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Within the independent-electron approximation, the perturbation-theory expression for the second
hyperpolarizability ¥ can be written as a sum over two classes of terms: electron-hole (e-k) pair migra-
tion terms, which involve only singly excited states, and terms involving doubly excited states. In the
long-chain limit, this separation of terms corresponds to the two integrals in the band-theory expression
for y. In polyacetylene, the e-h pair migration terms are dominant with the doubly excited states ac-
counting for a 20% decrease in ¥. On inclusion of electron correlation, tightly bound excitons are
formed and the terms in the perturbation-theory expression for ¥ can be separated into two new classes:
exciton migration terms and terms involving biexciton states. The exciton migration terms are explicitly
evaluated using the Pariser-Parr-Pople Hamiltonian and a basis set composed of all single excitations
from the Hartree-Fock ground state, i.e., the intermediate exciton formalism. Since 98% of the optical
intensity is in the lowest-energy excitons, the free electron-hole pair states can be ignored in the calcula-
tion of y. The exciton migration terms are similar in magnitude to the e-h pair migration terms of
Hiickel theory, provided that the Hiickel parameters are adjusted to give the same long-chain band gap
as that obtained in exciton theory. This may account for the success of Hiickel theory in predictions of
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v for long chains. The contribution from the biexciton states is not evaluated.

I. INTRODUCTION

Polyacetylene and other conjugated organic polymers
exhibit large third-order nonlinear optical susceptibilities,
y.12 The origin of this nonlinearity is the delocalization
of the 7 electrons and Hiickel theory, the simplest theory
for delocalized electrons, does predict a large y for po-
lyacetylene.’ > However, electron correlation is known
to play an important role in the photophysics of polyenes
and the effects of electron correlation on the nonlinear
optical properties is an area of active research. A great
deal is known about the effects of electron correlation on
the lowest states of polyenes.® The following is a brief
summary.

In independent electron theories, such as Hiickel
theory or the Su-Schriefer-Heeger (SSH) Hamiltonian,’
the band gap is due entirely to the alternation between
single and double bonds (Eg =2]Bz—Bl! ). However, even
for carbon chains without bond alternation, electron
repulsion leads to a substantial band gap.%°

Both theoretical'® 12 and experimental work!* on
short chains show that an optically forbidden state,
2 1Ag, lies below the lowest optically allowed state, 1'B,.
Extrapolation to long chains suggests that this state
remains within the optical band gap.!* The low-lying
2 1Ag state arises from electron correlation and can be
understood qualitatively by considering the strong corre-
lation limit.® In this limit, the ground state has one elec-
tron on each carbon atom with spins that alternate be-
tween carbon atoms. A set of spin density waves, which
also have one electron per carbon atom but with differing
spin alignments, are close in energy to the ground state.
Ionic states, with one empty (positively charged) and one
doubly occupied (negatively charged) carbon atom, lie
much higher in energy than the spin density waves. The
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ionic states carry the optical intensity and are responsible
for the band gap. In the strong correlation limit, the
1'B, state becomes an ionic state and the 2 lAg state be-
comes a spin density wave. In polyacetylene, the effects
of electron correlation are large enough to cause the
2 lAg state to be below the llBu state, but are not so
large that the spin density waves, singly ionic states, dou-
bly ionic states, etc. have separated into energy bands.
Configuration-interaction calculations start from the op-
posite limit in which electron correlation is initially ig-
nored. In these calculations, the 2 ‘Ag state arises from
strong mixing of the doubly excited highest occupied
molecular orbital-lowest unoccupied molecular orbital
(HOMO-LUMO) configuration with singly excited
configurations.!% 12

Although there is still some debate as to the assign-
ment of the optical-absorption spectrum,'* ab initio cal-
culations have found an exciton with a binding energy of
around 1 eV.* 17 Configuration-interaction (CI) calcula-
tions on short chains also suggest exciton formation; the
1!B, state is well described at the single CI level and
configurations with large electron-hole pair separations
are suppressed.'®12

Given these large qualitative effects of electron correla-
tion, it is unclear whether independent-electron theories
provide even a qualitative understanding of the origins of
y. Performing correlated calculations on long chains is,
of course, a major challenge. Exact solutions of the
Pariser-Parr-Pople (PPP) model are available for polyene
chains of up to 12 carbon atoms, however, ¥ is still
strongly dependent on the chain length and extrapolation
to the long-chain limit is difficult.'®*"2° Approximate
methods of including correlation allow for larger chains,
but the reliability of the approximations is difficult to
evaluate. Configuration-interaction calculations with sin-
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gle and double excitations have been performed for
chains of up to 16 carbon atoms.?! These calculations are
not size consistent and the predicted dependence of ¥ on
chain length is unreliable. "

In this paper, we examine the perturbation-theory ex-
pression for ¥, written as a summation over many elec-
tron states, and identify the terms which dominate in the
independent-electron approximation. We then show that
if electron correlation leads to the formation of excitons,
the perturbation-theory sum for y contains a class of
terms which are similar to the terms which dominate in
the independent-electron approximation.

The perturbation-theory expression for y involves the
difference between two terms. The first term is a sum
over three intermediate electronic states
(|]0)=|1)=12)={3)=10); with = indicating a
dipole moment connection). In the independent-electron
approximation, such as Hiickel or Hartree-Fock theory,
states |1) and |3) are single electron-hole pair states,
while [2) can be either a single or double electron-hole
pair state. The second term in the perturbation-theory
expression for y is a summation over singly excited
states. As has been pointed out by others,?>2%23 and
shown explicitly below, most terms in the first summation
in which [2) is a doubly excited state are cancelled by
terms in the second summation. After taking this cancel-
lation into account, ¥ can be rewritten as a sum over two
classes of terms: (i) terms involving only singly excited
states, which we will refer to as electron-hole pair migra-
tion terms, and (ii) terms involving doubly excited states.
This separation is useful because in the long-chain limit
each class is proportional to the number of unit cells, N.
(In the original perturbation-theory expression, the two
terms were proportional to N2, with only the difference
being proportional to N.) Furthermore, in the limit
N — 0, these two classes of terms correspond to the two
integrals which occur in the band-theory expression for
y. In polyacetylene, y arises primarily from the
electron-hole pair migration terms, with the doubly excit-
ed states decreasing the value of ¥ by about 20%.

