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Multiple-scattering theory for space-filling cell potentials
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The multiple-scattering theory (MST) method of Korringa, and of Kohn and Rostoker for deter-
mining the electronic structure of solids, originally developed in connection with potentials bounded

by nonoverlapping spheres (muffin-tin potentials), is generalized to the case of space-filling poten-
tial cells of arbitrary shape. Both variational and nonvariational formalisms are used in effecting
this generalization. In contrast to the case of muNn-tin potentials, different forms of MST exhibit
different convergence rates for the energy and the wave function. Numerical results are presented
that illustrate the differing convergence rates of the variational and nonvariational forms of MST
for space-filling potentials. The generalized MST described here should be useful quite generally
for constructing global solutions to linear partial differential equations from sets of locally exact
solutions.

I. INTRODUCTION

The method proposed by Korringa and by Kohn and
Rostokerz (KKR) provides a convenient way for calcu-
lating the electronic structure of solids. The method
was originally formulated for periodic systems and for
use with potentials of muffin-tin (MT) form, i.e. , poten-
tials that are nonzero only within a sphere inscribed in-
side the Wigner-Seitz cell and that are also spherically
symmetric. Its numerical applications have been con-
fined almost exclusively to such potentials. Although this
MT approximation is quite appropriate in many cases,
e.g. , reasonably close-packed crystalline metals, it can-
not properly describe a number of physical systems, e.g. ,
semiconductors and surface and interface regions. The
atomic (cell) potentials in such systems often deviate sig-
nificantly from their spherical average, and the contribu-
tions from regions outside the inscribed spheres are gen-
erally non-negligible. Thus a proper treatment of such
systems within the KKR method requires the extension
of the method to non-MT, space-filling cells.

Much work so has been devoted to the question of
the applicability of the KKR method to space-filling po-
tential cells. It is impossible to summarize this large
and complex body of work in a meaningful way in the
space available here, although we hope to do so in a
later publication. Unfortunately, the topic of full-cell
KKR theory has been confused by the subtleties associ-
ated with the problem and by several controversies. Re-
cently, however, several groups have begun to report good
results in applications to real materials. 2 The
objectives of the present paper are to provide a firm the-
oretical foundation for this work and to explicate some
of the subtleties that may be encountered when multiple-
scattering theory (MST) is extended to treat non-muffin-
tin, generally shaped potentials.

In this paper we will discuss five basic issues. In the
past much attention has been paid to the issue of "near-
field corrections, " a term used to indicate a belief that
MST cannot be applied without modification if the po-
tentials have shapes and positions such that their cir-
cumscribing spheres overlap. For mu%n-tin potentials
(with nonoverlapping circumscribing spheres), it is rela-
tively easy to derive the MST secular equation from a
knowledge of the positions of the scatterers and their
scattering amplitudes. The details of the wave function
or even the potential within the scatterer need not even
be mentioned. It is only necessary to know how a scat-
terer converts an incoming partial wave into an outgoing
one. For non-mufFin-tin scatterers this simple derivation
is inadequate because the scattered wave expressed as a
linear combination of spherical waves does not achieve
its asymptotic form until it is outside a sphere which cir-
cumscribes the potential. Therefore it appears to be nec-
essary to treat the interaction of this scattered wave with
neighboring atoms before it has achieved its asymptotic
form, and it is only the asymptotic form which is de-
scribable in terms of the scattering amplitude. Ziesche
and later Faulkner proposed altering the structure con-
stants of KKR theory to account for these "near-field"
effects.

A second issue closely related to the issue of "near-field
corrections" is that of the convergence of the partial-wave
expansions that occur in full-cell MST. Several partial
wave expansions are involved in full-cell MST and care
must be taken to ensure that all are convergent. The
partial-wave expansion of the Helmholtz equation Green
function Go(r, r') = Pl Jl.(r&)III,(r)) can be particu-
larly troublesome in full-cell MST because it is difIicult to
maintain the condition (necessary for convergence) that
the argument of the Green function, which is smaller in
absolute value, be associated with the regular solution
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to the Helmholtz equation (Jl.) and the larger with the
irregular solution (Hl. )

A third issue is that, of representablity. In deriving
the muffin-tin KKR equations following t,he method of
Kohn and Rostoker, the crystal wave function within
each cell is expanded as a linear combination of solutions
to the Schrodinger equation for that cell alone,

)Ib(r) = ) aL, R((r, E)YL,(i)
L

It is generally assumed that an expansion of this type
is valid and convergent. In deriving MST for nonspheri-
cal potentials a similar representation of the wave func-
tion is used, but with the role of the local solutions
to the separable spherical problem, R((r)YI.(i), being
played by more complicated functions (t)l, (r), which are
local solutions to the Schrodinger equation for a non-
spherical potential that are usually calculated using a
procedure which we shall describe in Sec. III. The
propriety of the expansion appears much more question-
able in this case. Recently a closely related issue has been
raised by Newton, who pointed out that the Williams-
Morgan procedure for calculating PL, (r) may involve a
term which is singular at the origin with the result that
the functions PL, (r) would not be well defined.

A fifth issue is whether or not the characteristic ener-
gies obtained from the MST secular equation are varia-
tional with respect to the wave function. 2 If the char-
acteristic energy is variational with respect to the wave
function, a first-order error in the trial wave function
yields only a second-order error in the energy. When
Kohn and Rostoker derived the KKR equations for
muffin-tin potentials they were careful to do so within
the context of a variational principle. The secular ma-
trix that they derived in this way differed from other
versions by a multiplicative factor which did not affect
the variational nature of the result. Thus all versions of
MST for muffin-tin potentials are variational. We shall
show that this is not necessarily true for full-cell MST.
In this case some versions are variational and others are
not. The existence of a variational form of MST is of
practical importance in, for example, the determination
of the total energy using density-functional theory.

A brief plan of the paper may be helpful. Section II
contains a brief description of the Kohn-Rostoker vari-
ational principle. Section III is devoted to the issue of
representability and to the related issue raised by Newton
of a possible singularity at the origin. We show that it is
indeed possible to express the total system wave function
as an expansion of the form g(r) = P& aL Pl. (r), where
the functions Pl. (r) are local solutions to the Schrodinger
equation which may be obtained using the potential in a
single cell only. In order to show that an expansion of this
type is valid for representing the system wave function,
we found it necessary to derive an angular momentum
expansion for the Green function for a nonspherical po-
tential. This derivation is given in an appendix. We also
show that the functions (tl. are well defined and that no
singularity arises at the origin in their calculation.

