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We present a general theory of the metal-insulator transition based on the formal introduction of an
auxiliary irrotational gauge field and the subsequent behavior of the system in response to it. Corre-
spondingly general scaling relations are derived which determine the point of transition at a critical
value of the controlling density in terms of a series expansion with respect to a coupling constant. Func-
tional integral techniques are also used to show the relation of this transition to a density-fluctuation in-

stability. Finally, an interpretation is given of the transition in terms either of condensation of gauge bo-
sons or, alternatively, in terms of the appearance of an additional geometric phase, an interpretation that
is valid for quite general condensed-matter systems.

I. INTRODUCTION

The detailed microscopic understanding of the metal-
insulator transition' remains one of the most important
problems in theoretical condensed-rnatter physics, and in
spite of several decades of effort ' a satisfactory many-
body theory of this phenomenon is still lacking. The sim-
plest realistic system to consider is a canonical, neutral,
many-body system of electrons and nuclei with mutual
Coulomb interactions. We will limit discussion to the
ground state of such a system, and imagine variation in a
single quantity, the thermodynamic density, as the sole
parameter controlling the onset of the transition. An im-
mediate simplification is the consideration of only a sin-

gle charged component but placed in a uniform rigid
background of opposite sign. In this paper, we propose a
general theory of the transition for the one-component
problem (the extension to a two-component system is
based on the general treatment of Appendix A and will
be given later ), and we will also present calculations that
can in principle determine the density of its occurrence.

To characterize the phase at fixed value of the control-
ling parameter, whether metallic or insulating, we need to
examine how the system responds to an applied electric
field E, i.e., whether it is conducting (the corresponding
response current density JWO) or not. Experimentally E
can be established through the application of a time-
dependent vector potential A( t ) and/or a space-
dependent scalar potential A o(r) to the system. It is con-
venient to begin the discussion by first setting AO=O.
Moreover, we can imagine the remaining vector potential
A(t) to be turned on slowly, from t = —oo. For a non-
relativistic system a linear-response determination of
both the real and imaginary parts of the conductivity in
the static limit then shows ' that the parameter t, al-
though physically important for the establI'shment of A,
is actually no longer formally important. We may there-
fore draw conclusions about the response of the system
merely from a consideration of the dependence of its en-

ergy on the magnitude of A, at least in the limit A ~0.
Accordingly, to begin the analysis we take the convenient
limit of static A, which clearly corresponds to a vanish-
ing E. This case also allows us to treat the system as be-

ing in equilibrium, with no dissipation permitted.
The basic formal element is therefore the introduction

of an auxiliary vector potential initially considered exter-
nal to the system (later we take it as part of the system).
Its form also will be chosen so that it induces neither a
magnetic nor an electric field; its presence then serves
only as a "detector" of the transition. Experimentally,
the establishment of this vector potential always proceeds
in a finite time through some time-dependent magnetic
Aux outside the system, and this will generally lead to a
finite current J through electromagnetic induction. The
phase of our system, whether conducting or nonconduct-
ing, is characterized through the value of this current.
The metallic state will be defined as a current-carrying
state (JAO); otherwise, the complete lack of net induc-
tion (for which J=0) will define an insulating state.

The arguments now to be presented are quite general,
and proceed in stages. In the first stage, we introduce
just a static vector potential A, but so chosen that
VX A=O. Following Kohn, we stipulate that the sys-
tem possesses a macroscopic but finite ring topology, and
A is then to be associated with a magnetic Aux permeat-
ing the region physically inaccessible to the particles (the
hole of the ring). Alternatively, we could imagine a sirn