When electron correlation is included, the origin of y
is not well understood. Exact results for short chains'®
show that most of the optical intensity out of the ground
state is to the 1'B, state. Therefore the dominant terms
in the perturbation-theory expression for y are those in
which states |1) and |3) are the 1 !B, state. This state is
a relatively simple state which is composed mainly of
singly excited configurations.!®'> The difficulty in
evaluating y for short chains arises in correctly describ-
ing the highly correlated states, [2).

Before considering the origin of ¢ in the long-chain
limit, we introduce the symmetries present in a polyene
chain with periodic boundary conditions. Due to transla-
tional symmetry, each many-electron state can be labeled
with a wave vector K, which describes how the state
transforms under translations. In addition, the electron-
hole symmetry of the one-electron energy levels leads to
+ /— alternancy symmetry in the many-electron wave
functions.”* The optical selection rules are +——,
——+, and AK=227/N, where N is the number of
unit cells. The ground state has symmetry K =07, i.e.,
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wave vector K =0 and — alternancy symmetry.

Our conjecture is that in the long-chain limit the 1'B,
state becomes an exciton state and this state is the dom-
inant [1) and |3) states in the perturbation-theory ex-
pression for y. The symmetry of this exciton is
K =+(27/N)*. There are two possibilities for state |2):
(i) an exciton with K =0~ or £[2(27/N)]” symmetry or
(ii) a state which arises from the interaction of two exci-
tons, a biexciton state. The biexciton states are compli-
cated states which will not be explicitly calculated in this
paper. We will refer to the terms of type (i) as exciton
migration terms and those of type (ii) as biexciton terms.

In order for the above model to be valid, the
K=+(27/N)* and the K =07, +[2(2m/N)]~ excitons
must carry most of the optical intensity, so that free
electron-hole pair states may be ignored in the
perturbation-theory summation for y. The calculations
presented below suggest this is the case for polyacetylene.
The PPP Hamiltonian is diagonalized in a basis contain-
ing all single excitations from the Hartree-Fock ground
state, i.e., the intermediate exciton formalism. For chains
with more than about 30 unit cells, the lowest-energy
state of each symmetry is an exciton state with the elec-
tron and hole bound tightly together. The change in K
from O to 2(27/N) has only a small effect on the exciton
binding energies; however, the + symmetry excitons
(states |1) and |3)) have a binding energy more than
twice that of the — symmetry excitons (state [2)).

The exciton migration terms in y give results similar to
the electron-hole pair migration terms of Hiickel theory,
provided that the Hiickel parameters are chosen to give
the same long-chain band gap as the exciton calculations.
The biexciton terms are beyond the scope of the present
calculations and thus are not evaluated.

The exciton calculations are done on rings of polyace-
tylene ranging in size from 6 to 142 atoms. By doing cal-
culations on rings, the inherent size dependence, or con-
jugation length, can be investigated without giving up the
simplifications arising from periodic boundary condi-
tions. The differences between rings and chains are there-
by explored within the Hiickel approximation. The re-
sults for y indicate that a ring is roughly equivalent to a
chain with half the number of atoms. The differences be-
tween a ring and a chain are primarily due to the change
in geometry rather than the introduction of periodic
boundary conditions. This is shown by comparing y of
rings and chains with ¢ of broken rings, chains bent into
the geometry of a ring but without a bond between the
terminal carbons. The main effect of periodic boundary
conditions is the introduction of oscillations for odd
versus even numbers of unit cells.

In Sec. II we examine the perturbation-theory expres-
sion for y in the independent-electron approximation and
show that the dominant terms are those involving the
creation and migration of a single e-h pair. The
differences between rings and chains of polyacetylene are
explored and the band-theory expression for y is derived
by taking the N — oo limit of a ring. In Sec. III the PPP
Hamiltonian is diagonalized in the intermediate exciton
basis set and the contribution to ¥ from the exciton mi-
gration terms is evaluated. Section IV is a brief discus-
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sion of the biexciton terms. Finally, Sec. V is a discussion
of the results.

II. CANCELLATION OF TERMS
IN PERTURBATION THEORY

Within the independent-electron approximation, ¥ is
given by
iy Cilxlj 2 Cjlxelie ) Chelx|2) Cllx]i )

=2
¥ xwnx ;,;k,zm (e,— &, )ex —&, )&, —€,)

_202(:0 2 I(llJC'])'ZI(l'Xll)lz

— e )2 —
i gl (Ej 8,-)(31 Ei)

(1)

where i, j, k, and [ label the one-electron energy levels
with energies €;, i is summed over all levels which are oc-
cupied in the ground state, and {i|x|j) is the x matrix
element connecting levels i and j (x being the direction
along the polymer backbone). The factor of 2 accounts
for the double occupancy of each level. A more general
expression, which is valid for systems with electron corre-
lation, is given by

0]x|J)¢JIx|K }{K|x|L )}{L|x]|0)

Vixxx = 2

LEL#0 E;ExEL
2 2
_ s I(leIJ>|2I<0|x|L>| 2)
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where capital J, K, and L label many-electron states, |0)
|

Calx|r) (rlx|s Y Cslx]e ) Ctlxla)
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is the ground state, and E; is the energy of the Jth excit-
ed state relative to the ground state. Within the
independent-electron approximation, |J) and |L ) are al-
ways singly excited states, i.e., states with one electron
and one hole, while |[K ) can be either a singly or doubly
excited state. If we write the many-electron transition
amplitudes {(J|x|K ) in terms of the one-electron transi-
tion amplitudes (j|x|k), we find that most terms in
which |K) is a doubly excited state are cancelled by
terms in the second summation. This cancellation has
been commented on by many authors?*2%2 and is neces-
sary for ¥ to be proportional to the length of the chain in
the long-chain limit. The cancellation occurs if the fol-
lowing two conditions are met. (1) The transition mo-
ment from state |J ), with e-4 pair 4, to state |K ), with
e-h pairs A and B, must be the same as that for the
creation of the single e-A pair, B. (2) The energy of state
|K ) must be equal to the sum of the energies for states
with the single e-h pairs, 4 and B. In the independent-
electron approximation, these conditions are met for all
doubly excited states |K ), except those with either a dou-
bly occupied conduction-band level, a double vacated
valence-band level, or both. A class of terms also
remains corresponding to cross annihilation of two
electron-hole pairs. With periodic boundary conditions,
these cross annihilation terms are forbidden by the opti-
cal selection rules.

