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Computer experiments have been performed to study the single-particle density of states, g (E), in the
Coulomb gap. This gap occurs in disordered insulating systems as an effect of the long-range tail of the
Coulomb interaction. In order to compare these numerical results with the analytical theory on a
broader energy scale than previous authors, very large samples have been considered, up to 40000 and
125000 sites for dimensions d =2 and 3, respectively. Special algorithms have been developed for this
aim. Our numerical results contradict the analytical theory from the literature in two main points: As
E —pu, the numerical values for g(E) are considerably smaller than the analytical predictions, and
universality with respect to disorder is not present. It could not be decided finally whether or not
g(E —p) follows a power law, g (E)~ |E —ul|*. Provided it does, the simulation results, v=1.2+0.1 and
2.61+0.2 for d =2 and 3, respectively, deviate from the analytical prediction, v=d —1. Moreover, as a
first approach to the polaronic transport problem, the influence of relaxation down to stability with
respect to all simultaneous two-electron hops is studied. In this case, g(E) is diminished, but not
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changed qualitatively. In particular, the exponential behavior analytically predicted is not observed.

I. INTRODUCTION

The Coulomb gap is a long-range correlation effect
occurring in disordered insulating systems, such as light-
ly doped crystalline semiconductors or amorphous semi-
conductors, at sufficiently low temperatures; for reviews
see Refs. 1-3. Its significance for granular metals is dis-
cussed controversially.* The Coulomb gap can directly
be detected by tunneling® and possibly also by photoemis-
sion measurements.® Moreover, it has a pronounced
influence on the temperature dependence of the conduc-
tivity in the variable-range-hopping region.”8

The first theoretical papers on the influence of the
Coulomb interaction on the density of states near the
Fermi energy appeared two decades ago. Pollak and
Srinivasan showed by means of analytical studies that the
density of states exhibits a minimum.® This result was
corroborated numerically by Kurosawa and Sugimoto.'°
Efros and Shklovskii’ pointed out that the long-range
tail of the unscreened Coulomb interaction induces a
pseudogap in the single-particle density of states g (E) at
the Fermi energy p. This means g (E) tends to zero as E
approaches y, but g =0 holds only for E =pu. They con-
sidered a semiclassical model of a dilute impurity band of
a semiconductor, viz., a disordered system of localized
states without quantum interference,

H=Ygn+1 3 ezn,-nj/(K1x,-—xj|) , (1

i ij5i#
where n; denotes the occupation number, n; € {0, 1}, for
an elementary charge e, located at x;, and where « is the
dielectric constant. (In this description, for n-type semi-
conductors, n; =1 corresponds to an empty, i.e., ionized
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donor.) The random potential ¢; arises from fixed
charges at random positions (e.g., acceptors in n-type
semiconductors) and from short-range disorder (in partic-
ular, in amorphous semiconductors). This model is appli-
cable, if (i) the decay length of the localized states is small
compared with the nearest-neighbor distance of the im-
purity atoms, and if (ii) the temperature is sufficiently low
so that screening, e.g., by electrons excited to the conduc-
tion band, can be neglected.

The model (1) should permit the study of static proper-
ties of the low-lying metastable states. But it does not de-
scribe any dynamics; hopping rates have to be phenome-
nologically included in transport studies. In the follow-
ing, we shall restrict ourselves to the investigation of
zero-temperature static properties.

The single-particle energy E;, which is needed to bring
a charge e from infinity to x; without allowing for a
simultaneous rearrangement of the charges on the other
sites, results from the relation
_ SH{nk} _ 2
_T—¢;i+ > e nj/(K|x,~-—xj|). (2)

i JiiF

E;{n}

It should be noted that the values of E; depend on the full
set of occupation numbers, {n,}. The single-particle
density of states g (E) is given by the probability distribu-
tion of the values of E;.

As in spin glasses,!! the macroscopic properties of real
physical systems, described by (1), are determined by
low-lying metastable states. These states are highly de-
generate. For an isolated system, the excitations of
lowest complexity are one-electron hops. By a qualitative
analytical consideration, Efros and Shklovskii showed for
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two- and three-dimensional systems that the stability
with respect to one-electron hops implies the following
asymptotic behavior of g (E) as E —pu:

g(E)=ay(k/e?)|E —pl? 1, 3)

where d denotes the dimensionality and a, a dimension-
less constant. To be more precise, Efros and Shklovskii
obtained this expression as an upper bound on g. By use
of a self-consistency argument, they concluded that g
should have just this value.

Efros'? confirmed the above result by means of a more
elaborate analytical theory. He obtained a so-called self-
consistent equation,

g(E"dE"'

()
(|E|+E")

g(E)=goexp Cdfo

where E=E—pu, C,=me*/(2«?), and C;=2me®/(3k°).
Roughly speaking, the prefactor g, denotes the density of
states with the Coulomb interaction switched off. The
solution of this integral equation obeys the relation (3) as
E —pu, where the constants a, are given by

adzd/‘lT, (5)

cf. Ref. 13. It should be stressed that the asymptotic be-
havior [(3) and (5)] is universal, i.e., independent of g,.