ply connected but initially finite space with a constant A,
a situation that corresponds to the magnetic Aux being at
infinity. Here it must be understood that the possible es-
tablishment of a current must occur first (in the system
with the ring topology), and only later is the thermo-
dynamic limit to be taken (N~ ca; V~oo; N/V~n);
that is, a part of the ring is subsequently allowed to in-
crease so that its volume fills the whole of space. A cri-
terion for the establishment of the insulating phase is
then the independence of the energy of the system on the
value of A, at least in the limit A ~0. A nonvanishing
dependence on A would signal the transition to a metallic
phase. Kohn showed this for a metallic state in terms of
a mutual incompatibility that exists between a gauge
transformation that could remove the A dependence (it
actually does in the case of an insulator) and the single-
valuedness condition of the many-body wave function
when we circumnavigate the ring (essentially the
Aharonov-Bohm effect ). We will prove here a similar
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but more general criterion for the simply connected
space, and by treating A as the total (external plus in-
duced) vector potential. In the case of the metal we will
show that the A dependence of the ground-state energy
induces a current which, through its interaction with the
vector potential, has exactly the value required to pro-
duce this A dependence of the energy. We also derive
general scaling relations for the charged system in the
presence of a vector potential and use them to determine
the point of transition through a series expansion in the
coupling constant e . At the lowest nontrivial order, a
random-phase approximation approach yields the metal-
insulator transition at r, 0=61.7 for the electron-gas

problem.
In the second stage of the argument, we return to the

more general case in which the gauge field has a fourth

component, namely the scalar potential Ao', once again, a
spatially independent Ao will first be used as a limiting
case of zero electric field. A functional integral treatment
for fermions and the associated introduction of a plasrnon
field (t then leads to a criterion of the metal-insulator
transition that can be written entirely in closed form, as a
summation over P. We also provide an alternative but in
fact simpler criterion by taking advantage of the similari-
ty in appearance of P and A o in the action functional and
through the use of charge neutrality. In both criteria,
our controlling parameter, the density, enters only impli-
citly. The latter criterion, however, provides a direct
connection between the metal-insulator transition and the
instability (in a mean-field sense) of the plasmon field.

In the third and final stage of the argument, we view
the four-component gauge field as a part of the system it-
self, with no external contributions, and we quantize it.
The resulting theory shows that the transition to the me-
tallic phase already identified in stages 1 and 2 can actu-
ally be reinterpreted as condensation of Goldstone, and
what are referred to as "ghost" bosons in certain regions
in real-space time. We show how this result is connected
with an alternative interpretation of the metallic side of
the transition, in terms of the appearance of a geometric
phase. This phase appears as a generalization of Berry's
phase and it is related to the adiabatic parallel transport
of the center of mass of the physically accessible region of
the system around the underlying ring. The appearance
of this phase should actually be expected from Kohn's ar-
gument, in view of the known relation between Berry's
phase and the Aharonov-Bohm effect.

As can be seen from the above, we actually achieve a
mapping between the macroscopic ring problem and the
charged system in a simply connected space, as a result of
which the holonomies of the first are associated with the
metallic state in the second. And, as will be seen below,
we are led as a consequence to new ideas and interpreta-
tions of the metal-insulator transition in addition to some
new formal procedures for the location of the density of
i.~ ~cc-.~nerve. in.d~-.@aged sysKnzs-. —-

II. GLOBAL GAUGE SYMMETRY

Our criterion for the establishment of the metallic
state, namely the A dependence of its energy, is a mani-

festation of global gauge symmetry breaking through the
underlying Aharonov-Bohm effect for the delocalized
state. The very existence of this criterion can itself be
traced to an insufficiency of the conventional form of
gauge invariance and it arises because of an additional
"surface term" associated with the ring topology; it is
crucially related to correct order of limits. This term is
omitted in conventional derivations' but, as will be seen
below, it is important, and fundamentally connected to
the experimental definition of insulators and metals.

In more detail, introduction of a general external gauge
field ( A'", A 0" ) induces a current that can be written in
closed form' in terms of current-current and current-
charge-density-response functions HAJJ and yJ . A gauge
transformation A'"~ A'"+ VA and A o"~ A 0"
—( I/c)(aA/at) then changes the induced current by

co —(V—A);+ fdt'dr'yj J (r, r', t t') V—'A(r—'t')

+ f dt'dr'yJ (rr', t t')—1 dA(r't')
c at'

Integration by parts with respect to time and space and
use of Ward identities and causality cancels out all of
these terms except for a surface term, namely

This term is frequently discarded by making the assump-
tion that A vanishes on the boundaries. However, for the
ring topology, and especially for an experimentally
motivated process in which the thermodynamic limit is
taken by first making the inner radius very large (so that
the system becomes a cylinder) and then taking the outer
radius to infinity, the surface term is generally nonvanish-
ing. This is especially so for those parts of S' that can be
identified as what were formerly the cross sections of the
ring. After proceeding to the thermodynamic limit, these
parts are sections through which charge can "leak" to or
from a compensating region at infinity along the conduct-
ing direction [see Fig. 1(b)].

