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Electron-hole-correlation effects in generation-recombination noise
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The current-noise spectral density in a semiconductor with recombination centers in the band gap is

shown to be dependent on the variances of both charge-carrier ensembles: The cross-correlation term
between electrons and holes cannot be neglected and plays a decisive role under nonequilibrium condi-
tions. We present a model for generation-recombination noise in the stationary nonequilibrium state.
Negative contributions to the noise spectra producing a maximum in the frequency dependence of the
noise power can arise, depending on the defect parameters. Good agreement is found when comparing
our theory with experimental results on heterostructure Ino 53Gao 47As/InP photodiodes.

I. INTRODUCTION

Fluctuation phenomena have been studied since the be-
ginning of the century from the different but complemen-
tary perspectives of statistics, thermodynamics, and
solid-state physics. ' In the early 1950s and 1960s, the
main theoretical framework was set by the Shockley-
Read-Hall generation-recombination model, by Bur-
gess's variance theorem, and by van Vliet, Lax, van
der Ziel, and others ' for the case of steady state at or
close to thermal equilibrium. The technological explo-
sion of the last two decades has produced very-high-
quality materials and, simultaneously, started the age of
highly structured devices. These complex structures,
such as avalanche photodiodes and semiconductor lasers,
are often designed to work far from thermal equilibrium.
Therefore effects due to nonequilibrium conditions need
to be taken into account.

It was soon recognized that normal thermodynamical
approaches did not apply in this case, and a different
theoretical work was required to explain experimental re-
sults. Furthermore high-quality semiconductor materials
have made it possible to investigate intrinsic or structural
effects that in the past were obscured by material defects.
As a result, specific interest arose in the noise behav-
ior' ' of complex structures working far from thermal
equilibrium. More recently, noise-measurement tech-
niques which are sensitive to small fluctuations in the
presence of large steady-state background values of
currents have become very important investigative tools
for the characterization of semiconductor devices, '

since greater physical insights may be accomplished.
Generation and recombination processes cause random

fluctuations in the concentration of carriers in a semicon-
ductor and this can be detected as current noise. The
measured current-noise spectral density is known to be
proportional to the Fourier transform of the correlation
function of the carrier ensemble. If the system can be de-
scribed by a single variable interacting with two energy
levels (e.g., for electrons the conduction band and trap
level), the correlation function shows the typical ex-
ponential shape with time constant ~ and the current-

noise spectrum is the well-known Lorentz curve. On the
other hand, as will be shown in this paper, recombination
centers within the band gap of the semiconductor make
the system essentially two dimensional. A simple super-
position of the contributions of electrons and holes taken
separately is no longer adequate. In this case and espe-
cially under nonequilibrium conditions a decisive role is
played by the cross-correlation function between the posi-
tively and negatively charged carrier ensembles.

In this paper we present a model for generation-
recornbination noise in the stationary nonequilibrium
state. In Sec. II we briefly outline the assumptions under-
lying the model. Time reversibility is shown not to hold
in our case. In Sec. III the general equations are present-
ed. The theoretical (analytical) results of the model will
be applied to a two-dimensional system in Sec. IV and
compared with measurements on heterostructure
InQ 53Gao 47As/InP photodiodes in Sec. V.

II. BASIC ASSUMPTIONS

Since we apply our model to a system in a steady state
far from equilibrium, we cannot use a thermodynarnical
description but must instead use a statistical approach.
We follow the Lax and van Vliet treatment and make the
following generalizations.

(I) The system is Markovian, i.e., there exists a small
set of variables a, whose knowledge at time 0 determines
the whole future behavior of the system for t )0 (mean
values, distribution function) and makes any previous
(t & 0) information superfiuous.

(2) The system is stationary, i.e., it is invariant with
respect to time shifts such as the translation of the origin
of time.

(3) Fluctuations a are calculated from a nonequilibri-
um steady state a since our system is "driven" by elec-
tric bias and/or external carrier generation.