Bounds on g(E) arising from stability with respect to
(simultaneous) two-electron hops were analytically stud-
ied by Efros'? and Baranovskii, Shklovskii, and Efros.13
The latter authors obtained exponential behavior for
d=3,

g(E)~exp[—vyy/(Iny)/*], y=A/|E —ul, (6)

where y is a dimensionless constant and A denotes the
width of the Coulomb gap. The question of the influence
of two-electron hops and even more complex excitations
is closely related to the polaron transport problem. The
role of dressed charged excitations has been discussed
controversially in the literature.> 14717

The analytical investigations mentioned above have
been tested by a series of computer experi-
ments.'471618721 part of this work studies a simplified
model, where the sites form a regular lattice and the dis-
order arises from stochastic energy shifts of the individu-
al sites. All computer studies yield the same result quali-
tatively: Stability with respect to one-electron hops
causes the occurrence of a Coulomb gap, and g (E) seems
to be universal as E —pu. However, considerable quanti-
tative differences between the g (E) dependences calculat-
ed are present: For d =3, Baranovskii, Efros, Gelmont,
and Shklovskii'* obtained a quadratic E dependence,
coinciding with Eq. (3), whereas Davies, Lee, and Ricel®
obtained a steeper g (E), possibly a clue to exponential
behavior. Therefore, it is not clear if the self-consistent
equation (4) can be justified by numerical simulation.

It seems to be useful to compare the two- and three-
dimensional cases with the one-dimensional problem at
this point. Both the numerical simulation?? and the
analytical self-consistent equation method?® yield a loga-
rithmic dependence,
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—_— 7
In(E./|E —ul)’ 7

g(E)=

where g, and E, are nonuniversal parameters. Neverthe-
less, g (E) is considerably overestimated by the analytical
study.

Considering the above points of view, one cannot re-
gard as satisfactory the usual knowledge on the density of
states within the Coulomb gap. The aim of the present
numerical simulations is threefold.

(a) To perform a comparison with analytical theory on
a broader energy scale than previous authors.

(b) To elucidate the contradiction between the investi-
gations by Baranovskii, Efros, Gelmont, and Shklovskii'4
and Davies, Lee, and Rice!>—in the following referred to
as BEGS and DLR—.

(c) To study the influence of additional stability with
respect to two-electron hops on the density of states.

We developed relaxation algorithms, based on the
branch-and-bound method known from combinatorial
optimization.?* "2 These algorithms allow the study of
larger systems and, in this way, an extension of the ener-
gy region where reliable results on g (E) can be obtained
to smaller values of |[E —ul|. For early versions of the
present investigation see Ref. 21.

Our report is organized as follows. The model is intro-
duced in detail in Sec. II. The relaxation procedure is de-
scribed in Sec. III. Our numerical results are presented
in Sec. IV, and conclusions, in particular those concern-
ing analytical theories and transport, are discussed in Sec.
V.

II. THE MODEL

We consider a d-dimensional simple cubic lattice of L ¢
sites, localized at x;,'#!> where the lattice constant is
denoted by a. A dimensionless description is used, i.e.,

=1, e=1, and k=1. The occupation numbers of the
sites n; take the values O and 1 only. The mean filling fac-
tor of the sites, n; /L 4 is denoted by K. The disorder is
simulated by a stochastic potential ¢;. The values of the
@; are uniformly distributed between —B /2 and B /2;
they are uncorrelated. Let the Coulomb interaction ener-
gy of charges e at sites i and j be f;;. We restrict our-
selves to the case of low impurity concentration with the
only exception of Sec. IVE. That means we assume the
nearest-neighbor distance is large compared with the ra-
dius of the localized states, so that f;;=1/|x;—x;|. In
order to establish electroneutrality for the sample con-
sidered, we attach a charge —K to each site. Thus we
have

H= 2<p,n+ > fi(n;

i,j;i%j

—K)n;—K) . ®

Within this approximation, the states of H are character-
ized by the full set of occupation numbers, {n;}. Note
that Eq. (8) is equivalent to Eq. (2) of BEGS for K =1
In this case, the Hamiltonian is invariant with respect to
the transformation n;, —1—n; and the single-particle den-
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sity of states is symmetric about u.

The question of boundary conditions is very important
for the convergence of simulation results as L — .
BEGS (Ref. 14) used free boundary conditions, where the
surroundings of the sample studied are fully neglected,

d
fij=1/r; with ri§-= Z(Jcﬁ’[—xﬁ‘j)2 . 9
B=1

These free boundary conditions have the disadvantage
that sites close to the surface “feel a lower dimensionali-
ty” than sites deep inside the sample. In order to
suppress this surface contribution, we adopt the periodic
boundary conditions introduced by DLR.!> That means
we consider our sample as an elementary cell of a repeat-
ed lattice and assume that the interaction energy of two
sites is determined by the shortest distance between them
within this repeated lattice,