The above transformation and argument are very gen-
eral. In our case of zero magnetic field (and irrotational
vector potential) we can take A'"= Ao"=0, A=VA, and
Ao= —(I/c)(BA/Bt), i.e., quite generally we can view
the imposition of the gauge field as a pure gauge transfor-
mation. Kohn takes A ~ A. g, r, and we see immedi-
ately that if we have a conducting state, the above surface
term is related to the physical transport of the center of
mass of the simply connected component around the ring
(or along the conducting direction), as will also be pro-
posed in Sec. V.

If this essential finiteness of the (experimentally re-
quxreu~ rrng Iopufa~ is not taK861hto account oejore taK-
ing the thermodynamic limit, then, in addition to the ob-
vious experimental problem of how such a current could
ever be established, a forrnal theoretical problem also
arises: for AD=0 the taking of the thermodynamic limit
first would give
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J, (r, to)= fdr'[yJ J (rr', co)
t J

A)(r', co)—co 5(r —r')5;, ]

III. SCALING RELATIONS

Imagine a single-component system of particles with
mutual Coulomb interactions and immersed in a uniform
inert background of opposite charge (in simply connected
space). Also introduce a constant and static vector po-
tential A but, as indicated above, so chosen that its pres-
ence produces no physical effects. It enters into the
Hamiltonian through a "minimal substitution, " i.e.,
p~p —(e/c) A only. Here A is understood to be the to
tal (external plus induced) vector potential. By taking
derivatives with respect to various parameters of the
Hamiltonian (a method that we have applied in the past"
to a different problem and described for both a two- and a
single-component system in Appendix A) we obtain the
following expression which we emphasize is exact for the
ground state and also independent of state symmetry:

d E 1 (T) E 1 V 1+—+———A J, (1)
dr, N r, N N r, Nc

where J=—(e/V)(g; I [p; —(e/c)A]/m] ) for a single
component. This expression shows that the case of an
insulator (J=0}is equivalent to the absence of A and in
this case we recover both the known scaling relations and
the virial theorem. " The charged system in the insulat-
ing phase therefore does not feel the presence of A, at
least so far as the energy is concerned. This result is in-
dependent of the structural properties of the phase and is
valid for arbitrary values of A. It is in agreement with
Kohn's results, although it is perhaps more general,
since it is not a result of perturbation theory in A. We
also see that in the case of a metal the A dependence of
the energy arises exactly from the interaction of the es-
tablished current with A. This result generalizes previ-
ous work based on noninteracting particles. '

Expression (1) leads to the following scaling relations:

f(mr, ;Ar, ) g(e r, ;A r, )

N r, r2
(2)

which are derived in Appendix A together with their
two-component analogs. These relations can be used to
locate the point of the metal-insulator transition (for
A ~0) from the high-density behavior r, ~O (for any A)
but under conditions where, for example, we take m ~ Oo

in such a way that mr, remains constant. At which side

with limk OyJJ(k 0) cop+0(k ) for an isotropic time-
reversal-symmetric medium. It always gives a vani. shing
current and a conducting state would not then even be
formally possible. It indicates the importance of taking
due theoretical account of the ring topology before the
thermodynamic limit is subsequently taken, and links ob-
viously to the experimental requirements for establishing
currents.

rp+0
ap

e A

mc

where ap =A' /me and 2rp is the mean distance between
two electrons. To lowest order a random-phase approxi-
mation (RPA) calculation of the correlation energy gives
a =