(4) The system is quasilinear. This means that we can
treat the fluctuations a as linear variables. It should be
noted that mean values and probability functions are
linear functions of a.

(5) Within the small time interval dt only one transition
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between the energy levels is allowed to occur (the proba-
bility of two or more generation or recombination steps is
negligible as dt approaches zero).

A further assumption that is usually made is time re-
versibility, which states that the mean square of a is
invariant when we reverse the time arrow {t~ t).—It
holds in thermal equilibrium systems and it is equivalent
to the condition in Eq. (35) for bivariate systems as we
shall see in Sec. IV. Onsager assumed it held in steady
states without magnetic fields and Coriolis forces. We
find that it does not hold in our model of a bivariate semi-
conductor in nonequilibrium and therefore present a gen-
eral calculation without the time-reversibility assump-
tion.

From a physical point of view we can argue that car-
rier generation from illumination and electron-hole
recombination via deep levels in the band gap are non-
reversible processes. Looking backward on a time scale
according to the reversibility principle would mean hav-
ing light emission through recombination and carrier
generation via a deep level. However, the probabilities
(and therefore the time constants) of the two pairs of. pro-
cesses differ by several orders of magnitude. Light ab-
sorption and nonradiative recombination therefore do not
satisfy time reversibility: the entropy increase due to the
capture of the charge carriers into the trap (multiphonon
process) cannot be sufficiently compensated for by the
photon annihilation in the electron-hole generation.

where M, the phenomenological relaxation matrix, given
by

t)Pik apki

agj ItI I IgssI

is positive definite and its eigenvalues A,~ are inversely
proportional to the time constants of the generation-
recombination processes (in the case of one variable
A, =1/7 No represents the characteristic frequency of
the Lorentz curve); and

(aa)M'+M(aa) =B=2D,
where D is the diffusion matrix and M' is the transpose of
matrix M. This latter equation represents a generaliza-
tion of the Einstein relation between mobilities and
diffusion constant which is valid also for multivariate sys-
tems far from thermal equilibrium. " The elements of the
matrix 8 can be readily calculated as

It is important to note that C now plays the role of an
external parameter.

Under our assumptions the equations for ( a ) and
(aa) are found tobe

—(a) = —M(a),c}

aj

III. THE EQUATIONS

We are now ready to set up the equations to describe a
multilevel system with a; carriers in the energy state E;,
a; being the steady-state value of a, and p; the transi-
tion probability per unit time that a carrier will go from
E; to EJ as a function of the occupancies [a; I before the
transition occurred, for i =1, . . . , s. The condition of
charge neutrality can be written as

a,. =C,

Bti g pik + g pk!) kAl
k=1 k=1

Once we have a relationship for the variances we can,
at least formally, calculate the correlation function; its
Fourier transform yields the noise spectra we require.
The correlation function given by

4(t) = (a(t)a(0})

satisfies the following time equation:

d4 = —MN,
dj

S

g a, =C(x) .
i =1

(2)

Since we are interested in the carrier fluctuations and
not primarily in their absolute values, we can still calcu-
late the partial derivatives of the sth variable with respect
to the other (s —1) ones and work with the (s —1)-
dimensional fluctuation set:

where C is an appropriate sum over all space charges and
compensating centers. In this case one of the carrier
variables can be directly eliminated. Nevertheless, it can
also happen that the sum of all carriers is a position-
dependent quantity, such as in space-charge regions
whose value cannot be determined a priori:

with the solution

4(t) =exp( Mt )4(0), —

where 4(0)=(aa).
The complex noise spectrum S

Fourier transform of 4:
S(a, to)=2 I e ' '@(t)dt .

Since it is preferable to work with
(t )0},we can transform Eq. (11),

S(a, to) =2f [e '"'C&(t)+@(

where

(10)

is by definition the

positive time values

—t}e+' ')dt, (12)

a, =C(x)= g a
j=1
{jwi)

(3a} 4( t) = (a( ——t)a(0) ) = (a(0)a(t) ) =4'(t) (13)

aa, = —1 for iWj .
aa

(3b) 4'( t ) = [exp( Mt ) ( aa ) ]'= ( aa )e—xp( —M't ) . (14)
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The real noise spectrum G of the variable a (representing
the fluctuations of particle numbers) is then

G(a, co) =ReS(a, co) .