Section IV of the paper contains a generalization of the
Kohn-Rostoker derivation of MST that applies to non-

II. THE VARIATIONAL PRINCIPLE
OF KOHN AND ROSTOKER

The time independent Schrodinger equation

[—(7z+ V(r) —E]@(r)= 0 (2.1)

may, for bound states, be written in the integral form

d(r) —f dr'GD(r, r') V(r')Q(r') = 0,

where Go(r, r') is the Green function for the Helmholtz
equation

((7' + E)G()(r, r') = b(r —r'). (2.3)

Kohn and Rostokerz showed that Eq. (2.2) is equiv-
alent to the variational principle bA[g] = 0 where the
functional A is defined by the expression

A= dr 'r Vr

x
~ d(r) —J dr'GD(r, r')V(r')d(r') (2.4)

This variational principle can be used to obtain a secu-
lar equation determining the wave function. Upon using
a trial function of the form g = Q"

o azP&, with az a
complex coefficient and Pz an element of some basis set,
and substituting into Eq. (2.4) we obtain

A = ) a,"A;~a, ,
i,j=O

where

(2.5)

,. &Vr zadr

dr dr',' r V r Gp x, x' V i'

(2.6)

is a Hermitian matrix. The application of the variational

principle bA/ba; = 0 to Eq. (2.5) yields the set of homo-

geneous linear equations

periodic systems and to nonspherical muffin-tin poten-
tials (i.e. , nonspherical potentials whose circumscribing
spheres do not overlap). This derivation is quite simple
and serves to highlight the difficulties that must be over-
come in Sec. V where we present a variational derivation
of full-potential MST. A nonvariational derivation of full-
potential MST is presented in Sec. VI and is shown to
yield a closely related version of MST which does not
have the variational property of the version derived in
Sec. V.

Section VII contains some numerical examples which
illustrate the main points of the paper. Both t,he varia-
tional and nonvariational derivations as well as the nu-
merical examples demonstrate that near-field corrections
are not needed. However, care and prudence must be
exercised in converging certain internal angular momen-
tum sums for full-cell MST. Section VIII contains a brief
discussion of our results and their implications for appli-
cations to real materials.
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) A~a~ =0, i= 1, 2, . . . , n (2 7)
ous upper or lower bound even to to the lowest energy
state.

which has nontrivial solutions only if its determinant van-
ishes. This requirement leads to the secular equation

det (A;, (E)[ = 0, (2.8)

which determines the energy. The energy dependence of
A comes from the energy dependence of the Green func-
tion and possibly from the energy dependence of the basis
functions. Since the energy is determined from a secular
equation based on a variational principle, the error in the
energy will be of second order with respect to the error
in the wave function.

There are three important differences between the
Kohn-Rostoker variational principle and the more com-
mon variational procedure that is usually associated with
the names of Rayleigh and Ritz, namely, 60[/] = 0,
where

0= dr ' r E —0 r. (2 9)

First, the Kohn-Rostoker secular equation (2.8) is not lin-
ear in the energy even if the basis functions Pi are energy
independent. Thus, since the convenience of a secular
equation that is linear in energy is lost from the begin-
ning, there is no further loss in convenience if the basis
functions are chosen to be energy dependent. The sec-
ond important difference is that since the Kohn-Rostoker
variational functional A[/] only involves integral opera-
tors rather than the differential operator that occurs in
the Rayleigh-Ritz procedure, it remains valid in the pres-
ence of discontinuities in the basis functions which would
lead to singularities in Eq. (2.9). This makes it possible
to choose basis functions that are piecewise combinations
of locally exact solutions to the Schrodinger equation.

Thus, although Kohn and Rostoker could have chosen
almost any set of functions Pz in which to expand their
trial wave function, they chose functions which took best
advantage of their variational principle. They divided
space into cells, approximated the potential within each
cell by a muKn-tin potential, and used as basis functions
the exact local solutions to the Schrodinger equation (for
the muffin-tin potential) within each cell. The use of lo-
cally exact solutions has the important benefit of allow-
ing the volume integrals within each cell that occur in
Eq. (2.4) to be reduced by means of Green's theorem to
surface integrals which turn out to be trivial to evaluate
for mufIin-tin potentials. In the following we shall extend
their derivation to the case of nonoverlapping potentials
of general shape.

A final difference between the Rayleigh-Ritz and Kohn-
Rostoker variational principles is that the energy ob-
tained from the secular equation of the Rayleigh-Ritz
procedure is not only stationary but a minimum (at least
for the lowest energy state), and thus provides an upper
bound to the exact ground-state energy. The characteris-
tic energies of the Kohn-Rostoker variational procedure
are only stationary with respect to errors in the trial
wave functions, and therefore it is not possible using the
Kohn-Rostoker variational principle to establish a rigor-

@(r) = ) .uRRi(& ~-)Y~(~-)e-(r)
L,n

(3 &)

We shall show in this section that the above expansion is
valid and is a special case of a similar relation

&(r) = ) u242(E r-)e-(r)
L

(3 2)

which holds for nonspherical potentials. Here e„(r) is
unity for r inside cell n and vanishes otherwise, and
PI(E, r„) is a solution of the Schrodinger equation for
energy E, corresponding to the potential in cell n.

We note that the proposition we have undertaken to
demonstrate is not a completeness relation in the usual
sense of the term. We do not require that any function be
expandable in terms of the basis functions PL„only func-
tions that satisfy the Schrodinger equation need be ex-
pandable. Furthermore, it should be noted that we can-
not simply invoke a theorem from Sturm-Liouville the-
ory to establish the result we seek because the functions
PL, are not eigenfunctions of a Sturm-Liouville eigenvalue
problem. Our proof is, however, similar to a proof 7 that
any function of a complex variable f(z), which is ana-
lytic in a domain including the origin, can be expanded in
terms of cylindrical Bessel functions f(z) = Q& o ai Ji(z).

The functions P~&(r) which play a role in this theory
analogous to that played by the radial wave functions
Ri(r )YL, (i) in muffin-tin MST may be determined within
a sphere circumscribing cell n. In the remainder of this
section we shall omit the superscript n since we are deal-
ing with the basis functions for a single cell. The wave
function g(r) within the sphere circumscribing this cell
is determined by the equation

g(r) = dr'Go(r, r') V(r')g(r')
s

dS'n' [Gs(r, r')7'g(r') —O'Go(r, r')g(r')],
S

(3.3)

which may be derived by applying Green's theorem to
Eq. (2.2) and assuming that the wave function and its
derivative vanish for r —+ oo. In the above equation, the
first integral extends over the volume of the sphere and
the second over its surface. A relation of this type is valid
for any closed surface S, as long as r is restricted to the
enclosed integration volume 0, . In Eq. (3.3) and later
equations where similar notation is used, the operator
V' is understood to operate only on the function to its
immediate right.

III. EXPANSION OF THE WAVE FUNCTION
IN BASIS FUNCTIONS

OF A NONSPHERICAL POTENTIAL
An important step implicit in the derivation of KKR

theory given by Kohn and Rostoker is the assump-
tion that the wave function within any given cell can
be expanded in terms of functions which satisfy the
Schrodinger equation for a single spherical potential,
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Thus for values of r within the sphere circumscribing
cell n, @(r) is determined by the potential within the
sphere and by the value and normal gradient of g(r) on
its surface. (The value and gradient, cannot both be ar-
bitrarily specified over the entire boundary for then the
system will be overdetermined. ) This expression can be
simplified by use of the standard multipole expansion of
the Green function

Go(r, r') = ) .Jl, (r)HI. (~')
L

(r'& r), (3.4)

where the Wronskians [Jl„g]„and [HI. , g]„are defined
in terms of integrals over a sphere of radius r surrounding
the origin

(dr d] = ' f d" ' (&r(r )& —& &r(r )]dl(r ) (3.7)

[HL„Q]„=)' dr' [Hl, (r') O' —O'Hl. (r')]g(r').