—,
' and P= —

—,'(4/9~)'~ [(1—In2)/~ ]r, . This is

shown in Appendix B by going through the calculation of
the RPA correlation energy but now by translating all
wave vectors by —e A/cA. If we retain only these first
two terms, the coefficient of A vanishes at r, p=61.7.
According to our criterion, this is the next correction to
the "critical" value of r, = Oo of the noninteracting case
(a metal at all densities, as expected), and it should be
reasonably close to the metal-insulator transition for the
case of very small coupling (i.e., for e=0). However,
higher corrections are crucial in locating the point with
precision, as can be seen from the fact that the A depen-
dence does not identically vanish at lower densities in this
approximation. We note at this point that the corre-
sponding relativistic problem for a ring of finite cir-
cumference shows a metal-insulator transition eUen at the
noninteracting level. But in this case, it is a conse-
quence of the equivalence of space and time coordinates
that the spatial ring topology must be accompanied by a
corresponding time ring topology and this necessitates a
time-dependent gauge field or a nonzero electric field. In
this case a "ring" corresponds to an increase of the mag-
netic Aux at infinity by a Aux quantum, and in this case
dissipation must be treated as part of the problem. This
can be done through an appropriate manifestation of the
arrow of time, which can be viewed as the time-reversal
symmetry breaking analogous to the spatial breaking of
the right-left symmetry in the case of a current.

In the other important limit of very low densities, we
expect a broken symmetry spatial state, namely a crystal.
This can be expected either from the theory of freezing of
a classical plasma in combination with the correspon-
dence principle, or directly from the quantum theory of
the Wigner crystal. (Alternatively a more formal
justification is discussed in Sec. IV.) The first approxima-
tion to such a state is a harmonic solid with an energy

E(m, A) a(A) P(A) me

N r / mS S

1/2

Ry .

For the Wigner crystal at zero gauge field the values of
the constants are a( A =0)= —1.79 and P( A =0)=2.65.
It is straightforward to show that this state must also be
insulating and in fact it can be directly proved by the use
of the "harmonic-oscillator virial theorem, "which states

T(m)= U(m) U( Oo }=—,'[E—(m) E( ~ )], —(4)

of the transition we find ourselves depends on the value of
this constant. Use of (2) also gives the following series ex-
pansion:

2
E E(A =0) "o "o

N N ao ao
3
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where T and U are the ground-state kinetic and potential
energy, respectively. Combination of (4) with (1) shows
that the term proportional to A.J is identically zero,
demonstrating therefore that by the same criterion as
used above this state must be insulating. [We do not dis-
cuss the possibility of a collective current of the charge-
density-wave (CDW) type (e.g., a sliding crystal), since
this would require a finite electric-field threshold and
considerations of pinning mechanisms not present in our
fundamental Hamiltonian. ] The presumption is that the
metal-insulator transition accompanies a structural tran-
sition to an ordered state. Though the expectation is a
transition to a crystalline state, there is no proof so far
that a nondiffusive disordered state (such as a Coulomb
glass) can be ruled out.

IV. FUNCTIONAL INTEGRATION

As indicated above, the next step of the argument is to
introduce a static scalar potential AD and again take the
limit of zero spatial variation. This new field component
also leads to no physical consequences; rather, it is again
a formal device whose purpose is to "detect" neutrality
(or charge conservation), as we will see below. From Sec.
II it can be shown that the case of fixed gauge choice
AD=0 that was used above is entirely equivalent to the
more general case A&%0, and the criterion for the
metal-insulator transition therefore still applies (this is
true eve with the incLusim of the surface tc.re. Next
we introduce a functional integral method, ' which we
recently used' to describe two-component pairing; the
essential difference here is the addition of a four-
component constant gauge field as part of the action.
Again, it enters by the "minimal substitution, " namely
p~p —(e/c)A and ih'(8/Bt)~i'(a/at) —eAD. If we
first start from the high-density region, we may apply a
Hubbard-Stratonovich transformation' of the density
type; this yields a description in terms of a plasmon field

From the above discussion the criterion for the
metal-insulator transition will then be

5 „5s „5's
5A;(1) 5A, (1) 5A (2) f 5A, (1)5AJ(2) '

i j%0.
An expansion around A=0 gives an action functional of
the form

'2

S[P, A]=S[P, A=O]+ f dt fdr p[r, t]—
2 mc

which possesses a form familiar from recent discussions
of mesoscopic systems' ' (where finite temperature gen-
eralizations are given), but which is appearing now with
the "superfiuid density" p[r, t) being proportional to a re-
normalized density of conduction electrons in the metal-
lic state. In fact, it is easy to show that in the case of
noninteracting ferrnions of density n we would immedi-
ately have p[r, t]=n The stat. ic and long-wavelength