By substitution of Eq. (14) into Eq. (12) we obtain

S(a co) =2J (e ' —+' -'"(aa &+ (aa &e ' '—'"'")-dt
0

(16a)

bination centers in the band gap at the energy level E, .
For consistency with the previous section we label the en-

ergy levels E, (E&), E2 (Ev), E3 (E, ). The density of the
electronic population in each state is then given by a, =n

(density of free electrons in the conduction band),
ct2= —p (density of free holes in the valence band}, and
ct3 =i (density of occupied traps). In our case a position-
dependent charge balance condition holds and therefore
we can write

=2(M +i coI )
'

(,aa ) +2 (aa ) (M' i coI—) a, +a2+ct3 =n —p +i =C{x) . (23)

(16b)

where I represents the unit matrix.
It should be noted that S is always real (and symmetri-

cal} if

Since we are only interested in fluctuations, we reduce
the number of independent variables to two (n, —p),
treating i as a dependent variable. In the following we
need the derivatives of i Ac. cording to Eq. (3b) we obtain

(aa)M'=M(aa), (17)
c)l Bl= —1 = —1
c)n

'
c)( —p)

(24)

which holds only for time-reversible systems and espe-
cially in thermal equilibrium. In this case

i itself can be calculated from the Shockley-Read-Hall
formula

1G(a, co)=S(a, co) =2co Re I+ M
LN

c„n +c p1
i =Nz

c„(n +n, )+c~(p +p, )
(25)

On the other hand, no extra condition needs to be im-
posed on G to make it symmetrical since B (or D) is
symmetrical by definition [see Eq. (6)]: this means that
time reuersibility is neither ct condition nor a consequence
of G's symmetry.

Since we are interested in the general case without time
reversibility, we are only allowed the next step [from Eqs.
(16) and (6)]:

(M+icoI)S(M' icoI)=2—((aa)M'+M(aa) ) =2B .

By inversion we obtain

6 =ReS =2 Re[(M+icoI) 'B(M' icoI) '] —(20)

with n and p taken in steady-state conditions and where

ni =Ncg exp[(Ei Ec)/kT] (26a)

1
p &

=N v exp[(Ev E, ) lk T]-,
g

(26b)

are the densities of carriers which would be found in the
conduction or valence band if the Fermi level coincides
with the energy of the recombination center (g denotes
the degeneracy of the trap); c„and c are the capture
coefficients of the traps for electrons and holes, respec-
tively.

For transition probabilities p,. between the energy
states we assume a quadratic mass action law

and for M = 1/r (one-variable system)

2BH
G = (Lorentz curve),

1+co

which is often seen in the form

(21)

pi2 =~np

(we set P=0, negligible direct recombination);

P21 ='V

(27a)

(27b)

(external light-generation rate);
(22)

4((AN) )r
1+co r

p, 3 =c„n(Nr i), —

p31 =Cnnll

pz3=c p, (Nr i),
p3z =cpp&IV. NOISE IN T%'O-VARIABLE SYSTEMS

where ((hN) ) represents the variance of the number of
charge carriers. In the next section we present the ex-
tended calculation for the bivariate steady state.

(27c)

(27d)

(27e)

{27f)

We now describe the noise behavior of the (two-
variable) three-level system. The conduction band and
the valence band can be represented as energy E& and
Ev, respectively. We can equally interpret the a's intro-
duced above as representing densities without any change
in notation or formulas. In this case the Shockley-Read-
Hall rate equations keep their usual and well-known
form. Furthermore we consider a density Nz- of recom-

(Shockley-Read-Hall relations). In thermal equilibrium
we can put p;. =p;. However under steady-state condi-
tions this is no longer true. n, p (and i} have only their
steady-state values.