(3.8)
We know on physical grounds that g(r) must be

bounded everywhere in space and in particular at the
cell center so it can be expanded there in terms of regu-
lar solid harmonics,

w here JL, (r) = j](zr)YI.(P) is a solid harmonic which
is regular at the origin, HL, (r) = i@h((—I'm)YI, (i) is an
irregular solid harmonic, and K = E ~ . The origin that
is the center of the sphere can, in principle, be taken
anywhere within the cell; however, if there is a singularity
in the potential, e.g. , from a nucleus, the derivations are
simplified if the origin is taken at the singularity. We
shall assume in the following that there is no more than
one singularity within the cell and that the origin (and
the center of the circumscribing sphere) is taken at the
singularity if there is one. tA'e shall also assume that any
singularities are sufficiently mild that r2v(r) is integrable,
i.e., that the integral

r dr drvr (3.5)
0

is finite.
Using the identities V(r)g(r) = (7' + E)g(r) and

g(r) = Idr'(]v"2 + F)GO(r, r')(I]'d(r') followed by Green's
theorem we have

&(&) = ).(HL(&)[JI- &] —Jl-(&)[HI &] ) (36)

where

CL, L, ()) = —[HL, , PI]..
= —p dr'. IIL r' 7' —7'HL r

and
(3.11)

&I, I.(r) = [JI. , WI,].
di' [JL, (r')9' —O'Jl. (r')]Jr, (r')

r
(3.12)

Equations (3.11) and (3.12) may be converted via Green's
theorem into volume integrals from which it is easy to see
that the basis functions $1. may be obtained by integrat-
ing the equations,

( ] = r'f dr'Hr(r')—V(r')d,r(r'), (3.13)

( ] = r' f dr'dr(r')V(r'). dr(r'). (3.14)

These equations are coupled through P~ [Eq. (3.10)]. The
boundary condition at the origin is SL,rL, (0) = 0 and
CL, g(0) = bl. I..

In light of recent criticisms it is important to verify
that the functions defined by the above procedure are well
behaved at the origin. It appears that the generalized
cosine function

V(r) = Z/r+ V(r), (3.16)

where V(r) has a convergent Taylor-series expansion
around the origin

Cl rr, (r) = bL, I, — dr'Hl r(r')V(r')QI, (r') (3.15)
0

contains a possible divergence near the origin arising
from the singularity in HLI, which is proportional to

~ + 1Yl.r(i) near the origin. If the potential is spher-
ically symmetric near the origin (and less singular than

), the singularity of Hl, r will be eliminated by the r
dependence of PI, which varies as r~YI. (i) One may b.e
concerned that a nonspherical potential will couple HL
and (t)L, for different values of I and t' in such a way that
the integrand of Eq. (3.15) will have a nonintegrable sin-
gularity.

No such singularity will occur, however, if the potential
has the usual form for electronic-structure calculations

g(r) ~ ) al. JL, (r) for r ~ 0. (3.9) V(r) = a+) b;z;+ ) c~z, z,.

We therefore define local basis functions (t)&(r) which sat-
isfy the Schrodinger equation (2.1) throughout the sphere
circumscribing cell n, which behave as Jl, (r) near the ori-
gin, and which satisfy Eqs. (3.13) and (3.14) below. If
we assume that relation (3.2) is valid, it follows from
Eqs. (3.6)—(3.8) that $1. is given by

+ de k&i&j &k + ' '

An expansion of this form can be written as

V(r) = ) .~'fl. (~')Y~(~)

(3.17)

(3.18)

&i(r) = ) .[Ji (r)Ci ~(~) + Hl. (r)si L(~)l (3.10) where fI. is a function of r which is regular at the origin.
To see that this is the case, consider one of the terms of
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order I in Eq. (3.17),

The coefficients pir „r are given by

I r ' = J &r &i, (r)(rlr) (air)" (rlr) ----,

(3.19)

(3.20)

Q(r) = dS' xx' [O'G(r, r') —G(r, r')7']Q(r'), (3.24)
S

where the integral is over the surface of the sphere S. Us-
ing the expansion (3.22) in this integral gives, for points
r within this sphere,

(3.25)

from which it is obvious that pir„r = 0 if I ) 1. Further-
more, Pir&r ——0 unless the parity of Yp&r is the same as
that of z y" z ~ ",which implies that when the expan-
sion (3.17) is converted into an expansion in powers of r
and spherical harmonics, the second-order term of (3.17)
will generate terms which have r2 multiplying spherical
harmonics with I equal to either 2 or 0. Similarly, the
third-order term will generate terms which have r mul-

tiplying spherical harmonics with / equal to either 3 or
1, the fourth-order term will generate terms which have
r4 multiplying spherical harmonics with values of I equal
to 4, 2, or 0, and so on.

Because each YL, which enters V in Eq. (3.11) is mul-
tiplied by a function which vanishes at least as fast as r'
as r ~ 0, each term in the integrand of Cl, rL, (r) will be
proportional near the origin to

where aL is given by

Ll
(3.27)

aL, —— dS' n [)7'FL,(r') —Fi,(r')(7']g(r') (3. .26)
S

In the limit as I —+ oo, the angular momentum term in the
kinetic energy I(I + 1)/r~ dominates the potential energy
so that Pl, (r) -+ JL, (r), and FL, (r') ~ HI, (r') and since
r' ) r, by assumption, the expansion is convergent.

The result for ar„Eq. (3.26), agrees with a result
obtained by Brown and Ciftan. We can rewrite their
Eq. (2.30) in terms of Wronskian integrals over the sur-
face of the sphere,

f ( 2) (1+I" I'+1)C-(L I I I II) (3.21)
whereas Eq. (3.26) above is equivalent to al, = [Fl„((I]s,—
and from Eq. (A3) we have

where C(L, f', I") is an integral of three spherical har-
monics over solid angles which vanishes if l+ t" & l'.
Thus potentials of the form described by Eqs. (3.16) and
(3.17) do not cause problems at the origin. Although
potentials can be imagined which violate the condition
(3.17), and for which the integrand of CgrL, might have
a nonintegrable singularity at the origin, such potentials
do not appear to us to be relevant to electronic-structure
calculations.

In order to demonstrate that the wave function within
a sphere S surrounding cell n can be expanded in terms
of the functions PL, (r), we use the result, shown in the
Appendix, that, the Green function for the Schrodinger
equation within the bounding sphere of a cell supporting
a potential of the form of Eq. (3.16) has a convergent
expansion of the form

(3.22)

dr'G r, r' 9' + E —V r' r', (3.23)

which can be converted by Green's theorem into

Here Fl.(r) is proportional to a linear combination of
irregular solid harmonics for points outside the range of
the potential. Within the range of the potential it is an
irregular solution to the Schrodinger equation.

By virtue of the definition of the Green function and
the fact that g(r) satisfies the Schrodinger equation by
assumption we can write

g(r) = f dr'['Y + E —V(r')]G(r, r')g(r')

) .[&l., 4 I. ]sFl. = HL, — (3.28)
L'

We believe, however, that their derivation is incomplete
because in their Eq. (2.29) a sum and an integral were
interchanged without justification.

The functions P~&(r) have the interesting and useful
property that for points within cell n their value is un-
aAected if the potential is modified outside cell n. In
particular the potential outside cell n can be set to zero
without affecting the value of the functions within the cell
where they are used to expand the wave function. ~~ Thus
the functions P~&(E, r) can, for points r inside cell n, be
assumed to have been calculated using a potential which
is equal to v„(r) inside cell n and which vanishes outside
that cell and thus to be independent of the potentials in
neighboring cells.