d
ri=3 (min{lxg, —xp;|,L —|xg,—xg;[})*. (10)
B=1
In this way, all sites are equivalent; they seem to be posi-
tioned in the middle of the finite sample.
The fluctuation of the Fermi level of isolated samples is
a further finite-size effect, which limits the accuracy of
computer simulations. In particular, sufficient statistics
can only be reached by averaging a certain number N, of
samples, since the computational effort increases very fast
with L. This problem was dealt with in the literature in a
rather artificial way, by so-called simple averaging or by
u averaging.'* In the first case, the density of states is
calculated by simply adding the spectra of the individual
samples, whereas the second method includes a shift of
each individual spectrum to adjust the Fermi energy be-
fore adding the spectra. DLR took p as mean of the ran-
dom @;,'® but this idea is only applicable if K =1 We
approach this difficulty by considering the grand canoni-
cal Hamiltonian,

h=H—p3¥n;, (1

instead of H, which significantly reduces the correspond-
ing numerical errors. That means, we use relaxation pro-
cedures allowing not only for energy exchange with a
heat bath but also for particle exchange with a reservoir
at infinity, which fixes the chemical potential u. Howev-
er, the parameters u and K are not independent of each
other in this scheme. The electroneutrality condition,

<2 nf>“ =KL?, (12)

has to be fulfilled, where the angular brackets denote en-
semble averaging.

The single-particle energies e; of the grand canonical
Hamiltonian 4 are

e =E,—p=¢;+ 3 fiy(n,—K)—p, (13)
kel
where E; denotes the single-particle energies of H. The

energy e; is needed to bring a particle from the reservoir
at infinity to an empty site i/ where the occupation of all
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other sites remains unchanged; it is gained when a parti-
cle is removed from an occupied site i. Note that during
this process the single-particle energies of all other sites j
are changed by f;; or — f;, respectively. The aim of our
simulations is the calculation of the single-particle densi-
ty of states g(e).

Now we turn to the hierarchy of conditions determin-
ing the ground state of 4 according to the demand that
every rearrangement, charged or uncharged, must be ac-
companied by an increase of 4. Thus the ground state
must be stable with respect to the following rearrange-
ments.

(i) Single-particle exchange with the reservoir, i.e.,

n,=1 = Ah=—¢;>0
and
n;=0 = Ah=¢;>0. (14)
(ii) Single-particle hops within the system, i.e.,
n,=1, n;=0 = Ah=e;—e;,—f;>0. (15)

[This condition can easily be understood by decomposing
the single-particle hop into two steps: (a) moving a parti-
cle from site / to infinity (Ah, = —e;), where e; is
changed to e;— f};, and (b) moving it from infinity to site
J(Ahy=e;—f;;).]

(iii) Excitations composed of one single-particle ex-
change with the reservoir and one single-particle hop

within the system, i.e.,

n=n;=1, n=0 (i#j)
= Ah=e¢,—e;—e;+fii—fu—fix>0, (16a)
and
=1, n;=n,=0 (j#k)
= Ah=e;te,—e;+fu—fij—fu>0. (16b)
(iv) Two-particle hops within the system, i.e.,
n=n;=1, n=n=0 (i7j,k#l)
= Ah:ek+el“ef“ej+fij+fkl“fi
—fu—Sfu—Sfu>0 . (17)

(v) Etc.

This hierarchy also permits a natural classification of
the metastable states with respect to their decay rates. In
fact, the transition probability to another state of lower
energy decreases exponentially with the number of parti-
cles involved. This is the reason why the physical proper-
ties of disordered systems at low temperatures are deter-
mined by highly degenerate but “frozen” metastable
states rather than by the ground state. Moreover, these
states are macroscopically identical (the number of *“exot-
ic,” highly symmetric states has zero measure). Hence, it
should be sufficient to consider only the first levels of the
hierarchy above. The highest degree of metastability tak-
en into account in our simulations corresponds to condi-
tion (iv).

The conditions (iii), (iv), etc. seem to be related to the
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polaron problem.® In our opinion, however, this difficult
dynamical problem lies beyond the scope of the model
studied. In order to simulate polarons, one has to relax a
certain surrounding of the site considered. The delicate
question is the choice of the permissible rearrangements.
To take, e.g., the full set for an isolated system, viz., (ii),
(iv), etc. would mean the relaxation to the ground state of
this isolated system, where Akh =p is independent of the
site considered, which would be unphysical. DLR take
into account only an additional relaxation via single-
particle hops after a particle has been added to or taken
away from the system. But compact two-particle hops
should not be less probable than two successive long-
range one-particle hops. The situation concerning more
complex excitations is similar. Therefore, we believe that
it is not justified to define ‘“polarons” within the poor
models (8) and (11), and we restrict ourselves to the inves-
tigation of classes of low-lying metastable states fulfilling
certain of the conditions given above. Nevertheless, some
useful information concerning polaronic transport should
be obtained in this way.

Condition (ii) implies a further finite-size effect: Since
all f;; exceed a certain bound, 8, =2/(Ld 172), the lowest
empty and the highest occupied state of any finite system,
stable with respect to single-particle hops, are separated
at least by an artificial hard gap of width 6. It is obvi-
ous that 8, is a lower bound for the energy region of reli-
ability of the simulation results for g (e).