Following the outline of Sec. III we now need to deter-
mine the 2X2 matrices M and B [Eqs. (5) and (7)]. Ac-
cording to the definition
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M»=c„(Nz i—+n +n, )l(
) (

ss), (28a) M 2, B ))
—

M)2B22+ (Mq2 —M(, )B )2 =0 . (35)

M&&=c„(n +n& )l t, ) (,ss), (28b) We will discuss this relationship in Sec. IV C.

M2)=c (p+p/)l(

M~2= c(i+p +p))l(, | t, ssl .

For the B matrix we obtain

B» =c„[(Nzi.)—n +in, ]+y,
B~2

=
cp [(Nz. —i)p, +ip]+y,

B12 B21

(28c)

(28d)

(29a)

(29b)

(29c)

—2' Re +I
I CO

M'
B I—

B. The noise spectral density

In the next step we determine the noise spectral density
G(a, co) according to Eq. (20). First we modify the right-
hand side of Eq. (20) as follows:

6 =2 Re[(M+icoI ) 'B(M' icoI—) ']

A. The reversibility condition

2~2 Re ' co
—2 M

L CO

B co I—M'
1 CO

(36)

which can be substituted into Eq. (6). With

X11 X12
(aa) = =(aa)' (x,z=xz, ),

X21 X22

M11 M12
M=

M21 M 22

M21

M22

M11
M'=

B11 B12

In the case of time-reversible systems we have

(aa)M'=M(aa),

(30b)

i coM12 l
(37)

co i AM—» det(M, )
(M, )

i ci)M21

and

det(M, ) = co [co i cu T—r(M )
—det(M ) ] . (38)

The expression in square brackets of Eq. (38) is very simi-
lar to the eigenvalue equation of M:

The contents of the first set of square brackets on the
right-hand side of Eq. (36), called for convenience
(M, ) ', is now

cO l cOM22

B=
B21 B22

Eq. (17) becomes

x 11 x 12 M11 M21 M11 M12 x 11 x 12

X21 x22 M12 M22 M21 M22 x21 22

(30c)
A,

—
A, Tr(M)+det(M)=0,

Tr(M)=A, , +A~=r, '+r2 ',
det(M) =A, ,A2=(r, r~)

r) 2
=

—,
' [(M)) +M22)+Q(M))+M2q) —4det(M)],

(39a)

(39b)

(31)

x 11M21 +x 12M22 x 12M11 +x 22 M 12 (32)

which is always true for the diagonal elements. The off-
diagonal products yield

(39c)

where r, and r2 (the time constants we are interested in)
are the reciprocal eigenvalues of M. In the case of Eq.
(38) we have as solutions

2M12 0 X 11 11

M11 ™22 M12 x 12 B12

2M21 2M22 22 22

(33a)M21

0

From Eq. (6) we obtain three equations in the three un-
knowns x 11,x 12,x 22.'

2M11

l S—'T1, 7 2 )

and Eq. (38) becomes

det(M~)= co (ice r) ')(—ice r2 —'), —

T17 2
[det(M& ) ]

co (1+icur& )(1+icor2)

(40)

(41a)

(41b)

which can be put in the short form

MX=B . (33b)

Similarly, we get for the contents of the second set of
square brackets on the right-hand side of Eq. (36), called
for convenience (Mz )

The determinant of the matrix M is given by
det(M)=4det(M)XTr(M) and is nonvanishing since M
is positive definite. Tr(M) represents M»+M22. This
means that

CO +tCOM22

where (detMz)
' is now

—
1 COM12

, (42)
icoMz, —co +icoM» det(Mz)

X=M 'B .