The terms which remain after the cancellation are
shown in Figs. 1 and 2. The explicit summation for the
terms involving singly excited states, shown in Fig. 1, is

Calx|r){rlx|sY(blx|a ) {s|x|b)

23

a,r,s,t

(e, —¢€, e;—¢g, e, —g,) abrs

(alx|r){(blx|a){c|x|b){rlx|c)

(e,—€, e, —€,)(€; —Ey)

Calx|r){(blx|a){r|x|s){s|x|b)

+2 3

a,b,c,r

(e, —€, e, —¢€y ), —¢,)
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where the labels a, b, and ¢ run over all one-electron energy levels which are occupied in the ground state and r, s, and ¢
run over unoccupied levels. We have assumed a centrosymmetric system in which the diagonal x matrix elements are
zero. The terms involving doubly excited states, shown in Fig. 2, are

[{alx|r)|*|{alx|s)|?
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2
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The numerical values of these two types of terms for
finite chains of polyacetylene are shown in Fig. 3. At the
long-chain limit, the contribution from terms involving
singly excited states [Eq. (3)] is positive and about five
times larger than the negative contribution from terms
involving doubly excited states [Eq. (4)].

The separation of terms into Eqgs. (3) and (4) is useful
because each class of terms corresponds to a qualitatively
different process and in the long-chain limit each class is
proportional to the size of the chain, N. Separating y
into the first and second terms of Eq. (1) is not as useful,
since in the long-chain limit, each term is proportional to
N2, with only the difference being proportional to N.

(e,—&,) e, —¢,)

(alx|r){blx|s){rlx|b){s|x]a)
(e,—€, ), —€p e, —g,)

-2'3 @)

a,b,r,s

Furthermore, we will see below that in the infinite limit,
Egs. (3) and (4) correspond to the first and second in-
tegrals in the band-theory expression for y.

With periodic boundary conditions, the molecular or-
bitals are Bloch functions which can be labeled according
to wave vector k. Due to the bond alternation, the unit
cell consists of two identical carbon atoms and the Bloch
functions can be written

© N . )
! Ul/'k =_—_‘/%W 2 exkn(¢e—lx(k)'n,1>+ezx(k)|n’2>)
n=1

(5)
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where |n,j) refers to the jth carbon of the nth unit cell,
x(k) lies between —1 /4 and 7 /4, and — or + applies to
the conduction or valence band, respectively. The al-
lowed values of k are (27/N)j where j is an integer be-
tween 1 and the number of unit cells N.

The representation of the X operator for an infinite
chain with periodic boundary conditions®® is related to
90U, (x)/dk where U, (x) is the part of the Bloch function
which is periodic in the unit cell length,
[, ) =e™ U, (x). Using the method developed by Gen-
kin and Mednis,?® Agrawal, Cojan, and Flytzanis* de-
rived the following expression for ¥ of an infinite chain of
polyacetylene:

w/a 1 9[Q*(k)/w(k)]
N dk
r=any 7 (k) ok
% o[ Q(k)/w(k)]
ok
4
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—+t
—s
_—Tr
—“+—a
—++b
. —+c
=
—_—r
“+—a
—++b
¢ —t
—t+s
—_—r
—++a
—+—b
—++c
—t —t
—s —s
—_—r —+—r
—H—a—’ —+—a
—++b —++b
—++c —+t+c
—1t
—s
—t+r
\ —++a
—++b
—+—c
—t
—s
—tr
—++a
—+—b
++c
ra
—r
—++a
—+—b
—+t+c

FIG. 1. Within the independent-electron approximation, the
perturbation-theory expression for ¥ can be written as a sum
over two classes of terms: electron-hole pair migration terms
(shown here), and terms involving doubly excited states (shown
in Fig. 2). The explicit summation of the electron-hole pair mi-
gration terms is shown in Eq. (3). These terms contribute posi-
tively to ¥ and are 5-10 times larger than the negative terms of
Fig. 2.
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where w(k) is the band gap at wave vector k, a is the unit
cell length, Q is the oscillator strength:

=1 e ()2 | dx(k) _ 1

k)= [ Ui x )3 Uk =i [ 3k 4 ] ’
@)

and UC indicates an integral over a unit cell. For finite

chains, k is not a continuous variable and the above rep-
resentation of X in terms of a derivative with respect to k
is not applicable. Instead, we use the coordinate space
representation of X; the x coordinate of the individual
atoms. If periodic boundary conditions are used for the
electronic wave functions and the atoms are arranged in a
linear chain, y is not proportional to N in the long-chain
limit. This indicates an inconsistent use of the boundary
conditions. In order to apply periodic boundary condi-
tions to a finite chain consistently, we must use a periodic
representation of the dipole moment operator. This can
be accomplished by considering rings of the polymer,
with the dipole operator along the x direction for a ring
of 2N carbon atoms being

—Ss
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-
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— s
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—r
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—+—b —s
—r
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FIG. 2. Terms in the perturbation-theory expression for ¥
which involve doubly excited states. The explicit summation of
these terms is shown in Eq. (4).
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FIG. 3. The component of ¥ along the polymer backbone for
linear chains of polyacetylene as a function of the number of
unit cells, N. The Hiickel theory parameters are chosen to give
a band gap of 1.8 eV in the long-chain limit (8;=—1.925 eV,
B,=—2.825 eV). At long-chain lengths, the electron-hole pair
migration terms are five times larger than the terms involving
doubly excited states.