III. RELAXATION ALGORITHM

The determination of the ground state of the Hamil-
tonian (11) belongs to the class of the so-called NP-
complete optimization problems.?’ For such problems, no
algorithm is known which yields the optimum with an
effort proportional to any power of the system size. For
large systems, one has to look for some kind of approxi-
mate solutions. Usually, relaxation procedures are ap-
plied, which generally yield only some low-lying metasta-
ble state. Nevertheless, these metastable states should be
the physically interesting ones, cf. above.

A natural relaxation procedure consists of three parts:
Start from a randomly occupied system, thermalization

according 19-the Metropolis-algerithm?® at 2 temperature- -

large compared to Coulomb and disorder energies, and
cooling down to zero with the temperature being dimin-
ished according to some schedule. This procedure is
known as simulated annealing.?® It was applied to the
Coulomb glass problem by Summerfield, MclInnes, and
Butcher.?’ It should be stressed that the final state de-
pends on the cooling rate and on the “complexity” of the
rearrangements taken into account. Its energy expecta-
tion value decreases with increasing relaxation time, as
well as with increasing complexity.

From this point of view, our algorithm can be de-
scribed as follows: Start at 7= o (random occupation)
and relaxation by contact with a heat bath at T=0
(highest possible rate). The final state depends on the
transformations considered within the relaxation steps,
cf. the hierarchy given in Sec. II. It turned out that the
relaxation path is of minor influence.
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First, we consider only the relaxation down to stability
with respect to the conditions (i) and (ii), as introduced in
Sec. II. Numerical experience shows that the number of
relaxation steps is roughly proportional to the sample
size L% One relaxation step consists of two parts: (a) the
search for a transformation diminishing 4 and (b) the re-
calculation of all e¢; and change of n;. The crucial part
with respect to the performance of a program is (a). Us-
ing the BEGS algorithm, viz., relaxation via the first en-

ergy diminishing pair found, the total CPU time needed

for this search is proportional to L% up to some loga-
rithmic corrections. Nearly the same holds for part (b).
However, the prefactor for (a) is comparatively large.
Moreover, it seems to be impossible to parallelize
effectively (a) contrary to (b).

DLR used in each relaxation step the rearrangement
with maximal energy gain. The simplest such programs
require a total effort proportional to L3¢ (L% per step).
DLR avoided unnecessary tests to a large extent. Possi-
bly they used ideas similar to those described below. In
that case, the total CPU time for (a) would be proportion-
al to L%, up to logarithmic corrections. But the prefac-
tor should considerably exceed that of the BEGS algo-
rithm.

We followed BEGS in performing the first # diminish-
ing rearrangement which was found in each relaxation
step. The search for it, i.e., (a), was greatly speeded up by
constructing a branch-and-bound-type algorithm. This
algorithm needs a total CPU time roughly proportional
to L¢InL for (a). However, the corresponding prefactor
is comparatively large. Nevertheless, the recalculation of
the e;, which needs a total effort proportional to L%, is
expected to be the most expensive part for sufficiently big
samples.

Now, let us consider relaxation down to stability with
respect to conditions (iii), etc. We performed the relaxa-
tion “levelwise”: First, the sample is relaxed with respect
to (i) and (ii). After this, an 4 diminishing 3-site rear-
rangement is searched for. As soon as one is found, it is
performed, and, moreover, the sample is relaxed concern-
ing (i) and (ii). Then, an A diminishing 3-site rearrange-
ment is searched for, and so on.

For the search within the set of p-site excitations, the
simplest.programs. nesd.a-total.effort. preportional 1. 127 .
(up to logarithmic corrections). Thus, at first glance, it
seems hopeless to investigate samples of reasonable size
with respect to (i)—(iv). However, as in the previous case,
the search could enormously be speeded up by use of
branch-and-bound-type algorithms. Again, the effort for
searching in the highest level of the hierarchy considered
turned out to be roughly proportional to L“nL, but the
prefactor increases fast with the complexity of the rear-
rangements.

The basic idea of branch-and-bound algorithms,
developed originally for the exact solution of combina-
torial optimization problems, can be visualized in the fol-
lowing way. Consider a transformation changing the oc-
cupation of p sites of a state s'*). The number of all such
rearrangements is of the order L. The formation of
them can be visualized as the construction of a tree. This
tree roots at s and includes p subsequent branching lev-
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els, where O (L?) new branches arise from every branch-
ing point, s,-‘k’ with £=0,...,p—1, so that
card{s,-(kk) } =0 (L*), cf. Fig. 1(a). Appropriate inequali-
ties on the values of 4 for all those states s”’, which can
be reached by starting at a certain branch, permit mostly
the search for “better” states to be terminated at an early
stage of the evaluation of the corresponding subtree. A
further improvement can be reached by an appropriate
ordering scheme for the branches starting from the same
point, cf. Fig. 1(b).