We now substitute the solutions x," in the reversibility
condition given by Eq. (32). The following results:

+1+2
[det(Mz ) ]

co (1 tear, )(1—tcorz)—

Substituting into Eq. (36):

(43)
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G —2' Re '

cO
—t cOM22

i cOM21

co +icoM22l NM12 —i COM12 ~1~2

o) t o—)M11 —
L coM21 co +1 coM11 co ( I +co r2 )( I +co r2)

(44)

The last term is always real and can be put in front of the
real-part operator. After multiplication and noting that
M;. and B;.are real, we have

G„„G„p
G=

Snn Snp
=Re

Sp„Spp
(45a)

gnn gnp—2
(I+to H))(1+co r2) gpn gpp

2122 Snn Snp

(I+'r1)(I+to'r2) . p~

where

gnn ~ B11+ 22~11 ™12B22 22M12B12
2 2 2

g„p =gp„=to 812+(M11M22 ™12M21)812
—(M22M2, 8, 1 ™1,M12822 ),

gpp 22 M 11 22 21 11 11 21 12
2 2 2

(45b)

(45c)

(46a)

(46b)

(46c}

C. Time relationships and reversibility

It is interesting to see what we neglect by taking the
real value in the definition of G. The diagonal elements
s„„and spp are real so that in this case (autocorrelation)
we do not make any approximations. Furthermore, it is
plausible that autocorrelation terms yield a real spec-
trum. (We should recall the meaning of an imaginary
spectrum or quantity. We find imaginary power only in
the presence of time relationships, time delays, or phase
shifts due, for example, to capacitive or inductive ele-
ments in a circuit. These time "shifts" do not dissipate
power, they just transfer it to different positions in space
or time. )

Even more interesting is that the nondiagonal elements
(related to the cross-correlation between electrons and
holes) have an imaginary part but only if the system is not
time reversible:

Ims„p =i
co [(M11—M22 )812+M12822 —M21811 ]

[see Eq. (35)). s„=s*„have imaginary parts which are
equal and opposite.

This confirms our interpretation of the imaginary part
being related to time relationships, to an "arrow of time. "
It does not matter here whether it points to the future or
to the past. It points somewhere and it cannot be re-
versed. The imaginary part of the cross-correlation term

D. Frequency dependence of the noise spectrum

The current noise spectral density is given by
'2

[b G„„(to)+2bG„p(co)+Gpp(to) ],
bn +pG,(~)=

(48)

where n and p are the electron and hole densities, respec-
tively, I the steady-state current value and b (in most
cases) the ratio of the electron and hole mobilities IM„/pp.
[For a derivation of Eq. (48) see the Appendix. ] By sub-
stituting Eqs. (45) ad (46) into (48) we get

Z (to)
Gr(to) =

2 2 Gto
( I+co H&)(1+co r2)

(49)

where Z is a second-order polynomial with no linear
term,

and

Z(co) =c2co +c11 (Soa)

Gro=
I

bn +p 2122 (50b)

The form of the noise spectrum depends on the
coefficients co and c2 and their relationship to the time
constants ~1 and ~2. In the following we assume ~1 «2.
We can also write Gt (co ) as

stands for the Qow of time in our model. It is time spent
without noise-power dissipation, i.e., time spent waiting
for a causal relationship to happen. For example, the
trap needs to capture an electron which only then can
recombine with a hole. Again, the fact that the imagi-
nary parts of s„and s „are equal and opposite supports
this time model. There is an (captured} electron in the
past of a (recombining) hole, just as there is a (to-be-
captured) hole in the future of a (to-be-recombined) elec-
tron. The overlap of their existences is equal in magni-
tude and opposite in sign. (We have assumed so far that
the short time constant be associated with a fast capture-
emission interaction between the deep level and the con-
duction band, but everything would still hold exchanging
the role of holes and electrons. )

In thermal equilibrium the carrier populations adjust
exactly in the way given by detailed balance; time does
not play a role anymore. Every process can be reversed
and is actually defined by the fact that it can be reversed.
No imaginary part appears in the fluctuation spectra in
this case since Eqs. (47) and (35) are identically zero.
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K1 E2
Gi(co) = +

I+co 2 1+co2r2

where E, and K2 satisfy

+1++2 COGIO

K I r2 +E2 r 1
=C 2 Gip

(51)