N
2=%n§1 cos %Vz(n—%) ln,1){n, 1]
27 1
+eos | -(n+3) [n,2)(n,2| |, (8)

where a is the unit cell length, 1.405 Ain polyacetylene.?’
This form for X leads to a Ak =27 /N optical selection
rule between the Bloch states:

(¢(kazn/1v|x|¢;§) =%£2V;acos X ki%r
—xumr%%’ Y

(tp;iiz#/ﬂxw;z)):*é;v—;sin X ki%” —x(k)
“%27" (10)

In the limit N — oo, these matrix elements can be written
in terms of dy(k)/dk and we recover the representation
of X for an infinite chain, Eq. (7). The N — o limit of ¥
is obtained by inserting the matrix elements of Eqs. (9)
and (10) into the summations for y, Egs. (3) and (4), and
doing a Taylor series expansion in 27 /N. The e-h pair
migration terms [Eq. (3)] become the first integral of the
band-theory expression [Eq. (6)] and the double e-h pair
terms [Eq. (4)] become the second integral. In taking the
N— o limit, a geometrical factor of 2 occurs. This
geometrical factor can be understood by considering the

operator of a ring, Eq. (8), as equivalent to that of a
chain placed in an unusual electric field, a field in which
the amplitude oscillates through one full cycle of a cosine
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over the length of the chain. In the long-chain limit, the
amplitude of the field varies slowly and we can average
the change in energy due to a dc field, yE*, over the
length of the chain. The ratio of y,,,, for a ring with N
unit cells to y,,,, for a chain with N unit cells is then
(cos*(@))=2. Another consequence of the geometry of
a ring is the presence of more than one large component
Of ¥ ¥ xxxxs Vypyy» aNA ¥, For a ring with five or more
unit cells, there is a fivefold or higher symmetry axis.
Since y is a rank-4 tensor, ¥ must be independent of the
angle of rotation about the symmetry axis. This implies
that the tensor components are related by
Y xxxx =Vypyy = 3V xxyy- Finally, we note that for chains
longer than the wavelength of the applied light, the
correct representation of X is similar to that of Eq. (8),
with the length of the chain replaced by the wavelength
of light. The Ak =22 /N selection rule is then the stan-
dard Ak ==q selection rule, where g is the photon
momentum.

The exciton calculations presented below are done on
rings of polyacetylene so that the simplifications resulting
from periodic boundary conditions can be exploited while
retaining some information on the size dependence of y.
Here, we explore the differences between a ring and a
chain within Hiickel theory. The Hiickel theory parame-
ters are chosen to give a reasonable band gap, 1.8 eV, in
the long-chain limit (8;,=—1.925 eV, B,=—2.825 eV).
Figure 4 shows the norm of ¢ as a function of the number
of unit cells for both chains and rings of polyacetylene,
scaled by the appropriate geometric factors. (The ratio of
the norm of ¥ for a ring to that of a chain is (3)'/2) Also
shown are results for a broken ring, a chain of polyace-
tylene bent into a ring geometry but without a bond be-
tween the terminal carbon atoms. For a broken ring, the
electronic wave functions are those of a chain and the X
operator is that of a ring, Eq. (8). It is apparent from Fig.
4 that y for a broken ring is closer to that of a ring than

logyol hl/N (A'eV™) ]
|
N

- 1, _
4
4
R Chain
‘s
s
-3+ /'/ — — — Broken Ring —
7 /v

7 I'

, ----- Ring

;
—4 1 1 1 1 L

0.25 0.50 0.75 1.00 1.25 1.50 1.75
logyo(N)

FIG. 4. The norm of y is shown as a function of the number
of unit cells, N, for chains, rings, and broken rings of polyace-
tylene. The Hiickel theory parameters are as in Fig. 3. A bro-
ken ring is a chain bent into the shape of a ring, but without a
bond between the terminal carbon atoms. [|y| for the rings and
broken rings is multiplied by a geometrical factor, (3)'%, so
that the ring and the chain have the same norm at large N, see
Sec. I1.]
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FIG. 5. The same as Fig. 4, except that y for the rings and
broken rings is plotted vs N/2. It can be seen that a ring is
roughly equivalent to a chain with half the number of unit cells.

that of a chain. This indicates that the differences be-
tween rings and chains are due primarily to the form of
the X operator. The main effect of the periodic boundary
conditions is the oscillation of y for even versus odd
numbers of units cells, N. (In the exciton calculations,
only odd numbers of unit cells are considered.) In Fig. 5,
the results for the rings and the broken rings are shifted
so that y /N is plotted against N /2. It can be seen that a
ring is roughly equivalent to a chain of half its size.

The many-electron state formed by exciting an electron
from a valence-band level with wave vector k, to a
conduction-band level with wave vector k, transforms
under translations according to a new wave vector,
K =k,—k,. The ground state transforms as K =0 and
the optical selection rule is AK =+27/N. Within the
independent-electron approximation, y is dominated by
the e-h pair migration terms (see Fig. 3). With periodic
boundary conditions these terms correspond to (i) the
creation of an e-h pair with K =127 /N, (ii) a transition
to an e-h pair with K =0 or +2(27/N), (iii) a transition
to an e-h pair with K =+27/N, and (iv) the destruction
of the e-h pair to return to the ground state. Our conjec-
ture is that in the long-chain limit, electron correlation
leads to the formation of excitons. We then have a class
of terms which are similar to the e-A pair migration
terms: the creation of a K=227/N exciton, its migra-
tion through K =0 and +2(27/N) excitons, and a return
to the ground state through the K =+27/N excitons. A
class of terms similar to those involving doubly excited
states, Fig. 2, are also present in the correlated system.
These terms involve biexciton states, which are beyond
the scope of the calculations presented here.