Kobe and Hartwig?® used a branch-and-bound algo-
rithm for the exact determination of the ground state and
of all low-lying excitations of a spin-glass cluster. Unfor-
tunately, such investigations can only be performed for
fairly small samples, at present less than roughly 100
sites. Nevertheless, the branch-and-bound idea proves to
be useful also for the consideration of very large systems,
where it can be utilized for complex relaxation steps in
approximation procedures.?

We turn now to the practical realization of this idea for
the relaxation down to states which are stable with
respect to conditions (i) and (ii). Let M, be the set of all
single-particle exchanges with the reservoir, M, the set of

(a)

(0)

A2

\\\
-
\\\\

.

T~

~ gt
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(2

5[31
13

/ /

FIG. 1. Examples of branch-and-bound trees: (a) evaluation
of all 3-site excitations, and (b) ‘“horizontal” elimination by
means of an ordering scheme.
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all single-particle hops within the system, M, , the set of
all nearest-neighbor single-particle hops within the sys-
tem, M, , the set of all next-nearest-neighbor hops, etc.
The values of the Coulomb interaction energy, related to
nearest neighbors, next-nearest neighbors, and so on, are
denoted by f,f,,. ... The relaxation down to states be-
ing stable with respect to M; UM, is performed stepwise.

(1) Only M, is considered at first. We start at a ran-
domly chosen site and check for this and, if not success-
fully, for the other sites in succession, whether a particle
exchange between that site and the reservoir diminishes
h. If so, the occupation is changed and all ¢, are recalcu-
lated. Then we randomly choose a new site and so on.

(2) After stability with respect to M has been reached,
we turn to M; UM, , and relax the system analogously to
step (1). At this stage, we check a considered site i at first
with respect to M,. After this, only if n;=0 and ¢; < f,
we take into consideration all nearest neighbors j and
check whether n;=1 and e; —e; — f, <0. The idea is that
the latter inequality cannot hold if e; > f, which enables
many of the “nearest-neighbor tests” to be skipped.

(3) The next step 1is the consideration of
M,UM, UM, ,. After checking analogously to step (2)
the site i with respect to M, UM, ,, we ask whether
n;=0 and e¢; = f,. A check with respect to M, , is per-
formed only if this condition is fulfilled. Note that the
latter inequality presupposes e; < f,. Thus, if a site can
be eliminated from the consideration of M, ;, a search
within M, , is useless and can be skipped.

(4) Etc.

The search with respect to M;UM, U --- UM, is
accompanied by tabulating all sites with »n;=0 and
e; = fr+,- Performing the transition to the next level of
our relaxation procedure, we have to consider only the
sites, which are contained in this table, up to the next
rearrangement. Moreover, as soon as this table is empty
after the full search within that set, the above procedure
can be terminated.

According to our experience, the largest part of the
nearest-neighbor hops is performed at first. This seems
very reasonable from the physical point of view.

The relaxation down to states which are stable with
respect to the conditions (i)—(iv) of Sec. II is performed in
a similar manner. The most compact excitations are very
important in this case, so they are treated separately. For
the consideration of the other excitations, we constructed
branch-and-bound algorithms analogous to the procedure
described above, where the inequalities used are based on
stability with respect to less complex rearrangements.
An ordering of the distances between the sites involved is
very useful.

The final computer experiments, described below, were
performed on a Cray X-MP, where the calculation of the
initial e; as well as the recalculation of the e; are vector-
ized to a large extent. We started from stochastic initial
occupations and made the following practical observa-
tions.

(a) Stability with respect to single-particle hops [condi-
tions (i) and (ii)]: For d =2, L =200, the total relaxation
(search and recalculation of e;) was only by a factor
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2.0-3.0 more expensive than the calculation of the initial
e;, whereas for L =50, this factor is 3.4-5.2. This be-
havior can be well understood in terms of the above-
mentioned exponents. For d =3, L =50, the correspond-
ing factor amounts to 1.1-1.7.

(b) Stability with respect to two-particle hops [condi-
tions (i)—-(iv)]: The total relaxation needed by nearly a fac-
tor of 40 more CPU time than the calculation of the ini-
tial e;, both for d =2, L =200 and for d =3, L =50.
Thus the construction of the states fulfilling the condi-
tions (i)—(iv) is more expensive than that of the states,
fulfilling solely (i) and (ii), by only one order of magni-
tude.

IV. NUMERICAL RESULTS
A. General behavior

Overall views of the single-particle density of states
g(e) are given for different degrees of disorder B and

1 . . .
(a)

5.8 ¢t ]
#, #
X X X X
X X X X
0. sy i
L X
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filling of the band K in Figs. 2(a)-2(d) for two- and
three-dimensional systems, respectively. Relaxation has
been performed down to metastable states fulfilling the
conditions (i) and (ii). The results presented agree well
with the Figs. 3(b) and 3(a) by DLR.