IV. MST FOR NONSPHERICAL
MUFFIN- TIN POTENTIALS

In this section we present a variational derivation of
the secular equation of MST for potentials which are
nonspherical but which vanish outside a circumscribing
sphere. Thus the potentials considered in this section
have the form V(r) = P„v„(r„),where the individ-
ual potentials v„(r) vanish outside a radius R„. This
derivation generalizes the Kohn-Rostoker derivation by
allowing the atoms to assume arbitrary positions (sub-
ject to the constraint that their circumscribing spheres
do not overlap) and by allowing the potentials to be non-
spherical within the circumscribing spheres. It also helps
to highlight the dif5culty that must be faced in the gen-
eral case (treated in Sec. V) in which the circumscribing
spheres do overlap.
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A„= ) [y', J,"]„.[H,",@], , (4 5)

where

and

0—g'(r ) l
JI.(r.))

(4.6)

[Hl. , @]s = dS'xY . ( Hl. (r'„) 7'Q(r' )
S

—[7'Hl. (r'„)]g(r' )}. (4.7)

The notation r„', for example, means r' —R„. For n g m,
the irregular solid harmonics centered on site n, Hl. (r'„),
can be expanded in terms of regular solid harmonics cen-

tered on site m

Hi (r„') = ) GI.L,.(R.„)Jl.(r' ),
L'

{4.8)

For potential functions of the type considered in this
section, the Kohn-Rostoker variational functional, A[/]
can be written as a sum over individual potentials

A = ) A"
=. ) f dr/'(r)1 (|)8"(|), (4.1)

A n

where the integral extends over the sphere of radius R„
centered at site n Th. e function 8"(r) is given by

B (r) "= Q(r) —f dr Gp(r r')V(r')g(r'), (4.2)

where the integral is over all of space and the super-
script n on 8"(r) reminds us that the argument r of 8"
lies within the muffin-tin in cell n 8".(r) satisfies the
Helmholtz equation, i.e. , (T2+ E)B"(r) = 0, so that we
can use Green's theorem to write A" as a surface integral
over the surface of the sphere which encloses potential n:

A" = R„ di
i

—)[t'(r) —g'(r) —
~

8"(r). (4.3)
(0, , cl&

&.)
The function 8"(r), written above as an integral over

all of space, can also be written as a sum of inte-
grals over the individual cells. Using the facts that
g(r) = f dr'(7'2 + E)GD(r, r')g(r') and V(r)g(r)
((72+ E)f(r), we can write it in the form

B (r) = )"f dg n' [O'GD(r, r') —Go(r, r')'7']g(r').
~m

(4.4)
Since the argument r of 8(r) in Eq. (4.3) is on the sur-
face of a sphere of radius R„and the integration is over
cell surfaces S, we know that r ( r' for all points in
all of the integrals in Eq. (4.4). This is a crucial point
that facilitates the derivation of MST because it allows
us to expand the Green functions in Eq. (4.4) in the form
G(r, r') = P& JL, (rHI. (r'). Note that this is only true if
the potentials have the geometry assumed here. It is not
true if any of the circumscribing spheres overlap, e.g. , for
full cell potentials.

Using the expansion of the Green function we have

where

G«.(R.„)=4~) " '-'"-C(I.I.'L")H, (R.. ),

S(C —GS}a= 0. (4.12)

This result can be cast into a more familiar form by omit-
ting the factor S and by defining a new set of coefficients
b=S ia,

(CS ' —G}b = 0. (4.13)

As will be discussed in the following section, however,

the removal of the transposed sine matrix S may destroy
the variational nature of the solutions, and the inversion

of the sine matrix may not always be possible.

V. VARIATIONAL DERIVATION OF MST
FOR SPACE-FILLING CELLS

In this section we treat the general case of potentials
which may be nonzero throughout the Wigner-Seitz cell.
For conveaiewce Af ewpomtion we treat the case where the
total potential V(r) is confined to a finite region of space.
Our final formulas will, however, be applicable to infinite
systems as well. We divide this region into nonoverlap-
ping but otherwise arbitrarily shaped cells, denoting by
0„ the volume occupied by cell n, and by v„(r) the po-
tential within that cell. As in the preceding section, A

will be written in the form A = P„A", where

dr &*(')v-(')8"(r)

and where 8"(r) is again given by Eq. (4.2) with the
small but important difference that r can now be any
point within cell n. 3ust as in the preceding section,
Green's theorem can be used to convert 8"(r) into sur-
face integrals over each of the cells rn,

8"(r) = ) dS' n'. [7'Go(r, r') —Go(r, r')(7']g(r').

(5.2)

Similarly, the identities (T~ + E)B"(r) = 0 and

g*(r)v„(r) = {9'~+ E)@'(r) can be used with Green's
theorem to write A" as

(4 9)
with C(LL'L") being a Gaunt number (integral of three
spherical harmonics), so that,

) . [O' J2, ]R.( [HR, @]R.~-~i, i,
m, n, Lg, Lg

+GL,1,(R )[JP, , 4]R„}.
(4.10)

Substitution for g and g' by their expansions in terms
of the local basis functions discussed in the preceding
section yields

). aL"."SpL, , ( Cl., i.,~r r.
m, n, I, ,I',L1,L g

—GI.,L,,(R )SL,,I,}aL .

(4.11)
Variation with respect to the coefficients a yields the

generalized KKR secular matrix
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dS n . [(v'g'(r) —g'(r) 7']B"(r)
S„

dS n [VtP'(r) —g'(r)|7] ) dS' fl' ['(7'G()(r, r') —Go(r, r')V']g(r').
Sr

(5.3)

(5 4)

In order to derive a useful formula for A", we must
separate the integrals in Eq. (5.4). This can be done
by using the Green-function expansion Go(r, r')
P& JL, (r)HL, (r') centered about a point in cell n, but
in order to be certain that this expansion is convergent,
we require that all points (r') on the surface S be far-
ther from the expansion center in cell n than all points
(r) on the surface S„ofcell n If cevlls n and m are not
near neighbors, this condition is satisfied, but if n = m
or if cells n and m are neighbors, this condition appears
to be violated and these cases must be given further con-
sideration. Let us write Eq. (5.2) as

Bl,, (r) = dS'fl' [7'Go(r, r') —Go(r, r')7']PL, .

If cells n and m are not near neighbors, it is clear that
BL, can be written in the form

Bp (r) = —) JL, , (r„)[HI, )PL]s (5.7)

B"(r) = ) BL,i (r)al, r,
m, L'

where we have expanded g(r') in terms of the local basis
functions Eq. (3.2) within each of the cells m so that

from the expansion center in cell n than all points on
the surface S„(Fig. 1). In performing this expansion,
however, it is necessary to enclose the expansion center in
cell n with the result that the value of the surface integral
is changed. Let S~ represent the expanded surface and
let BL& represent the value of the surface integral over
the expanded surface. It is clear that

Bv (r) = Pr, (r) —f dr'G(rr')v (r',)Pr (r'),

while

BP(r) = —, f dr G(rr'')v ,(r')Pr(r').