III. EXCITON CALCULATION

A. The PPP Hamiltonian

The general electronic Hamiltonian can be written

H=3 lilh,|jlala;+1 3 [ikljllafafaa, , (1)
ij i,j, k!
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where i, j, k, and [ label spin orbitals ¢, and chemist’s no-
tation is used (in [ik|jl], electron one occupies orbitals ¢*
and ¢, while electron two occupies ¢7 and ¢,). In the
PPP approximation, there is one p orbital per site, so i, j,
k, and ! become site labels. [i|h 1 lj] is B, for carbon
atoms connected by a double bond, B, for carbon atoms
connected by a single bond, and zero otherwise. (For po-
lyacetylene, the on-site energies, [i|h1|i ], have no effect
on the many-electron state energies so they are ignored in
these calculations.) Zero differential overlap is assumed
in the two-electron integrals:

[ikljl]zri,jai,ksj,l . (12)

We use the Ohno formula for T" (Refs. 28 and 11),

14.397
Lj [( 14.397 )2+r2]1/2 ’

11.13

r (13)

where 7 is the distance between sites / and j and the units
are eV for energy and angstroms for distance. The calcu-
lations are done on trans-polyacetylene with 120° bond
angles and bond lengths of 1.46 A for the single bonds
and 1.35 A for the double bonds. The transfer integrals
are given by!°

B=—2.43 eV+3.21(r —1.397)
—B,=—2.2278 eV; B,=—2.5809 €V . (14)

The calculations presented below assume periodic
boundary conditions for the electronic wave functions.
We can use the translational symmetry to introduce a
convenient notation for I' and the matrix elements of any
one-electron operator, O:

Loy =Fm=my Liwon, =Ly > 1%
ity i=J i=J J'=i
A . A A _A
<n7.]‘0tn'7jl>=0(n—n')’ O(n—n’)—o(n'*n) ’ (16)
i=J i=J J'=i

where n and j correspond to the unit cell and atom num-
bers: j=1,2 for the two carbon atoms. (Each unit cell
consists of two carbon atoms connected by a double
bond.) The distance between two unit cells is taken as the
shortest path connecting the two cells, consistent with
the periodic boundary conditions. This is done by bring-
ing the distance between two unit cells, » —n’, into the
range —(N —1)/2 through (N —1)/2 by adding or sub-
tracting the chain length N. [For convenience, we define
1n=(N —1)/2 and consider chains with odd N.] The dis-
tances are calculated assuming a linear chain of polyace-
tylene. As discussed in Sec. II, since we are using period-
ic boundary conditions we must use a periodic form for
the X operator [Eq. (8)]. This operator corresponds to 2N
carbon atoms distributed uniformly on a ring. Thus the
calculations are done on rings of polyacetylene with the
important exception that the distances which enter Egs.
(13) and (14) are calculated assuming a linear polyace-
tylene chain. This is done so that the dependence of the
results on the number of unit cells reflects the inherent
size dependence of the system, rather than the effects of
curvature on the distances between unit cells.
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B. Diagonalization of the PPP Hamiltonian
in the exciton basis
The Hartree-Fock wave functions have the form of Eq.
(5), thus the function x(k) completely determines the
|

(j) J (o G = o

where n=(N —1)/2. (We assume rings with an odd
number of unit cells.) The nonzero matrix elements of

F£O" are

core — Core — Core — cCore —
7-[ 7{_1) B>, 7{_1) 7{( ) =B . (18)
In order for the Fock matrix to be diagonal in the Bloch
functions, Eq. (5), Y(k) must be given by

2 (F —F , )sin(kn)
n=1 (4

tan[2y(k)]=

F0+2F +F

—l n=1 l

)cos( kn)

(19)

The Hartree-Fock solution is obtained as the self-

consistent solution of Egs. (17) and (19). The Fock opera-

tor is then diagonal in the Bloch functions, Eq. (5), with
c

. . . O
diagonal elements equal to the orbital energies, " g.
The valence-band Wannier function, centered at site n,
is given by

I(U)Wn )= 1 —lkn|(v) )
VN %e Vi
N
2

2 .
> 1 < ik (n'=n) i (= V()

X|n',j) . (20)

The Wannier function for the conduction band is ob-
tained by changing the sign of the valence-band function
on the first atom of each unit cell. Since the Fock opera-
tor is not diagonal in the Wannier functions, it will be
useful to introduce the matrix element of the Fock opera-
tor between Wannier functions as the analog of the
Hartree-Fock orbital energies. The matrix element be-
tween the Wannier function on unit cell n’ and that on
unit cell n depends only on the distance between the unit
cells and is given by

v FWanmcr —

ie(n'—n)
2 e € (21)
k
The basis set for the exciton calculation is

N
|q)§)=% z tKn|I¢;xl+A) , 22)

ﬂcore+ r0+r‘ +2(2F +F +r 1 )]8,,,08]',0
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Hartree-Fock solution. The matrix elements of the Fock
operator between any two sites is given by, using the no-
tation of Eq. (15),

1

1+
IN 2200s

=1

———ln +2jx l"(,,) ,
J

2
k=<
NI

(17

r

where A labels the separation between the electron and
the hole and K has the values (27 /N)j, j being an integer
between —n and 7. |'¢2T2) is the singlet configuration
obtained from the ground state by promoting an electron
from the valence-band Wannier function at site n to the
conduction-band Wannier function at site n +A. The
matrix elements of #/ —E,, where E| is the energy of the
Hartree-Fock ground state, are given by

(®K|#—E | ®K)

=% 2 eiK(n—n')( 1¢::+A,|7{_E0|1¢:+A) i 23)

n,n’

Since the matrix elements between the singly excited
configurations depend only on n —n’, we can remove one
of the summations:

(DK|FH—Eo|0K) = e (WS |H—Eol 'y t2) . (29

In a basis in which the Fock operator is not diagonal, the
matrix element between singly excited configurations is

(g |H—Eol'y, )= (s|Flr)s,,—<alF|b)3,,
—(sr|ab)+2(ar|sb) , (25)
where F is the Fock operator, Eq. (17), and (sr|ab) are the
two electron integrals between spatial orbitals in

chemist’s notation [see discussion below Eq. (11)]. Equa-
tion (24) is then

<¢§’|7{_E0|¢§> — (C)F?X?En‘if{ _‘eiK(A'—-A) (v)thX§1n1§e;
+3 e 2(n(n +A)|A°0)
n
—(A'(n +4)|n,0)} ,

(26)

where n(7) indicates the valence- (conduction-) band
Wannier function at site n. The finite extent of the Wan-
nier function was used to expedite the evaluation of the
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two-electron repulsion integrals. The Wannier function
was assumed to be zero for distances larger than 15 unit
cells from the center of the Wannier function. (Increas-
ing this cutoff from 10 to 15 had about a 0.02% effect on
the final results for y.)