Figures 2(a)-2(d) show the universal existence of a
Coulomb gap. According to Figs. 2(a) and 2(b) it seems
likely that g (e) decreases faster than linear as e —0 for
d =2. But, since the asymptotic regions are fairly small,
it is not possible to draw definite conclusions as to ap-
propriate quantitative descriptions. Moreover, it cannot
be checked whether g (e) is indeed universal with respect
to B and K. A detailed analysis presupposes logarithmic
representations, as they are considered in the following
sections.

B. Region of reliability

Before investigating the asymptotic behavior in detail,
we have to exclude artifacts arising from the finite sample

1 . ,
(c)
0.8 ¢} Xx»%( ><X%XX )
X X X X
0.6 L o |
X x . X
. % X
+ X
0.4} W** i*% ]
S

FIG. 2. Overall view of the single-particle density of states g (e) for two-dimensional [(a) and (b)] and three-dimensional systems
[(c) and (d)] in linear representations. Different degrees of disorder are compared in (a) and (c) for K =0.5: B =0.5( X )y B=1(+),
B =2 (%), and B =4 (O). The influence of band filling is demonstrated in (b) and (d) for B=1: K =0.5 (+) and K =0.3 (0). For
K =0.3, the self-consistent solution of the electroneutrality condition (12) yields = —0.4245 and —0.420 for the two- and three-
dimensional cases, respectively. Symmetry implies =0 for all parameter sets with K =0.5. Data are obtained by averaging N, sam-
ples of size L9 which are relaxed down to metastable states satisfying the conditions (i) and (ii) of Sec. II. We consider L =200,
N, =100 for d =2, except for B=1, K=0.3, where N, =200, and we use L =50, N;=16 for d =3.
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size L% For this aim, Figs. 3(a) and 3(b) compare the re-
sults for different L in log,,-log,, representations, where
bin widths proportional to |e|!”? are used, for d =2 as
well as for d =3. It should be mentioned that the L
values considered here are larger than those considered
by DLR by factors of 10 and 5 for d =2 and 3, respec-
tively.
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FIG. 3. log,o-log,o representations of g (e) for K =0.5, B =1,
where the metastable states satisfy the conditions (i) and (ii).

The following simulation results are compared. (a) Two-
dimensional systems: L =12, N,=28000 (0), L=50,
N,=1600 (+), and L =200, N,=100 (X). (b) Three-

dimensional systems: L =6, N,=20000 (0), L =20, N,=125
(+), and L =50, N;=16 (X). The error bars correspond to a
Poisson distribution, i.e., to g (1+1/m!/?), where m denotes the
number of counts for the related histogram bin. The values of
the most restrictive size-dependent bounds of the region of relia-
bility, eg(L), cf. text, are marked by arrows.
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The results presented in Figs. 3(a) and 3(b) are nearly
analogous to the one-dimensional case:?? There is an en-
ergy ey(L), above which the values of g (|e|) can be con-
sidered as ‘‘exact,” and below which ‘“‘saturation,” viz.,
convergence towards a finite value as e —0, occurs. The
bound e(L) decreases roughly as 1/L in the region con-
sidered. Moreover, for the lowest L values, small devia-
tions not changing the qualitative behavior are always
present at higher |e|.

The “low-energy deviations” arise from three effects.

(a) The distribution of interaction energies f;; is size
dependent below 2/L. Thus reliable results can only be
expected for |e|>2/L.

(b) The distribution of the f;; vanishes even below
2/(d'?L), so that g(e) has a hard gap of this width
around 0. If the results of several samples are averaged,
this hard gap implies a saturation of g (e —0) due to its
fluctuating position, cf. Ref. 14.

(c) We investigate a correlation effect. Therefore,
studying the influence of f;; on g for values of le| below a
certain e, is only possible if the mean number of sites
with —e, <e; e, per sample is large compared with uni-
ty, cf. the analytical consideration in Ref. 7.

The most restrictive limitations are the effects (c) and (a)
for the two- and three-dimensional cases, respectively.
The corresponding values of e, are marked in Figs. 3(a)
and 3(b). These values, together with the graphical com-
parison of g (e) for different L, lead to the conclusion that
the numerical results can be regarded as reliable if
logglel 2 —1.8 for d =2, L =200, and if logole| X —1.4
for d =3, L =50. Only these regions are considered in
the following sections.

C. Asymptotic behavior

The dependence of g on disorder and band filling is
shown in log,y-log,, representations in Figs. 4(a)—4(d) for
d =2 and 3, respectively. The analytical prediction [(3)
and (5)] is included as a dashed line for comparison. Fig-
ures 4(a)—4(d) allow the following conclusions.

(a) Universality with respect to disorder, as predicted
for e —0 analytically, is not found, neither for d =2 nor
for d =3.

(b) For K#0.5, symmetry as e —0 seems to be present
for d =2 but not for d =3.

(c) The analytical prediction overestimates g (e) consid-
erably, both for d =2 and d =3.

(d) Nearly parallel, roughly linear relations are present
in the regions logyle] S —0.9 and loggle| S —0.7 for
d =2 and 3, respectively, but the slope exceeds the
analytical prediction, d — 1, significantly.