(5.9)

(5.10)

Thus BI, (r) = B&, (r) + PI, (r). Now B&, can be
written as

BL' (r) ) JL (r )[HL 0p']5'
Lg

(5.1 1)

Consider the surface integrals [Hg, , PP,]s . Each of
these may be split into an integral over S~ and an inte-
gral over the the surface bounding the remainder of Om.
This latter surface integral may be reduced to the inte-
gral over a small sphere centered at the the expansion
center in cell n. Thus

Lg [H2, &Z]s = [H2, &i. ]s + [HL, , &1, ]s„, (5.12)

where the square brackets are used as in the preceding
section [Eq. (4.7)] to denote a Wronskian-type surface
integral over the surface of cell m of an irregular solid
harmonic centered in cell n and a basis function centered
in cell m.

It is slightly less obvious but equa11y true that BL, can
be written in this form when n and rn are the same cell or
near neighbors. First consider the case where m = nv In
this case the surface S~ in Eq. (5.6) can be expanded to
a sphere which circumscribes the cell without changing
the value of BL, . This can be seen by using Green's
theorem to convert Eq. (5.6) into a volume integral

01. (r) = ) Jl".,(r )ol.,g
Lg

(5.13)

where S„ is a small sphere surrounding the expansion
center in cell n, i.e., the singularity of Hr, , (r„)

Now PP, satisfies the Helmholtz equation (V~ +
E)PP(r) = 0 for r outside of cell m. For this reason,
by arguments analogous to those of Sec. III, PP, can
be expanded in regular solid harmonics about the point
rn ——0,

(r) = &l. (r)— dr'Go(r, r')v (r')PP, (r') m

(5.8)

from which it is clear that 0 can be any volume which
includes cell rn, i.e. , the region where v~ is nonzero,
and therefore S can be any surface which encloses cell
m. Expanding 9 to a sphere circumscribing cell rn al-
lows the use of the Green-function expansion to obtain
Eq. (5.7).

Vfhen rn and n are neighbors we can again expand the
surface S so that all points on its surface are farther

cell n cell m

FIG. 1. The surface integral over cell m may be expanded
to enclose a sphere which circumscribes cell n.
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[HL i 4'L')So — +I 2I ' (5.14)

Then using the relation [HL, , JI. ] = —bL, L, we have ) ALL (E)ar& ——0.
n', L'

(5.21)

and

Lg

(5.15)

BL (r) — ) JL (~ )[HL, ~L )S + AL, (~),
Lg

(5.16)

which implies [upon comparison with Eqs. (5.9)—(5.11)]
that 8" can be written in the form

L1

(5.17)

even if cells n and rn are near neighbors.
Using these results to separate the integrals over S„

and S~ in Eq. (5.4), the integral over S„becomes

dS n [%PL*(r) —PL*(r)V']JI, ~(r„). (5.18)

Thus A can be written in the form

which is valid so long as r is inside a sphere inscribed
within cell n. However, this relation defines a bound-
ary condition for the wave function represented by the
above summation and its derivative on the surface of this
sphere. This, together with the fact that the same wave
function satisfies the Helmholtz equation, uniquely deter-
mines its values throughout the cell, and in fact through-
out the region where v = 0. Consequently summation
(5.15) gives PP, (r) everywhere in cell n

Thus Bg~(r) can be written as

The eigenvalues of Eq. (2.1) are found among those values
of E for which the determinant of the Hermitian matrix

I

ALLI vanishes. This matrix is the product of the general-
ized sine and cosine matrices SLL, , and CLL, defined by
the expressions

and

SI,L, (E) = dSn [JL,(r„)V' —T JL, (r„)]QL, (r„)
Sn

(5.22)

~LL' —7 ~LL ~L L
L II

(5.24)

with a tilde denoting the transpose of a matrix. Note
that in CI&, the integral extends over the surface of cell
O„I but that the Hankel function is expanded about the
center of cell 0„.We see that S&&, and Cr"I, ——CLI, are,
respectively, the generalized sine and cosine matrices for
cell n defined in Sec. III.

If the shape of the cell is such that the intercell vec-
tors which connect the expansion centers of each cell are
larger than all of the intracell vectors between a ceil cen-
ter and its boundary, the generalized cosine matrix CL&,
can be be expanded using the addition theorem for the
irregular solid harmonics, Eq. (4.8), allowing the gener-
alized cosine matrix to be written, for n g n', as

CLL, , = ds'n' [v'HL(r„') H—L(r'„)7']g, (r„',),
S I

(5.23)

so that

(5.19)
CLL' = ) GLL"(Ran')SL" L.

L II

(5.25)

where

LI' )~
LII Sn

n, nI, L,LI

dS n [7'PL'(r„) —Pl'(r„)V'] JL,»(r„)

For periodic materials, the Fourier transform of
GI.I.I (R„„I) yields the well-known structure constants of
the KKR method. With the use of Eq. (5.25), the sec-
ular equation which determines the allowed energies can
be written in the form

det S C" —S (G" S ) =0. (5.26)

(5.20)

Note that it is now necessary that the surface integrals
be performed before the sum over I" Otherwise the.
sum would diverge whenever r„' is smaller than r„, a
situation that will occur for general potentials, but which
can be avoided for muKn-tin potentials. The reason for
the lack of commutivity of the sums and integrals in the
last equation is the fact that one may replace complete
sums or integrals by complete sums or integrals of the
same value, but one may not necessarily be allowed to
rearrange the individual terms of infinite sums.

The generalized KKR equations are obtained by mini-
mizing Eq. (5.19) with respect to the coefficients a&, with
the result

Here, underlined quantities denote matrices in I space,
and the curly brackets indicate that for nearby cells, e.g. ,

nearest neighbors, the product of the structure constants
and one of the sine matrices must be carried to conver-
gence before the other sine matrix is multiplied by the
resulting product.

The last expression shows that the secular equation
for MST for space filling, even nonconvex but non-

overlapping cells, has the same form as the secular equa-
tion for MT potentials. In particular the separation of
structure and potential, i.e. , the structure constants and
the sine and cosine matrices, that characterizes MST in
the MT case remains a feature of the non-MT case sub-
ject to the constraint mentioned above, namely that the
expansion of the generalized cosine matrix Eq. (5.25) into
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) pan'an' 0
n', L'

(5.27)

but the energies for which this equation is satisfied will
not be variational with respect to the wave function as
are those obtained from Eqs. (5.21) or (5.26). The result
that some forms of the KKR secular equation are varia-
tional while others are not is a new feature which distin-
guishes non-muffin-tin MST from the muffin-tin limit and
is due to the conditional convergences associated with
non-muffin-tin MST and the consequent necessity of con-
verging internal angular momentum sums. The practical
consequence of this is that it is not strictly correct to
view Eq. (5.26) or ALL, in Eq. (5.24) as the products of

I

square matrices S" and C"" .

VI. NONVARIATIONAL DERIVATION OF MST
FOR SPACE-FILLING CELLS

In this section we provide a nonvariational deriva-
tion of the secular equation of multiple-scattering theory.
This derivation is considerably simpler than that of the
preceding section and is valid in the case of arbitrarily
shaped and even interpenetrating cells, provided the fol-
lowing two restrictions are satisfied: First, it is assumed
that there exists a finite neighborhood around the origin
of a cell that lies in the domain of the cell. Second, it is as-
sumed that the shortest intercell vector (nearest-neighbor

a structure constant matrix and a sine matrix requires
that the distances between expansion centers in different
cells exceed the distances between the expansion center
for a given cell and all points on its boundary.