The full exciton matrix, A= — through 7, was diago-
nalized to give the exciton states WX with energies EX,

n
wKy='3 X |ok) . 27
A=—nq

The average, root mean square (rms), separation between
the electron and hole is defined as

(28)

The dipole moment matrix elements in the exciton
basis are related to Fourier transforms of Egs. (9) and
(10):

J
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(P ¥|x|0)=— iT———

. 2
X k)—x |k ——
sin | y(k)—x N]
—i%" : (29)
Na 1 R — KA e A
ok i((K'— KA __ iK' (A'—A)
ok [x|0k) = o N e )
X3 e* A= 8cos | x(k +K'—K)—x(k)
k
K'—K
- 4 81<',1<i277/1v-
(30)

The contribution to y from the exciton migration
terms is given by the following formula:

(0]x|WX) (WK|x| WKy (WK’ IxI\I"‘ YK Ix|0>

EXEXEK"

Note that Eq. (31) is not a complete expression for y
since the contribution from biexciton terms is not
present.

C. Alternancy symmetry

Since polyacetylene is an alternant hydrocarbon, the
one-electron energy levels exhibit particle hole symmetry.
[For each valence-band level with energy —E (k), there is
a conduction-band level with energy E (k)]. This implies
that the electronic configuration formed by promoting an
electron from the valence-band level with wave vector k
to the conduction-band level with wave vector k', ¥/, is
degenerate with the configuration . Configurations
with + or — alternancy symmetry can be formed by tak-
ing + or — linear combinations of these configurations.?*
To form functions which also have a definite wave vector
K, we take advantage of the +k degeneracy:

[k Yl kT E) (32)

The exciton basis functions of Eq. (22
terms of the ¥} as

) can be written in
N .
1<1>§>=ﬁ e kayk L (33)
k=1

To form exciton basis functions with definite alternancy
symmetry, we take the Fourier transform of Eq. (32):

(31)

N
(1K) = IN oAy )Yk TEY)
k=

=|pK)t+e KA DK, ) . (34)
For K =0, + or — alternancy symmetry refers to wheth-
er the wave function is symmetric (s-type excitons) or an-
tisymmetric (p-type excitons) about A=0, zero electron-
hole pair separation. For KO0, the functions are not
strictly symmetric or antisymmetric, however, the — al-
ternancy symmetry excitons must have a node at A=0.
For K near 0, the wave functions are nearly symmetric or
antisymmetric and the s and p exciton labels are still use-
ful. The optical selection rule is +——, ——+ with
the ground state having — alternancy symmetry.?*

D. Results

The results from diagonalization of the PPP Hamil-
tonian in the exciton basis are summarized in Figs. 6—13.
The summation for y, Eq. (31), involves three intermedi-
ate states represented schematically as
[0)==|1)=12)==|3)=10). Due to the optical selec-

tion rules, the |1) and |3) states must have
K =2(27/N)* symmetry. The energies of both the
K =(2m/N)* and K =(27/N)~ states for polyacetylene

rings with between 3 and 71 unit cells are shown in Fig.
6. (K=+2m/N and K =—27/N are degenerate.) For
both + and — alternancy symmetry, there is a gap be-



45 EFFECTS OF ELECTRON CORRELATION ON THE NONLINEAR ...

20 T T T 20 T —T T
+i§
+ +
15 - ++1 15+ + + 3
+1 5 T
+ 4T+
+ 4+ +
+ ++++ +
= + + +
S H+ ++++ 10 + + + .
=] + ++++ +
+ + 0+ +
NI+ T+ + +
T+ 4
5_++t'=+ 4 e g o4
THed v 44
0 1 1 1 0 1 1 1
0 20 40 60 0 20 40 60

Number of Unit Cells N Number of Unit Cells N

FIG. 6. Energy levels from diagonalization of the PPP Ham-
iltonian in the K =27 /N exciton basis. The + alternancy sym-
metry states (left panel) are optically accessible from the ground
state, while the — alternancy symmetry states (right panel) are
optically forbidden. States with energies below the Hartree-
Fock band gap, shown as a solid line, are exciton states. The
binding energy of the lowest-energy + symmetry exciton (an s-
type exciton) is half that of the lowest-energy — symmetry exci-
ton (p type).

tween the lowest-energy state and the remainder of the
levels which is independent of ring size for rings with
more than about 30 unit cells. This suggests the forma-
tion of an exciton. The exciton binding energy is mea-
sured relative to the Hartree-Fock band gap, which is
shown as a solid line in Fig. 6. The binding energy of the
+ symmetry exciton, 3.8 eV, is more than twice that of
the — symmetry exciton, 1.6 eV. The rms electron-hole
pair separations, Eq. (28), for the four lowest-energy

20 20

+i,
o

T

15

T o+
+
7

+

+1
H o+ o+ + A+t
H+ 4+ A
+H o+
4+ 4+

+
+
At
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4+ 4+ 4+ 4+ 4
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Number of Unit Cells N Number of Unit Cells N

FIG. 7. Similar to Fig. 6 except for K =0 levels. From the
K =(2w/N)™ states, transitions to the K =07 states (left panel)
are optically allowed, while transition to K =07 states (right
panel) are optically forbidden. The main difference between the
K =(2m/N)* and K =07 states is that the lowest — alternancy
symmetry exciton is more weakly bound than the lowest +
symmetry exciton.
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states of K =(27/N)" symmetry are shown in the left
panel of Fig. 9. In the lowest-energy state, the separation
is about two unit cells, confirming the excitonic character
of this state. The next higher-energy state also has a
bound electron-hole pair with a separation of about eight
unit cells. This higher-energy exciton is not of interest
for optical properties since for rings with more than
about 30 unit cells, 99% of the optical intensity out of the
ground state is to the lowest-energy exciton (Fig. 10).