The difference between d =2 and 3 in (b) is surprising.
Note that asymmetry seems to be present for d =1, too.??
However, at the present stage, we cannot exclude that the
asymmetries for d =1 and 3 arose from numerical uncer-
tainties in the determination of by solving Eq. (12).

Now, the question arises whether one can find an
empirical description of the asymptotic behavior as in the
one-dimensional case.?? Two hypotheses are suggested:
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logarithmic correction to the analytical prediction as gen-
eralization of the one-dimensional result (7),

g(e);g1|e|d‘1/ln(Ec/|e‘) (18)

with nonuniversal g, and E_,, or a power law with an ex-
ponent differing from d — 1, i.e,,

?
gle)=glel”, (19)

where v is universal contrary to g,.

The “logarithmic correction hypothesis™ is tested in
Figs. 5(a) and 5(b), where |e|¢~!/g is represented versus
logolel. The analytical prediction is included for com-
parison. If our assumption were justified, linear relations
should be present for e —0. This seems not to be the case
in the energy region considered; see in particular the
“low-disorder” data.
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In order to test the “power-law hypothesis,” we shift a
window, which includes 12 neighboring bins, along the
energy scale and perform a corresponding fit for each
window position. (The data points shown in Figs. 3-5
and 7-9 are mean values of four neighboring bins.) The
values of v are represented in Figs. 6(a) and 6(b) for d =2
and 3, respectively. In these figures, the loglolel interval
considered is smaller than in Figs. 3-5 due to the finite
width of the “fit window.”

According to Figs. 6(a) and 6(b), it is difficult to decide
whether a power law with universal exponent holds as
e —0. Provided it does, we obtain v=1.21+0.1 in the
two-dimensional case and, only for B> 1, v=2.610.2 in
the three-dimensional case. Figures 6(a) and 6(b) provide
an additional counterargument to the ‘“logarithmic
correction hypothesis.” If this asymptotic behavior were
present, the adjusted exponents would tend to d —1 as
e—0. This is not the case in the energy interval con-
sidered.
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FIG. 4. Influence of the degree of disorder B and of the filling factor K on g(e) as e —0 in logo-log,o representations. The data,
presented in Fig. 2, are redrawn: (a) and (b) d =2 and (c) and (d) d =3. The symbols are the same as in Figs. 2(a)-2(d) except for
B =1, K=0.3, for which X and * denote lower and upper branches, i.e., the regions e <0 and e > 0, respectively. The dashed lines
give the analytical prediction [(3) and (5)] of the asymptotic behavior.
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D. Stability with respect to more complex excitations

The construction of states, being stable not only with
respect to single-particle hops [conditions (i) and (ii) of
Sec. II], but also concerning two-particle hops [condi-
tions (iii) and (iv)], is a fairly difficult task. The con-
sideration of a reasonable system size seems to be possible
only by means of branch-and-bound search algorithms.
In the one-dimensional case, we found that additional
stability with respect to higher-order excitations leads to
a decrease of the density of states. But it does not destroy
the logarithmic behavior, only prefactor and characteris-
tic energy are shifted.

Figures 7(a) and 7(b) give log,,-log,, representations of
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FIG. 5. Test with respect to hypothesis (18): influence of the
degree of disorder B on g(e) as e—0 in |e|? "' /g (e) vs loglel
representations, (a) d =2 and (b) d =3. For the meaning of the
symbols see the captions of Figs. 2 and 4.
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g (e) vs |e| for different degrees of metastability for d =2
and 3, respectively. As in the case d =1, g(e) decreases
with increasing degree of metastability monotonously.
However, the qualitative behavior is not changed: A
transition towards exponential g (e) in the energy region
considered can be excluded for d =2, and it seems unlike-
ly for d =3. [If g(e) would follow an exponential law as
Eq. (6), negative d’log,,g / d(log,ole|)* were expected.]

It is interesting to study the influence of the initial con-
ditions in this context, see Fig. 8 for d =2, B =0.5,
K =0.5. A regular (NaCl-like) occupation is frozen in
for this parameter set when only 1- and 2-site excitations
are considered; there is a hard gap of width 1.115 in this
case. States of lower total energy can only be reached if
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of Figs. 2 and 4.
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more complex excitations are taken into account.

Figure 8 shows large differences between the results
for regular and stochastic initial conditions. However,
convergence towards a common limit, as the degree of
metastability increases, is present. For stability with
respect to (i)—(iv), the g (e) values for the alternative ini-
tial occupations seem to differ only by an e independent
factor at log,gle| S —0.6 Moreover, it is instructive to
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FIG. 7. Comparison of different degrees of metastability for
B=1, K=0.5: (a) d =2 and (b) d =3. The meaning of the
symbols is as follows: O, stability with respect to (i) and (ii); X,
relaxation of the O via nearest neighbor 3- and 4-site rearrange-
ments; +, relaxation of the X including all 3-site rearrange-
ments; and *, full stability with respect to (i)—(iv). In the two-
dimensional case, simulations were performed for L =200,
N, =100, except for + and *, where N,=25. In the three-
dimensional case, 16 samples with L =50 were simulated, ex-
cept for O where N, =32.
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FIG. 8. Influence of initial conditions for d =2, B =0.5,