(52a)

(52b)

C2 CP7j

~ Gio
2 1

cpr2 c2
2 p p Io~

2 1

(53a)

(53b)

Usually K2 & 0, but there is a possibility (given by the
cross correlation as we shall see) that E2 may be negatiue
depending on the defect parameters

C2
E2 &0—r2&

CO

where

(53c)

C2 —b B11+2bB12+B22

co = b (M228 )& ™)28222M 22M] 28 ]2 )+2b [(M) ]M22 ™)2M2&)8 )2 (M22M2]8 ] ]™]]M]2822 )]

+(M f,822+M2, 8„—2M„M2, 8,2) .

(S4a)

(54b)

All M;J and 8;j are positive except for 8,2. As we can see, the cross-correlation terms (coefficients of b) are negative.
As in Ref. 9 we can argue that an increase in the number of minority carriers causes a decrease in the number of majori-
ty carriers because recombination becomes more effective: G„&0.

The c's and the K's depend in a complicated way on the steady-state carrier densities [see definition of M;1 and B,~ in
Eqs. (28) and (29)] which are in turn a function of the defect parameters and of external experimental conditions such as
temperature, voltage, and illumination intensity, amongst others; i.e.,

cp "ss ass E„NT,I2„lp~; T, P„s„„I~I,) . (55)

Gi(co) =Z (co)P, (6) )P2(ci) )Gip,

Z(co) =c2co +co =c2(co +fo) =c2Z (co),

1 1 1 1
P, 2(co) = = = P, 2(co),0

I+& HI2 212 M +f12 212

where fo =cplc2 and f f 2
= 1 lr, 2.

GI can then be written as

G,(~)=G,(0)Z (~)P, (co)P, (co),

(S6a)

(56b)

(56c)

(56d)

where GI(0) represents the amplitude of Gi(co) at zero
frequency and the other three factors determine its fre-
quency behavior. Since we already chose f, &f2 there
are three possibilities of ordering fo (see Fig. 1):
Case (a),

fo&fi &f2 .

Case (b),

f& &fo&f2 .

Case (c),

fi &f2&fo .

(57a)

(57b)

(57c)

Case (b) has been observed in diff'erent physical systems,

What do we expect as a noise spectrum on a double
logarithmic scale? For this it is easier to look at G as a
product of three functions and a constant:

in photoconductive cells such as PbS, PbSe, PbTe,
semiconducting materials such as CdS, ' and in
A1~Ga, ~As/GaAs as well as In& „Ga„As/InP hetero-
structures. ' Case (c) shows the results of a negative
superposition of Lorentz spectra as given by Eq. (53c). In
Eq. (57c) fo is the smallest of the frequencies appearing
in Gi(co). In this case Eq. (53c) is satisfied and E2 is neg-
ative.

V. NUMERICAL SIMULATIONS AND COMPARISON
WITH EXPERIMENTS

We see from Eq. (55) that the coefficients K, and E2
depend on several defect parameters and on the experi-
mental conditions. Once these values are set it is possible
to calculate the noise spectral density according to Eqs.
(28), (29), and (51)—(54). Through proper choice of the
parameters in our simulation program we were able to
observe the appearance of a maximum in the current
noise spectra as shown in Fig. 2 (the values of the param-
eters are reported in Table I). All parameters were left
unchanged except for the electron concentration n which
was varied between 10 and 10 cm . For the lower n

values the common Lorentz superposition is found [see
Fig. 1(b)]; the higher n range shows a simple Lorentz
spectrum. Very uncommon, however, is the behavior in
the region around 10 cm where a broad maximum
arises.