From the K =(27/N)* states, transitions to K =0~
and [2(27/N)]™ states are optically allowed (state |2) in
the summation for ¥). The energies of both the — and +
symmetry states for K =0 and 2(27w/N) are shown in
Figs. 7 and 8. In the long-chain limit, the exciton binding
energies are similar to those of K =27 /N. The main
difference between the K =0, +[2(27/N)]™ excitons,
which appear as state [2) in the perturbation-theory ex-
pression for ¥, and the K =(27/N)" exciton, which ap-
pears as states |1) and |3), is that the binding energy of
the lowest-energy — symmetry exciton is half that of the
lowest-energy + symmetry exciton. The rms electron-
hole pair separations are also larger for the — symmetry
excitons (see Fig. 9). For rings with more than 30 unit
cells, 98% of the intensity between the lowest-energy
K =27 /N)* exciton and all of the K =0 states is in
the transition to the lowest-energy K =0~ exciton (see
Fig. 10). The same is true of the K =[2(27/N)]~ states.
Since the lowest-energy excitons carry almost all of the
optical intensity, the other states can be ignored in the
perturbation-theory expression for y. From the
K =(2m/N)* exciton, there will also be intensity to biex-
citon states. Since these states cannot be described
within a basis of singly excited configurations, they do
not appear in these calculations.

In order to compare the results from the exciton calcu-
lation with those from Hiickel theory, the Hiickel theory
transfer integrals were adjusted so that the long-chain

20 T T T 20 T T T
+31 +$
4 + +
15F +4, + 1 15 | ++ —
+4 +
A +1F +1+1
++t 4 T F T+
e, T+ 47
= ++ ++1 + 4+ +
S 4+t T 10} s+t 7T a
& + +++ ++I
+o+ 7 ettty
+ +
"y + ¥
5 A+ 4+ + 4] B Hy §
4y
44 o4t
0 1 1 1 0 1 1
0 20 40 60 0 20 40 60

Number of Unit Cells N Number of Unit Cells N

FIG. 8. Similar to Fig. 7 except for K =2(27/N) levels. The
optically accessible K =[2(27/N)] "~ states are shown in the left
panel while the optically forbidden K =[2(27/N)]" states are
shown in the right panel. Just as for the K =0 states, the main
difference between the K =(27/N)* and K =[2(27/N)]”
states is that the lowest — alternancy symmetry exciton is more
weakly bound than the lowest + symmetry exciton.



11 664 DAVID YARON AND ROBERT SILBEY 45
25 T - T T -
K4 / 7
i / _/
— 7 / 7
= 20 s - o , -1 = , n
[ / ;
© ;o ! !
= AR = /.
= ;- A L
9 . e /
@ e /1 7
gl 1 A 1 .
& Iy T = s /)
L a 1 //
n A /.0
g 5 // - - //' — Y -
L] /- I :
7" 7 ¢
s / V—'_—_
0 - 1 1 1
0 40 80 0 40 80 0 40 80
N N N

FIG. 9. The rms separation between the electron and hole, Eq. (28), for the four lowest-energy states with symmetries
K =(2m/N)* (left panel), K =0~ (center panel), and K =[2(27/N)]~ (right panel). The line types solid, dashed, dash-dotted, and
dotted correspond to increasing energy. The symmetries shown here are those which occur in the summation for y. In each case, the
two lowest-energy states have bound electron-hole pairs. The rms separation of the lowest-energy — symmetry excitons is roughly

twice that of the lowest-energy + symmetry exciton.

band gap agrees with that from exciton theory. (3,45,
is the same as in the PPP Hamiltonian and |8, —f3,| is fit
to the band gap: B;,=—1.78 eV, 3,=—3.03 eV.) The
Hiickel calculations were done on rings of polyacetylene
using the X operator of Eq. (8). The results for the band
gap, the polarizability, and ¢ are compared with those
from exciton theory in Figs. 11-13. The long-chain lim-
its of Hiickel and exciton theory agree to within a factor
of 2 on both the polarizability and the singly excited state
contribution to y. There are some minor differences.
For example, the band gap approaches the long-chain
limit more rapidly in exciton theory than in Hiickel

100

90 O K=(2n/N); + B

80 - + K=(4m/N); - -

70 1 1 1
0 20 40 60 80

N

FIG. 10. The squares show the percentage of the total optical
intensity out of the ground state which is to the lowest-energy
K =(2m/N)" exciton. The triangles show the percent of the in-
tensity between the lowest K =(27/N)™ exciton and all K =0~
states which is to the lowest-energy K =0~ exciton. The
crosses are a similar plot for the K =[2(27/N)]~ states.

theory. The opposite is true of the polarizability. Also,
the long-chain limit of the polarizability is 25% larger in
exciton theory than in Hiickel theory, while the singly ex-
cited state contribution to y is a factor of 2 smaller. Nev-
ertheless, it is interesting that the electron-hole pair mi-
gration terms of Hiickel theory are in qualitative agree-
ment with the exciton migration terms, provided the
Hiickel parameters are adjusted to give the same long-
chain band gap as in exciton theory.

O Hiickel Theory

Exciton Theory -

Band Gap (eV)

0.5 1.5 2.5

logy0(N)

FIG. 11. The band gap as a function of the number of unit
cells from exciton theory and Hiickel theory. The Hiickel
theory parameters are chosen so that the band gap at long-chain
lengths agrees with that from the exciton -calculation.
(By=—1.78 eV, B,=—3.03eV.)
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FIG. 12. Polarizabilty from Hiickel theory and exciton

theory. The Hiickel parameters are the same as in Fig. 11.