It is important to realize moreover that the rate of con-
vergence of the expansion Eq. (4.8) depends on L as well

as on the ratio r„r/R„„with larger values of L requir-
ing that the summation over I.' be truncated at higher
values. For muKn-tin potentials of equal radii, the ratio
r„1/R„„r never exceeds 0.5 and the convergence of this
sum is seldom a critical consideration, but as this ratio
approaches unity great care must be exercised to main-
tain convergence. The usual practice of treating all ma-
trices as square and truncating them at a common cutoff
(lm „) can easily lead to a sequence of solutions that as
a function of lm „appears to converge for low values of
lm~„but actually diverges. The importance of converging
any internal summation has been noted previously. ~

Formally, Eq. (5.26) can be written in a number of
equivalent forms which, however, exhibit diferent con-
vergence characteristics. As is shown in Sec. VI it is
possible, for example, to derive rigorously a version of
the MST equations which omits the S, i.e. ,

Thus we are looking for the bound states of the potential
V(r) or for the states that exist even in the absence of
an incident wave. Using Eqs. (2.3) and (2.1) we have

0= 0 r, r' 9' r' —9' o r, r' r' dr'

= ) (Go(r, r')[7' g(r') —[O' Go(r, r')]g(r')}dr'.

(6.2)

The second line of this equation follows upon partitioning
the volume of integration into the volumes of individual
cells, with a subsequent summation over cells. Through
the use of Green's theorem, this equation can be con-
verted to a sum of surface integrals

) f dS'n [Gr(r, r'„)0'—17'Gr(r, —r')]0(r') = 0,

(6.3)
where now n '7' denotes the outward derivative over
the surface S„of the cell at n. Upon substituting the
expansion in local basis functions, Eq. (3.2), for g(r) in
Eq. (6.3), and writing

Go(r, r') = ).GL, (» r )
L

with (,)
JI.(r)al. (r') if r' ) r
Hr, (r) Jr, (r') if r ) r',

we can cast Eq (6.3) in. the form

0 = ) J
dS'n. ) [Gr (r, r'„)'V'dr(r'„)

n S I',I

(6 4)

(6.5)

-42(r'. )&'Gi (r r'. ))aR (6 6)

Now, consider Go(r, r') with r in cell 0& and r' on
the surface of cell 0„. Upon restricting r to lie inside a
sphere inscribed within cell 0„, we have, Gl. (rr, r'„) =
JL, (rz)HL, (r'„), and Eq. (6.6) takes the form

vector) is larger than any intracell vector. Under these
two fairly broad conditions that are easily satisfied in the
case of most realistic materials, the secular equation of
MST takes the MT form. In the event that the first con-
dition is satisfied, but one or more of the intercellular
vectors violates the second condition, MST is still valid,
but its form is slightly diH'erent from that of mufBn-tin
MST.

We begin with the Lippmann-Schwinger equation
(2 2)

B(r) = 0(r) —/Gr(r, r')V(r')16(r')dr' = 0. (6.1)

0 = ) Jr (rr)) f dS'n ) [Hr (r')'7' —O'Hr (r')] dr(r'„)ar. '

L I I
(6 7)
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Finally, using the expression Eq. (5.23) we obtain

—).Jl. (rp) ) .Cl."L,'I, = 0 (6.8)
LI L,n

The secular equation determining the coef5cients aL now
follows from Eq. (6.8). Since JL, (rp) does not vanish iden-
tically, we must have

) Ci",ial ——0, (6 9)
L,n

which has a nontrivial solution for the aL only if the
determinant vanishes,

det CLp&,
—0. (6.10)

This equation is a computationally tractable, MST sec-
ular equation that is valid for arbitrary cell shapes, sub-
ject, so far as we can ascertain, only to the requirement
that there be a finite region surrounding the origin of
each cell that is within the domain of that cell so that
the argument connecting Eqs. (6.8) and (6.9) is valid.

If the cell geometries are such that iRp„i ) ir'„i for all
values of r'„, we can expand Hi, i(rp) using Eq. (4.8) and
use Eqs. (5.24) and (5.22) to write

CI l, i = Ci L,i~ap ) GI,I,"(Rpn)S uLtL(1 —b„p).

(6.11)

Upon substitution into Eq. (6.10), the last expression
leads immediately to the usual form of the secular equa-
tion of MST.

VII. NUMERICAL RESULTS

In order to demonstrate the validity of Eq. (5.26) and
the variational nature of the energy for its solutions, we

have calculated the energy and the wave function for
some of the k = 0 states of a two-dimensional square
lattice. In this test the individual potentials v„(r) were
taken as a constant Uo within cell n and zero outside.
The cells were squares arranged so as to completely fill
the plane. Thus, although the total crystal potential was

&var =
dr g,",i,(r)H@, i, (r)

drl&-i (r) I'
(7 2)

Uo, a constant which allowed us to trivially calculate the
exact wave function and eigenenergies of the Schrodinger
equation, MST was faced with the formidable task of
representing these functions using the free-space Green
function. Details of the the two-dimensional "empty lat-
tice test" such as the two-dimensional versions of HL, (r),
JL,(r), and Gr.l.i(R) can be found in papers by Butler and
Nesbet and Faulkner. Note, however, that our con-
clusions concerning the validity of MST as determined by
the empty lattice test diRer from those of Faulkner, who
obtained extremely poor convergence in angular momen-
tum and was not able to decide whether or not near-field
corrections are necessary.

Results for the empty lattice test are shown in Table I.
The column denoted by l, shows the maximum value
of the orbital angular momentum used in the expansion
of the wave function. We emphasize, however, that it
is necessary to converge all internal sums if one is to
obtain meaningful results in a test such as this. Thus
internal sums were not truncated at l „, but carried to
full convergence by means of calculating the quantities

I

CLL& through direct integration for the first two nearest-
neighbor shells of a given site. Since the state being in-
vestigated was a state with full square symmetry, only
values of orbital angular momentum evenly divisible by
4 entered the calculation. The column denoted by F, i,
contains the energies for which the secular Eq. (5.26) is

satisfied. We also show the ratio of the error in the en-

ergy {&,~i, —&«~,i) to mean-square error in the wave
function (MSWFE) defined as

f d~lA i.(i') —0- ~(1)I' f d~lg....tl', (7.l)

where the calculated value of the wave function g, i, was
obtained from Eq. {3.10) using the coeKcients a7 ob-
tained from Eq. (5.21). Finally, we show E„„avaria-
tionally refined value of the energy, calculated by using
the Rayleigh-Ritz variation principle with the calculated
wave function

TABLE I. Calculated energies and wave-function errors for the second and third k = 0 states
of a square lattice. The depth of the pot, ential in this example is taken as Vo ———9, and the side of
the square is x. The energy is measured in units of l where l is the unit length. The maximum

angular momentuzu used in the calculation is denoted by l „,while E,„,t and E, &, denoted the
exact and calculated energies and MSWFE denotes the mean-square error in the wave function.

E, denotes the energy calculated by using the calculated MST wave function in the Rayleigh-Ritz
variational expression for the energy. These calculations employed the variational version of MST,
Eq. (5.21).

Eexac t

—5.0
—5.0

K ic

—5.9291847
—4.9999550

MSWFE

6.91x10
7.97x 10

Ecalc Eexact
MSWFE

—3.58
5.65

Evar

-4.906345
-4.999792

—1.0
—1.0

-0.994071
-0.99999989

1.15x10
1.55 x 10

5.15
7.02

—0.978936
—0.9999989
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TABLE II. Calculated energies and wave-function errors for the second and third k = 0 states
of a square lattice. The parameters are the same as for Table I. These calculations employed a
nonvariational version of MST, Eq. (5.27).