5S
5A0(1)5AQ(2)

' l2
5$(1)5$(2)

Since 5 S/5$(1)5$(2) is just the inverse plasmon propa-
gator, ' we immediately expect a connection to the insta-
bility of the plasmon phase described by the divergence of
the plasmon susceptibility at q~O. Indeed, application
of (6) on the action (5) yields the final result

8 p ~ g G(p, co; A=A&=0)
BAD A, A 0

XG(p, co; A= AD=0), (7)

where G is the propagator of electrons moving in the full
plasmon field P(p, co). Its form can be concisely written
as G '=GD ' —eP, in terms of the Green's function GD
for noninteracting electrons. Expression (7) can now
serve as a closed form of an alternative criterion for the
location of the metal-insulator transition: When the left-
hand side is nonzero we should have a metallic phase,
and when it vanishes we should have an insulating phase;
its dependence on the controlling parameter (the density)
is entirely implicit.

Equation (7) shows that the metal-insulator transition
occurs at the density where the static and long-
wavelength limit of the proper polarizability II*(q,co)
[i.e., the right-hand side of (7)] vanishes. By the compres-
sibility sum rule, ' it is also the point where the cornpres-
sibility vanishes. This is in agreement with, and in fact
generalizes the recent result for 1D electron liquids,
namely that the current-carrying effective mass [which is
inversely proportional to the coefficient of A in (3)] is in-
versely proportional to the compressibility. The above
result is also consistent with very general dielectric

limit p of the Fourier transform of p[r, t] can be given en-

tirely in closed form' in terms of the propagator G of the
electrons in the absence of A, and its vanishing can
therefore also serve as a criterion of the onset of the
metal-insulator transition. However, the crucial
difference in the physics of our problem from these ap-
proaches is also manifested formally: we do not minimize
S with respect to A; rather, we exploit the properties of
J;=5S/5A;, and any such minimization would only be
formally equivalent to the case J=O (which in the treat-
ments of mesoscopic systems is associated with the
Meissner effect, ' and in fact leads to fiux quantization).

There is, however, an alternative way of deriving
5 p/5A 0 (rather than p itself), and this proceeds by mak-

ing use of neutrality. Let g be the total electronic
charge; then clearly for our canonical system

5Q 5 fd 5S
5Ac(1) 5A0(1) " 5AD(2)

5S
5AQ(1)5AD(2)

(6)

But because of the manner' in which P enters in S we
can show that
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and conductivity arguments; we know, for example, that
E(q=O, co)=1+(4mi/co)or(q=O, co), and also e(q, co)
=1—(4me /q )II (q, co), so either the divergence of
e(0,0) [through a nonzero II*(0,0) in the metallic phase]
or the finiteness of o (0,0) in the static limit, directly relate
a dielectric catastrophe of the low-density phase to the
metal-insulator transition and to the nonvanishing of (7).

We have also shown that such a dielectric catastrophe
criterion for a simple low-density phase of hydrogen
atoms (the Mott problem, which, however, is quite
different from the problem of the metal-insulator transi-
tion in the Wigner crystal) yields the metal-insulator
transition at a value r, —1.7, which is close to Mott's
value for a Thomas-Fermi potential (which is 1.72 ac-
cording to accurate numerical work '). Finally, we will
report that through the use of Ward identities a relation
similar to (7) can be established for the general problem
with time- and space-dependent gauge fields. The vanish-
ing of (7) then actually coincides with the vanishing of p
itself, thereby placing the connection between the metal-
insulator transition and the dielectric catastrophe on
firmer grounds. It appears that this transition can also be
connected to the possibility of translational symmetry
breaking along the conducting path. In the case of such
a symmetry breaking it is indeed possible to show that
the projection of II* along the conducting direction van-
ishes, in agreement with the above discussion.