IV. BIEXCITON TERMS

In a correlated system, y is given by the sum over
many electron states shown in Eq. (2). Using the inter-
mediate exciton formalism, we were able to calculate
terms involving the creation of a K =(27/N)* exciton
and its migration through K =07 and [2(27/N)]~ exci-
tons [Eq. (31)]. These terms appear in the first summa-
tion of Eq. (2). After the creation of the K =(27/N)*
exciton, there will also be intensity to biexciton states,
thus another class of terms is present in the first summa-
tion of Eq. (2), the biexciton terms. In Sec. II we showed
that within the independent-electron approximation,
most of the terms in the first summation which involve
doubly excited states are canceled by terms in the second
summation. Such a cancellation will also occur here.
The biexciton states can be viewed as arising from
scattering between two excitons. Most of these states will
correspond to two nearly free excitons and thus the re-

|

n

T
b
3
b
S
3

O Band Theory: e—h Migration

1ogsol 17 xecd/N (R%V™) |
&
T

A Band Theory: Doubly Excited States

|
'S
T

O Exciton Theory: Exciton Migration

0.5 1.0 1.5 2.0 25

log;o(N)

riG. 157 The secunt “friyperpoiatizabiity ~p~ from “Hiickel -

theory and exciton theory. The Hiickel theory parameters are
the same as in Fig. 11. The e-h pair migration terms give results
which are similar to the exciton migration terms. This may ac-
count for the success of Hiickel theory in predictions of y.
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quirements for the cancellation between the first and
second summations will be met. These requirements are
that the energy of the doubly excited state be the sum of
the energies for the single excitations and that the transi-
tion moment for the creation of the second excitation be
the same as if the first excitation were not present (see
Sec. II). In the independent-electron approximation, the
cancellation of the doubly excited states is not complete
because of the Pauli exclusion principle. States which
have either a doubly vacated valence-band level or a dou-
bly occupied conduction-band level remain. This
effective interaction is also present in the biexciton states,
but there is also Coulomb interaction between the exci-
tons. The range of interaction between the excitons is
determined both by the size of the excitons and the range
of the Coulomb repulsion. The explicit calculation of the
biexciton levels is a major challenge, which is not ad-
dressed in this paper.

V. DISCUSSION

In the independent-electron approximation, y arises
primarily from terms involving the creation and migra-
tion of a single electron-hole pair. A smaller, negative
contribution comes from doubly excited states. Our con-
jecture is that for long chains with electron correlation,
the summation for ¥ contains a class of terms which are
similar to the electron-hole pair migration terms of the
independent-electron  approximation, namely, the
creation and migration of an exciton. In support of this
conjecture, we have done calculations on the PPP Hamil-
tonian using the intermediate exciton formalism. The op-
tical intensities are such that in the long-chain limit, the
lowest-energy state of the proper symmetry carries most
of the optical intensity. These low-energy states are
tightly bound excitons with a rms separation between the
electron and hole of between two and four unit cells. The
exciton binding energy of the + alternancy symmetry (s-
type) excitons is more than twice that of the — alternan-
cy symmetry (p-type) excitons. The + symmetry exci-
tons are optically accessible from the ground state and
are the dominant first and third virtual states (|1) and
[3)) in the perturbation-theory summation for y. The
more weakly bound — symmetry excitons occur as the
second virtual state (|2)). The contribution to y from
the exciton migration terms is in qualitative agreement
with the electron-hole pair migration terms of Hiickel
theory, if the Hiickel parameters are chosen to give the
same long-chain band gap as that obtained using exciton
theory. This may account for the agreement between
Hiickel theory and experimental observations on long
chains.?®

The calculations presented here include all singly excit-
ed configurations. (Recently, we learned that Schreiber?’
has also considered calculations on polyenes within the
single-CI approximation.) Inclusion of more highly excit-

—<cd-cenfigurations~will-ecrtainly-havequantitative;-and-—— -

possibly qualitative effects on the results. Suhai'® and
Leigener!” find that the K =07 exciton binding energy is
sensitive to the inclusion of higher-order correlation
through perturbation theory (MP2 and MP3) (where
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MP2 and MP3 represent second- and third-order
Mgller-Plesset perturbation theory). This may account
for the disagreement between the band gap obtained in
these calculations, about 2.5 eV, and that seen experimen-
tally, around 2.0 eV. Another known effect of higher-
order correlation is a reduction in the total optical inten-
sity out of the ground state.’® The effects of higher-order
correlation on the — symmetry, p-type exciton have not
yet been investigated.

Calculations on small chains support the existence of a
low-energy exciton state. The !B, state is reasonably well
described at the single-CI level and configurations with
large e-h pair separations are suppressed.'®!? Higher-
energy excitons, however, are not present in short chains.
One reason could be the large change in the magnitude of
K between 0 and 2(27/N) for small N. The K+0 exci-
tons then occur at high energies where they mix with
doubly excited configurations. (Although K is not a good
quantum number for linear chains, a similar argument
would apply.) The absence of the — alternancy symme-
try exciton in short chains can be understood by examin-
ing the lowest-energy configurations with + and — alter-
nancy symmetry, Fig. 14. In short chains, the energy of
the lowest — symmetry configuration is near that of the
doubly excited HOMO-LUMO configuration. It is
known that these configurations mix strongly, leading to
the low-lying 2 1Ag state.!®!? In long chains, the lowest
— symmetry configuration is only slightly higher in ener-
gy than the lowest + symmetry configuration and far
below any doubly excited configurations. Since low-
energy — symmetry configurations are not present in
short chains, it seems reasonable to expect that the
— symmetry excitons will not form until fairly long chain
lengths.
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Alternancy Symmetry:

+ - + -

e —_— —

I

Short Chains Long Chains

FIG. 14. The lowest-energy configurations with + and — al-
ternancy symmetry in short vs long chains.

The model we propose is based on the separation of the
perturbation-theory expression for y into two classes of
terms: exciton migration terms and biexciton terms. The
observation that the lowest-energy excitons carry almost
all of the optical intensity is central to the model. This
appears to be peculiar to one-dimensional systems. In
three dimensions, all s-type excitons are optically allowed
and there is also intensity in free electron-hole pair
states.?> This work is not complete since a potentially
important contribution to ¥, the biexciton terms, remains
unevaluated. However, by separating y into two classes
of terms, one of which is comparatively easy to calculate,
we hope to have provided some insight into the origin of
v in polyacetylene.
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