Eexact

—5.0
—5.0

Eca~c

-4.0386580
-5.0125155

MSWFE

1.88 x 10
3.39x 10

Ecalc Eexact
MSWFE

5.12
-369.22

Evar

-4.2449788
-4.9996807

—1.0
—1.0

-0.8783834
-0.9992260

1.87x10
1.33x10

65.10
5811.48

-0.9704981
-0.9999960

The calculated k = 0 wave functions can be used in
the Rayleigh-Ritz procedure because they are continu-
ous across the cell boundaries due to their symmetry.
Although their derivatives are not continuous, the contri-
bution to the Rayleigh-Ritz integral from the discontinu-
ity of the wave-function derivatives can be accounted for
by a formula due to Kohnss and Schlosser and Marcus. 4s

The important point to notice is that the error in the
energy is of the same order as the mean-square error of
the wave function, even though both of these vary over
eight orders of magnitude for the difFerent values of l
Furthermore, it is clear that the variational procedure
does not improve the energy over the value obtained
from the secular equation itself. These results may be
contrasted with similar calculations using the version of
the MST equations without the S, Eq. (5.27), which are
shown in Table II. The energy for this version improves
with increasing lm», but not as fast as the mean-square
error of the wave function. For this version, however,
the Rayleigh-Ritz refinement does greatly improve the
energy. The wave functions are of comparable accuracy
in the two versions of MST.

VIII. DISCUSSION

The subject of near-field corrections has caused confu-
sion and controversy for nearly twenty years. It is rela-
tively easy to derive the MST equations for nonspherical
muffin-tin potentials and to postulate that the same form
remains valid for space-filling cells. A more careful con-
sideration of the problem, however, reveals several rea-
sons for doubting that this could be the case. Approach-
ing the problem from the point of view of scattering the-
ory, one soon realizes that a partial wave which is scat-
tered oA' of a nonspherical scatterer does not attain its
asymptotic form within a sphere which circumscribes the
potential. Moreover, if one attempts to use the asymp-
totic form within this circumscribing sphere, it can be
found to diverge. On the other hand, if one approaches
the problem from the point of view of the Lippmann-
Schwinger equation, one quickly faces the problem of ex-
panding the Green function in partial waves while rigor-
ously maintaining the proper conditions on its arguments
to ensure convergence.

It is clear however, that although the considerations of
the preceding paragraph indicate the conceptual difficul-
ties that must be faced in extending MST to treat full cell
potentials, they do not constitute a proof of the existence

) CLL;CL„I,I = bl, L'~
L;

(8.1)

where the internal sum (over L;) is carried high enough
to ensure convergence. In our experience the inversion of
CLLI calculated for the empty lattice test in two dimen-
sions is difficult, but possible. We expect the inversion

of near-field corrections. We plan to show elsewhere
how the conceptual difficulties in the scattering theory
approach can be resolved. In the meantime we hope that
the two derivations of full-cell MST presented here are
sufficiently simple and convincing that the issue of near-
field corrections may finally be laid to rest. Our conclu-
sions in this regard agree with those of several previous
workers 20 22, 24M6

We have addressed the question of whether or not the
basis functions PL, introduced by Williams and Morgan
as analogs to the radial wave functions of muffin-tin MST
can be used to represent the physical wave function of the
system. We were able to answer this question in the af-
firmative. In answering this question it was necessary to
derive the form of the angular momentum expansion of
the Green function for a single nonspherical potential.
We also investigated a question raised recently34 con-
cerning the behavior of the basis functions near the origin
and demonstrated that there is no problem for potentials
likely to be used in electronic structure calculations.

We have pointed out a new feature of full-cell MST.
Some versions of the theory are variational and others
are not. This result is closely related to the issue of in-
ternal angular momentum summations since the various
forms of the MST secular equations can be obtained by
multiplying the variational form S[C—GS]a = 0, derived
in Sec. V by the sine and cosine matrices or their inverses.
For example, the nonvariational form derived in Sec. VI
is obtained by omitting the S from the above relation.
Other forms such as [1 —Gt]b = 0, [t —G]c = 0, and
[t, —tGt]d = 0, where t = CS i, can be derived by (for-
mal) multiplication of [C—gS] by the appropriate factors
of the sine and cosine matrices. We speculate that if the
internal summations are converged, the forms of the sec-
ular matrix which are symmetric will yield a variational
energy and the others will not.

It is important to realize that the inverses of sine and
cosine matrices must be interpreted in the generalized
sense, e.g. ,
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of SLLI to be much more difficult and probably not even
possible for some potentials. One alternative to inverting
these matrices is to calculate the t matrix directly. This
should be straightforward at positive energies by a simple
modification of the procedure used to calculate t and S.
The direct calculation oft, which would be very useful
for the application of the CPA, seems to us to be much
more difBcult.

Since the objective of this paper is to establish a firm
theoretical foundation for full-potential MST we have
emphasized some of the subtleties that can arise when
the potential deviates greatly from the muffin-tin form.
In many practical calculations that use potentials that
are nearly of the muffin-tin form and that use relatively
small values of lm~„ the effect of subtleties such as the
convergence of internal sums and nonvariational energies
may be quite small. This is especially true if the zero of
the potential can be chosen to lie at the corners of the
cells so that the potential is very small for those points
at greatest distances from the origin. Even when this is
not done the results may be quite acceptable. Faulkner
compared the energies calculated for a muffin-tin poten-
tial for paramagnetic fcc nickel with the energies obtained
after the potential had been shifted by a constant A.
The root-mean-square error expressed as a fraction of
this shift was approximately 5%. More recently Nichol-
son and Faulkner applied a similar test to a potential
for bcc Nb. For the three energies that were compared
the maximum error (again expressed as a fraction of the
shift) was approximately 1%. These calculations used
square matrices and l „=4.

Finally we would like to remark that the procedures
that we have described here should be very generally use-
ful for solving linear partial differential equations. MST
can be viewed as a technique for fitting together local
solutions to a partial differential equation to obtain a
proper global solution satisfying all boundary conditions.
The procedure has already been used to solve the Pois-
son equation and it is clear that it could be used to
solve the inhomogeneous wave equation. In order to ap-
ply this technique to a linear partial differential equation
one needs to be able to generate local solutions to the
equation and one needs a Green function for a related
simpler equation which can be expanded in spherical har-
monics at any point in space.

APPENDIX

Here we show that the Green function for a non-
spherical potential can be constructed in the form

G(r, r') = ) [ PL, (r)FI,(r')e (r
' —r)

+&I (r') FL (r)e(r —"')] (Al)

where Pi(r) is a solution to the Schrodinger equation,
which equals Ji(r) as r ~ 0. This is the only bound-
ary condition which we apply to Pr, (r) that is calculated
within a sphere of radius R using Eqs. (3.10), (3.13), and
(3.14).