K =0.5. + and *, stochastic initial occupation; O and X, reg-
ular initial occupation. + and O are stable with respect to (i)
and (ii), whereas X and * fulfil conditions (i)—(iv). In the case
of O, g(e)=0 for |e|<0.558. For all parameter sets, we use
L =100, N,=100. The values of the mean total energy per site,
(h/L?), are as follows: (+), —0.2058, (0) —0.2020, (#*)
—0.2094, and ( X ) —0.2059.

compare the results obtained for regular initial conditions
and stability with respect to (i)—(iv) on the one hand and
for stochastic initial conditions and stability concerning
(i), (ii) on the other hand. Although the g (e) curves differ
considerably, the total energy has nearly the same value
in both cases. Thus, the states constructed cannot be
characterized only by its energy values.

E. Modification of the short-range part of the interaction

The Coulomb gap should survive when the states at
neighboring sites begin to overlap, since the asymptotic
properties are determined by the long-range interaction
behavior. The same hypothesis has been derived from
the observation of a universal temperature dependence of
the conductivity near the metal-semiconductor transition
in disordered systems.® However, DLR observe a cluster-
ing of “low-energy sites.” Thus a stronger influence of
the overlapping on g(e) than in the case of a homogene-
ous spatial distribution is imaginable.

In order to get a qualitative impression what happens
when the localized states begin to overlap, we replace
now the point charges by exponentially smeared-out
charge distributions. That means, the charge density p(r)
is given by

exp R

(20)

1
(r)=
P 87R3

Provided R <<L, some lengthy integration®® yields the
following expression for the interaction energy of two
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FIG. 9. Coulomb gap in the case of exponentially smeared
charges ford =2, B=1, K =0.5: (0) R =0, (X) R =0.3, (+)
R =1, and (*) R =3. A hundred samples with L =200 are
averaged in each case.

smeared-out charges localized at sites i and j with dis-
tance 7;;:
1 _
fi=— = (E+ I8+ L+ De 4], 21

Y

where {=r,; /R, and where r;; is determined by means of
Eq. (10). Of course, only a part of the influence of finite-
range charge distributions is incorporated in this way;
hybridization and polarization are neglected.

Figure 9 shows the results of corresponding simula-
tions for d =2, R =0-3. The following conclusions can
be drawn from this figure.

(a) The Coulomb gap persists if the charges are
smeared out.

(b) The “width” of the gap decreases as R increases.
For not too small R, the width is roughly proportional to
1/R.

(c) At sufficiently low |e|, g (e;R) might be universal
with respect to R, cf. the results for R =0, and 0.3.

Therefore, the numerical simulations confirm the hy-
pothesis that the Coulomb gap persists when the states of
neighboring sites begin to overlap.

V. CONCLUSIONS

The results of the numerical investigations presented in
Sec. IV can be summarized in the following five points.

(a) The numerical g(e) data are considerably smaller
than the analytical results, both for d =2 and 3.

(b) Universality with respect to disorder, as predicted
analytically, is not present.
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(¢) It cannot be decided finally, whether or not
g (e—0) follows a power law. Provided it does, the nu-
merical simulations yield the exponents 1.2+0.1 and
2.6%0.2 for d =2 and 3, respectively, in contradiction to
the analytical result d — 1.

(d) Additional relaxation down to stability with respect
to 3- and 4-site excitations leads to a decrease of the
single-particle density of states, but the qualitative behav-
ior is not changed. Exponential behavior can be excluded
for d =2, and it seems unlikely for d =3.

(e) The Coulomb gap persists if the point charges are
smeared out exponentially. For not too small R, its
“width” is roughly indirectly proportional to the locali-
zation radius R.

These findings involve several consequences. First, the
basic assumptions of the analytical theory, in particular
of the self-consistent equation method,'? should be
reanalyzed critically. This method considers the neigh-
borhood of a certain site in a mean-field-like manner,
which corresponds to assuming the sites with small |e| to
be homogeneously distributed. However, it was numeri-
cally shown by DLR (Ref. 15) that low-energy sites clus-
ter. Thus it is likely that at least the pair correlation has
explicitly to be taken into account in a better analytical
theory.

Second, the single-particle density of states has an
essential influence on the conductivity in the variable-
range-hopping regime, in particular on its temperature
dependence. Exponent optimization, as the simplest ap-
proximation, leads to o(T)~exp[—(T,/T)%], where
a=(v+1)/(v+d+1). In this manner, Efros and
Shklovskii’ obtained a=1 for both d =2 and 3, instead
of the Mott result for a flat density of states, =1 and |
for d =2 and 3, respectively. However, these results are
based on a series of assumptions. For a more elaborate
analytical theory see Ref. 31 and for related computer
simulations Ref. 32. The values obtained for v above lead
to a=0.52+0.01 and 0.55%+0.01 for d =2 and 3, respec-
tively. In the three-dimensional case, it should be possi-
ble to distinguish between 4 and 0.55 in precision experi-
ments.
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