —E,(k) —~)dk . (24)

the band structure and the optical response under stress.
The deformation in real space was calculated, for a given
force, using the room-temperature elastic constants.
The new position for each lattice point in real space when
X is present is calculated to first order in the deformation
tensor s. This means that if r' = (1+ s) r, the cor-
responding change of a reciprocal lattice vector is given

by k' = (1—7) k. To determine the relative sublat-
tice deformations under [111]stress we also used the ap-
propriate internal stress parameter (( = 0.577) obtained
from a fit of the phonon dispersion relation with a pla-
nar force model with electronic degrees of freedom. The
lattice parameters were taken to be those at room tem-
perature. The band structure was computed with the
interpolated pseudopotential. This makes it possible to
calculate ez(u) by taking into account all direct transi-
tions at a given energy among the calculated bands using

4x~e2h
~&(~) =

3m u

To evaluate Eq. (24) we used for b(E) a Lorentzian
with a small broadening I"0. We performed the summa-
tion with diferent broadenings and used the one that
showed best agreement with the experimental value of
cz(M) at Ez [ Ez(ftld=4. 2 eV) 30 ].

In the computation of cz(~) the contribution of the
first four valence bands below the gap and 14 conduction
bands above it was included. In general, the higher con-
duction bands are poorly represented by the empirical
pseudopotential method. Our cutoff for the summation
is just where the energy denominators make the contri-
bution to 4(cu) very small.

Theoretical results

The a2(u) calculated for the unstrained lattice using
pseudopotentials is compared with the experiment in
Fig. 13. Similar pseudopotential results can be seen in
Ref. 42. The additional peak at hu 2.4 eV in the cal-
culation is not due to spin-orbit coupling since the latter
has not been taken into account. This feature has been
observed before in band-structure calculations without
spin-orbit coupling performed with the k p method,
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and thus must be due to some peculiarity of the orbital
bands. In order to obtain the piezo-optical components
P,z(~) we found that it was not possible, for numerical
reasons, to use in the calculation the small values of X
used in the experiment. In fact, for the computation of
P;z(~) we took X=2000 Mpa. It is not obvious that re-
sults calculated in this manner will agree with the expan-

sion for small I under consideration although the lack of
spin-orbit coupling may eliminate some of the source of
nonlinearities. We computed only the imaginary part
of the dielectric function and thus we will compare only
imaginary parts of the P;~ (~)'s with theory. The various
calculated components of P;&(u) are compared with the
measured ones in Fig. 14. In order to display all results
for different critical points and different components at
the same time, the plots are given in arbitrary units (but
the same for each pair of theoretical and experimental
curves) and vertically shifted in some cases. Absolute
units can be obtained by comparison of the experimen-
tal curves with those of Fig. 3. The agreement between
theory and experiment is good, especially in view of ti&e

approximations involved, in particular the lack of spin-
orbit coupling in the theoretical bands.

IV. DISCUSSION
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FIG. 15. Calculated deformation-potential constants D3,
D, , and D, for Ge (at room temperature) using pseudopo-
tentials from Ref. 45. Note that the absolute value and cor-
responding sign for D3 agree well with our experimental de-
termination.

The experimental results were shown to be (1) self-
consistent with respect to measurements in different crys-
tals ([111]and [001]),(2) Kramers-Kronig consistent, and

(3) consistent with data for the polarized piezoreflectance
and ac-strain-modulated reflectivity. This means that
the ellipsometric data from which we are calculating the
piezo-optical tensor are essentially correct. The contribu-
tions for E~ —E~ + L~ are in qualitative agreement with
what one should expect for the intervalley and intravalley
transitions in Ge (Ref. 2) (see Fig. 5).

Deformation-potential constants for the Eq —Eq + Pt
transitions show good agreement with prior work except
for D3. We believe that a value of D3 between —3 and
—4 eV as obtained in our measurements should be es-
sentially correct. Calculations of this constant using the

TABLE III. Experimental and calculated deforma-
tion-potential constants for the EI —Eq + 4q transitions.

D1

D5

Present work
(exp. )

—8.6+ 0.5

—12.2 + 0.5

5 6+0.6

Theory

—6.9
—8.6
—8.1
3.9
4.5
6.0
5.6

Ref.

46
32
47
46
46
32
48

D5 —3.1 + 0.9 4b

Absolute value obtained with LMTO.
Average from I' to L in the first BZ.

pseudopotential method have been reported in Ref. 45.
We reproduce in Fig. 15 the calculated D5& (valence and
conduction bands) and Ds for Ge stressed along the [111]
direction. The internal stress parameter for such calcula-
tion was taken to be ( = 0.55, a bit smaller than the one
of Ref. 41. An average of D3 on going from I to L within
the first BZ gives a value of ~Ds ~

3.5 —4. The value ob-
tained in Ref. 17 does not agree with such a calculation,
while ours does. In Table III we include some theoretical
values for the deformation-potential constants in order
to compare them with our experimental results.

From a theoretical point of view we conclude that it is
possible to obtain the essential features for P;z(u) using
pseudopotential calculations. The fact that we had to use
an unrealistically large strain in comparison with the ex-
perimental one in order to reproduce Pu (u) is probably
related to the low density of k points used. No attempt
has been made to explain the additional peak calculated
near Eq (hu 2.4 eV) since it should be strongly af-
fected by spin-orbit coupling in a more realistic calcula-
tion. Some of the calculated peaks in Im(P&) near Eq are
shifted with respect to the measurements. These shifts
are to be expected since the spin-orbit coupling affects
Eq and we are not including it in the calculation. The
agreement between theory and experiments near E2 is
significantly better.

We should also mention that we performed a critical-
point analysis of the E~ transitions. We found that good
fits can be achieved assuming a single 2D critical point
which is a mixture of a saddle point and a maximum
(z/2 ( P ( z) in agreement with previous work. lg

We found that the average of the energy thresholds be-
tween the perpendicular and twice the parallel compo-
nents for X)([001]gives a hydrostatic shift corresponding
to D&(E2) —5.2 6 0.9 eV, which is also in agreement
with prior determinations. '~ However the shift for the
~~

component is much larger than that of the J one, thus
indicating a shear effect. Since the detailed origin of E~
is less clear ' ' a complete analysis of this effect
and its implications has not been performed and will be
the subject of further analysis.
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V. CONCLUSIONS

We have measured the piezo-optical response of Ge at
room temperature using rotating-analyzer ellipsometry.
From these measurements we obtained the components
of the piezo-optical tensor Pqq(u), Pq2(w), and P4q(u) be-
tween 1.7 and 5.4 eV. We also performed pseudopo-
tential band-structure calculations (without spin-orbit
coupling) of these tensor components and compared them
with our measurements. The comparison at the critical
points E& —Eq+A~ and E2 is satisfactory for all the com-
ponents of the linear piezo-optical tensor. A complete
ab initio band-structure calculation to compare directly
with our results is still not available, but would be desir-
able. In addition, deformation-potential constants were

determined for the Eq —Fq + Aq transitions, showing in
general good agreement with prior measurements using
diferent techniques.

A study of the piezo-optical response in the same pho-
ton energy range for GaAs and Si is in progress and will
be published elsewhere.
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