The function Fl, (r) is also a solution to the Schrodinger
equation which is, however, irregular at the origin. In
order to determine the function F we investigate the form
of the Green function. If the potential vanishes for r )
R, we know that the Green function can be written, for
r & R, r' & R, and r' ) t. , as

F (') =).[C '(R)] H (') (') R) (A3)
Ll

where the t matrixtll. is given by S(R)C (R). We as-
sume here that the cosine matrix CL, il, (R, E) can be in-
verted. This should be possible if E is not a bound-state
energy for a single potential. FL satisfies the integral
equation

R
FI (r) = al Hi (r) + dr'Go(r, r')V(r')FL(r'), (A4)

where n is to be determined so that the boundary condi-
tion Eq. (A3) is satisfied. The result is that FI,(r) may
be written in a form analogous to Eq. (3.10)

FL (r) = ).[CLI (r)JI (r) + SI.L, (r)Hl (r)], (A5)

where C and S are given by

G(r, r') = ) JL, (r)HI, (r') + ) Hl, (r)&I.L Hr, (r'),
L,L'

(A2)

which by comparison with Eqs. (3.10) and (3.22) yields,
fore'& R,
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CL'I (r) —~L'I, dr'HI. (r') V (r') PI.(r'), (A8)

r
SL, r, (r) = dr' Jl, (r') V(r')Pl. (r') (A9)

SII.'(r) = CI I I (R) — dr'FL, (r') V(r') Jii (r'). (A7)
r

For reference we also give the analogous expressions for
CL, I and SL, I, which are used to represent PL, (r) in
Eq. (3.10),
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Thus if Eq. (Al) is to be valid, the Green function for
a nonspherical potential must be expressible in the form

G(r, r') = ) ( JL(r)[C(r)C(r')]LL JL (r')
L,L'

zL(r) —) 4L'(r)CL L(H)
Ll

R
= JL(r) + dr'G(r, r') V(r') JL(r').

0
(A22)

+JL(r) [C(r)s(r')]LL HL (r')
+HL( )[S( )C( ')]LL JL ( ')

+HL(r) [s(r)s(r')]LL HL (r')), (A10)

where the square brackets with the LL' subscripts indi-
cate the LL' matrix element of the product of two sine
and cosine matrices. Now we know that the Green func-
tion may be expressed quite generally in the form Hvyi

i
FvH I,

0 )&, )' (A23)

These may be derived by verifying that they satisfy the
Schrodinger equation and the correct boundary condition
at R and at the origin, respectively. We will also use
Eq. (Al).

We use a shorthand notation since the manipulations
are lengthy. We also take r' & r:

G(r, r') = Go(r, r')

+ dry dr~ 0r ri&ri, rg 0r2 r',
cc=f FVH —f f HVGVH, (A24)

which leads directly to

G(r, r') = ) [ JL(r)gLL, (r, r') JI. (r')

(Al 1) cc= f"HvH+ f"f"HvcvH

HV VH, (A25)

where (for r' ) r)

+JL(r)gLL (r ")HL (r')
+HL(r)gLL, (r, r') JL (r')
+H, (r)g,",", (r, r') H, .(r')], (A12)

(A26)
R Rcc=f f HtH=g

R
CS = Ca+ HVP C~ — FVJ, (A27)

gLL (r r ) — dr1 dr2HL(r1)&(», r2)HL'(r2),
r r'

(A13)

R r'

gLL'(r r ) — drl dr2HL(rl)t(r1 r2) JL'(r2)
r 0

(A28)

R R R R
CS = 1+ HVZ- FvJ+ HVGV J

r rl 0

HV VJ,

+~LL' 2 (A14)

R
gLL, (r, r') = dr1 dr2 JL(r1)&(r1, r2)HL'(r2),

0 rl

r r'

gLL (r, r') = drl dr2JL(rl)~(rl r2) JL'(r2).
0 0

(A15)

R R
CS = 1+ HVJ — HVJ

f, J.
"

J. f, .
"-

+f f —J f ~HVGVJ,

(A29)

(A30)

FL(r) = HL(r) + dr'HL(r') V(r')G(r', r),
0

(A21)

(A16)

Thus the validity of the Green-function expansion,
Eq. (Al), will be established if the following can be ver-
ified:

[C( )C(")]... = g::(,"), (A17)

C(r)s(r') „=.gLI. (r r') (A18)

S(r)C(r') „.= gI.I'. (r r') (A19)

[S( )S(")]„,=.::(,") (A20)

The following relations will be useful in working with CC,
CS, SC, and SS:

R r'
CS= 1+ HgJ JH

0

SC = JV FVH,

Hc = f J JVGVH,

R
SC= J~H =g ',

r f a
SS = JVQ CR' — FUJ

)
SS = JVZ — JVGVJ,

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)
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SS = f JVJ+ f f JVGVJ —f f JVGVJ, HH (A39)

SS = JVJ+ JVGVJ,

(A37)

(A38)

We have also verified directly that [7 + F —V(r)]
applied to the Green function in the form of Eq. (Al)
yields b(r —r'). Using the fact that both PL, and FI,
satisfy the Schrodinger equation we have

['7 + E —V(r)]G(r, r') = ) FL,(r')7' ['7&1.(r)8(t' —r) + QL(r)r78(&' —&)]
L

+) P L(r')'7 [7FI.(r)8(r —r') + Fr, (r)78(r —r')]
L

= ) Fl, (r')[2V'PI. (r) 78(r' —r) + PL, (r)V' 8(r' —r)]
L

+) Pi. (r')[2'VFL, (r) 78(r —r') + FI,(r)7 8(& —r')]

+) p (rr')
l

2 Fl.(r)S—(r —r') + FI.(r) &(r —r—') + Fl.(r)S'(r —r')
I

.
Br p

(A40)

Consider the two terms involving 26(r —r') Subst. itution for $L, and FI, from Eqs. (3.10) and (A5) yields

p(r —r') —) YL, , (r')YI., (i)(ji, («)ji, («)[CC —C C ]I„r,, + hi, (irr)hi, (~r)[SS —S S ]L,l.,
L1,Lg

+ji, (~r)hi, (iver)[CS —C S ]I.,r, , + hi, (Kr)ji, (~r)[SC —S C ]I.,I.,}, (A41)

C, S, and S, are evaluated at argument r, and we have used the superscript T to denote the matrix
transpose. We have also incorporated a factor of —iz into the spherical Hankel functions hi(&&)
expressions for these quantities it is clear that CC —C C and SS —S S va»sh and that CS
Thus this term vanishes.

Now consider the term involving the derivative of the b function. This generalized function is only meaningful when

it appears as a factor in the integrand of an integral. Thus we investigate the integral

f«r'f (r) ) .[4z, (r') Fi.(r) WL(r) FL(r')]~'(r —r').
L

Integration by parts gives

(A42)

dr r f(r) ) [PL(r')Fl, (r) —PL(r)Fr, (r')]b(r —r') — dr [r f(r)] ) [P—r(r')FL, (r) —PL(r)FI(r')]b(r —r')
OT

L r IL r' 6 ~ —~'. A43
8TBP'

The first two integrals above vanish for the same reasons as expression (A41), with the result that the term involving
b'(r —r') in Eq. (A40) is equivalent to —

2 of the first term in that equation.
Thus we have

(A44)

Substituting for $1. and FL, in terms of C, S, C, and S, as was done in the evaluation of (A41), and using again the
«lations CC —C C = 0, SS—S S = 0, and CS —C S = br„r„, together with the Wronskian relation satisfied
by the spherical Bessel and Hankel functions, we obtain

P7 + E —V(r)] ) PI(r&)FL, (r)) = ) Yl. (r)YI, (r')b(r —r') = 6(r —r'). (A45)
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