The above arguments are easily generalized to two
components (for example, the ionic crystal case);
specifically, it can be shown that ionic fluctuation is cru-
cial in precisely fixing the point where the transition
occurs. This fluctuation appears in the definition of II*,
which now includes both components. Finally, a finite-
temperature generalization is readily available in the
functional integral language, so that the metal-insulator
transition can actually be studied by functional many-
body techniques for nonzero temperatures as well.

V. GAUGE BOSONS; BERRY'S PHASE

Lastly, we comment that a treatment of the four-
component gauge potential as a dynamical variable on a
quite equal footing with the charged particles in simply
connected space, combined with the subsequent quantiza-
tion of the total system through the canonical method,
appears to offer another interpretation of the metal-
insulator transition. In order to quantize canonically, a
field conjugate to A 0 must be introduced from the begin-

ning in the Lagrangian density. Its quantization then
produces Goldstone and "ghost" bosons, but they never
actually become observable under ordinary cir-
cumstances. In fact, these bosons merely control the "es-
caping" of charge from the physical region to what, in
the Gupta-Bleuler theory, are referred to as "unobserv-
able parts" of the Hilbert space. These parts are actually
the compensating parts of the rest of the ring [Fig. 1(b)],
which are formally at infinity after the thermodynamic
limit is taken. But when the Goldstone and "ghost" bo-
sons "condense" in the sense of the standard Bose trans-
formation method, a condensation which corresponds

to a displacement of the gauge boson fields by c number
functions f (x) and of the classical gauge fields by a„(x),
then we have two distinct cases to consider. First, iff (x)
should be completely regular, then the condensation is
equivalent to a pure gauge transformation, and in such a
case any change of the gauge potential can be simply
"gauged away" without the introduction of any physical
effect. We suggest that this is exactly the case of the insu-
lator as envisioned by Kohn, an interpretation that is
strengthened by the fact that in this situation the current
is zero because of an exact cancellation, namely
(e/c)a„(x) —A'Bg(x)=0. If, however, f (x) should pos-
sess singularities, and here we might imagine that it is not
single valued around the underlying ring, these cancella-
tions are then incomplete. It is this situation that leads to
a finite current, and it is also for this case that the con-
densation of the gauge bosons is known to produce mac-
roscopic phenomena. Such phenomena have been dis-

cussed in the past, and always appear to be associated
with the "escaping of charge" either to infinity or to
boundaries. What we propose here is that the establish-
ment of a current, when we pass to the metallic phase, is
also a macroscopic phenomenon (related to the "escap-
ing" of charge associated specifically with the underlying
ring topology) and is controlled by the condensation of
the same gauge bosons. This now establishes a mapping
between the simply connected space and the experimen-
tally motivated ring topology. Correspondingly, the
gauge bosons in the simply connected space are mapped
onto the Goldstone bosons associated with the symmetry
breaking accompanying the imposition of ring periodicity
on the system [see Fig. 1(a)]. Then the condensation of
the gauge bosons is mapped onto the condensation of the
Goldstone bosons. The physical picture above therefore
views the conducting state as "distortion" of the electron
system, in exactly the same way that the distortion of a
lattice can be described by condensation of acoustic pho-
nons with a singular displacement f (x). [A regular

f (x) would just produce sound waves. ] The singularity
of f (x) is closely related to the self-consistent appear-
ance, in the conducting state, of the magnetic flux

through the physically inaccessible region. The current is

then, for the corresponding simply connected problem,
precisely the macroscopic object necessary to reconcile
the gauge symmetry breaking with the gauge invariance
of the Heisenberg equations for the fundamental electron
fields.

Finally, it can be shown that the additional f (x) as-
sociated with the Bose condensation induces a corre-
sponding additional phase on the electron field operators.
Again, for f (x) regular this phase can be gauged away in

the case of the insulator, but for f (x) singular it is non-
trivial in the case of the metal. This nontrivial phase is
the analog of the Burgers vector for the "distorted"
electron system, but with the important difference that in

the case of the metal-insulator transition the topological
constant is not quantized; actually, it can be shown to
be equal to the underlying Aharonov-Bohm phase, a re-
sult that ties in nicely with Kohn's original arguments.
An additional element, however, is that the phase
possesses a quite simple geometric origin having to do
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with the slow parallel transport of the center of mass of
the system around the underlying ring. This can there-
fore be seen as a generalization of the well-known Berry's
phase, and has been discussed recently in the context
of transport of a single particle along a ring; we see here
its natural generalization to the many-body system and to
the metal-insulator transition (see also Sec. II).