The electron concentration in a semiconductor can
vary over orders of magnitude depending on doping and
voltage, especially within space-charge regions. The
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FIG. 1. Double logarithmic representation of the normalized
current-noise spectra Gr(co)/Gl(0) for different values of the
zero frequency fo: (a) fo&f, &f2, (b) f~ & fo& f2, (c)
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In Fig. 3 the numerical fit of photocurrent noise mea-
surements on Inp53Gap47As/InP heterostructures un-

der illumination with 1.3 pm monochromatic light is
shown. The voltage range corresponds to the region of
onset of the photocurrent when the border of the space-
charge region crosses the heterointerface and the electric
field reaches into the light-absorbing material
(Inp53Gap47As). The fit parameters are the time con-
stants r„rz [Eq. (40)] and the amplitudes E„E2 [Eq.
(53)] as they appear in Eq. (51) with a negative K2 value
(i.e., we assume a negatiue superposition of Lorentz
curves). Very good agreement is found with the proposed
theory. Moreover the experimental conditions corre-
spond to the theoretical assumptions of a steady state far
from thermal equilibrium without time reversibility.
Even the low values of n found in the above calculation
can be satisfied in the space-charge region around the
Inp 53Gap 47As/InP interface. Nevertheless the
knowledge of just four empirical fit parameters does not
allow a unique determination of the seven physical pa-

IIIII I I I 1IIIII I I I IIIIII I I I )IIIII I I I 1IIIII I I I IIIIII I I I

10 10 10 10 10 10
Frequency (Hz)

FIG. 2. Numerical simulation of Gl(co) at 172 K (parameter
values in Table I) using Eq. (48).

presence of a noise maximum within a very narrow range
of n values shows how sensitive correlation efFects can be.
In this region E2 is negative and we find a subtraction of
the Lorentz spectra. We also point out that time reversi-
bility does not hold in this case. Equation (35) does not
yield zero for the chosen set of parameters, in agreement
with our assumptions.

Electron capture coefficient c„
Hole capture coefficient e~
Light power y
Electron steady-state concentration nss
Hole steady-state concentration pss
Temperature T
Recombination center energy level Ec—E,
Recombination center concentration NT
Mobility ratio p /pp

10 "cm/s
10 cm /s

1013 s
—1

10 —10 cm
10" cm-'

172 K
300 meV

10' cm
10'

TABLE I. Parameter values for the numerical simulations
shown in Fig. 2.
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FIG. 3. Maxima in current-noise spectral density as function
of reverse bias. Points: experimental results; solid lines: fit of
the experiment with Eq. (51) (bold line as noise reference just
before saturation); inset: interface state as electron trap (~1 ) and
hole trap (~2) in the band gap.
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rameters of the system. Independent measurements are
needed in order to reliably determine the defect parame-
ters.

We note that in our work, a negative superposition of
Lorentz spectra has been theoretically predicted and ex-
perimentally observed in generation-recombination
current noise in a nonreversible steady state far from
thermal equilibrium. The cross-correlation term is re-
sponsible for this effect and offers interesting insights into
charge-carrier behavior in semiconductors with energy
states within the band gap, including the determination
of defect parameters and a better understanding of device
characteristics.

aF(x, t) a . aF(x, t)
J +~O~r J +~O~r

at Bx Bt

BF(x,t) I(t)
J+&O r

(A la)

(A lb)

According to the generalized Ramo-Shoe kley
theorem and to the derivation of Kuhn et al. (Appendix
A of Ref. 31) it is possible to show that the displacement
current does not appear in the outside circuit if, as in our
case, the voltage V is kept constant. For the case of the
electron current

VI. CONCLUSIONS
I (t) 1 L ()F(x t)

A L p
" ' " t}t

=—f j„(x,t)+epe„' dx (A2a)

We have presented a model for the determination of
the current-noise spectral density in a two-variable sys-
tem in nonequilibrium steady state without the assump-
tion of time reversibility. While it is common to calculate
the noise power just from the autocorrelation function of
the system through a Fourier transform, in this case the
cross-correlation term between electrons and holes plays
a decisive role and cannot be neglected. The carrier
reservoirs do not fluctuate independently of one another
if the presence of defects in the forbidden gap offers a
connection path between them. The electron-hole recom-
bination process via deep levels is the physical realization
of the connection (cross correlation) shown in the
mathematical model. Moreover it justifies the assump-
tion of no time reversibility, since it is a process with a
definite time direction. Negative contributions to the
overall noise power were found depending on the defect
parameters and lead to an anomalous maximum in the
noise spectra. Experimental results from
Inp53Gap4&As/InP heterostructures show good agree-
ment with our theory. We then conclude that a negative
superposition of Lorentz spectra has been theoretically
predicted and experimentally observed in generation-
recombination current noise.

r}F(x,t)
en (x, t)vd" (x, t}+epe

' dx

(A2b)

=—f en (x, t)vd(x, t)dx
L O

1 8 L BV+—pop — dx
L ' Bt o Bx

(A2c)

we can see that

L c}—f dx F(x, t)= —V(t)=0 .
Bt o

' Bt
(A2d)

eAI„(t}= n (x, t)ud(x, t)dx,
L o

(A3)

Here vd is the electron drift velocity, F the electric field,

eo and e„ the vacuum permittivity and the relative static
dielectric constant, respectively, and L the length of the
sample under consideration.

Equation (A2d) shows that the current I„(t) can be
written as
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which is only a function of the number and velocity of the
particles.

The fluctuation of the current I can therefore be writ-
ten as

APPENDIX

E„I(t)= [N(t)u„"(t) (N(t)ud(t)) ]— (A4}

To derive Eq. (48) it is important to make clear the
sources of fluctuations that affect the current I(t) Ny-.
quist' showed that in the absence of external bias, detect-
able fluctuations are only thermal in origin. Since we ig-
nore these fluctuations and apply no external voltage in
the y and z directions we need only consider fluctuations
in the x direction, as we only apply a bias in this direc-
tion. We shall also assume in the following a constant
cross section A of the sample. The current density can
then be considered as a constant across A and may be
written as a time-dependent quantity only:

[bN (t)( vd ) + ( N )hvd(t) ],L
(A5)

where we have neglected second-order fluctuations (Ap-
pendix B of Ref. 31). For the description of generation-
recombination noise, we can neglect the velocity fluctua-
tions since their relaxation time is much faster than the
processes under consideration (generation-recombination
processes take place in milliseconds to microseconds
whereas particle moments relax within picoseconds). For
the electron current we can therefore write, keeping only
the first term in the square brackets of Eq. (A5),
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EI„(t)= [bN(t)( vd )],
and similarly for the hole current

((EI) ) =a [b ((bN) )+2b(bN bP )+((hP) )],
(Al 1)

where

bI (t)= [bP(t)(vg)] .

For a total current I(t)

(A6b) I2
Q

(bN +P)
(A12)

I(t)= [N(t)v~(t)+P(t)vg(t)],eA
L

the total fluctuation is then

bI(t)= [bN(t)(vd")+bP(t)(vdt')] .
L

This means we can write I and EI in the forms

I =a (bN +P),

EI =a(bhN +hP),
where

a = (vg)
eA
L

(A8)

(A9a)

(A9b)

(A10a)

Gt(ro)=a [b G„„(to)+2bG„~(a&)+G~~(to)]

I2
[b G„„(cv)+2bG„(ro)+Gz~(co)] .

(bN+P)

(A13a)

(A13b)

Equation (A13b) is identical to Eq. (48) used in Sec. IV,
except for the use of particle numbers instead of densities.
This dift'erence is only important when comparing ampli-
tudes of simulations and experimental data, but is not im-
portant in a general consideration on frequency depen-
dence as is the case in Sec. IV D.

The general definition of b in Eq. (A10b) can be easily
shown to be

Since the Fourier transform is a linear operator, the
current-noise spectral density maintains the same form of
a relationship as given in Eq. (Al 1) and we write

and

(A lob)

p,„dE„/dx p„b= or b=
p~ dE idx p

(A14)

The variance is given by
depending on the Fermi energies as in Refs. 10 and 12 to
which we refer in our text.
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