There are other recent studies that lead to results en-
tirely consistent with our propositions in this section. An
example is the gauge symmetry breaking due to nonin-
tegrable phases by a mechanism due to Hosotani, but
the detailed connection requires additional investigation.
We are also examining further the connection of the
above propositions to recent theories that relate a
current-type Berry's phase with time-reversal symmetry
breaking and with motion of phase singularities. The
first establishes a source for dissipation, and the second
views the passage to the insulating state as the pinning of
singularities on the physical system (rather than on the
physically inaccessible region). Because at the points of
phase singularities the amplitude of the wave function
must vanish, this viewpoint is completely consistent with
Kohn's notion of disconnectedness of the many-body
wave function in the insulating state.

(0)

VI. CONCLUSION

By way of conclusion, a major result is that we have es-
tablished a mapping between a charged system in simply
connected space, and the same system derived from a
macroscopic ring topology by the proper taking of a ther-
modynamic limit. The transition to the metallic state can
be viewed as the breaking of global gauge symmetry
through the appearance of a nonintegrable phase. In this
way, a connection between the metallic state and the
holonomies of the system is established.

Viewing the ring periodicity as an ordered state (in the
same sense that the periodicity in a crystal is an ordered
state) the subsequent breaking of this order, i.e., a distor-
tion, proceeds through the condensation of the Goldstone
bosons associated with the symmetry breaking that actu-
ally generated the order. In the case of the crystal, singu-
lar condensation of phonons produces dislocations; in the
case of the simply connected region (that was mapped to
the ring topology), singular condensation of gauge bosons
produces current (see Fig. I). The connection of the
metal-insulator transition with the condensation of gauge
bosons (especially the Goldstone ones that are the
phasons relevant to superconductivity) may hide some
profound and even deeper relation between the metal-
insulator transition and superconductivity, a relation that
may be relevant to the phenomenon of the high-T, super-
conductivity. Finally, the identification of the metallic
state with the holonomies of the corresponding charged
many-body system will undoubtedly offer formal advan-
tages and calculational power (in the precise location of
the metal-insulator transition) in the future, since the
subject of quantum gauge field theories in multiply con-
nected space is currently under intense investigation.
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APPENDIX A

(b)

FIG. 1. (a) Equivalent impositions of the ring periodicity; all
give the same physical system, i.e., one living on a torus but ir-
respective of where the "cut" is placed, and in consequence
there are always gapless (Goldstone) bosons associated with this
degeneracy. This will be true for any problem with ring topolo-
gy. The singular condensation of these bosons produces a dis-
tortion and hence a displacement (generally time dependent)
around the ring. (b) After the taking of the thermodynamic lim-
it (b~ ~ and then a~(x) and L~ ao ) and after excerpting a
simply connected (shaded) region, these Goldstone bosons map
onto "gauge bosons. " The corresponding singular condensation
of gauge bosons produces the current in the simply connected
space. The mapping between the condensation of bosons in a
ring and in a simply connected space leads to an alternative in-
terpretation of conduction in the simply connected space in
terms of Berry's phase, the latter being associated with the
physical transport of the center of mass of the shaded region
around the corresponding ring.

2

(Al)

We rescale all variables using

Tp a= ap
me m~

Consider the ground state of a neutral system of N pos-
itive charges (e) with mass m and 1V negative charges
( —e) with mass m, (considered as point particles) in
volume V and in the presence of a static and homogene-
ous gauge field A= Ax (x is supposed to be along a pos-
sibly conducting direction). Omitting relativistic correc-
tions the Hamiltonian of this system is

[p, , —(e/c) A] & [p; +(e/c) A]H=g ' +g
=1 2me 2m'

2 2
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M=m, +m, m= memp V= Vrp I rpr Ip rprp
3

p, =Rp, /ro, p =Pip /ro .

and introduce r, p, etc. , according to the definitions Equation (8) then reads

2
1 m N

2a r2 M,. Pi, e

2
ear, m, N ear,

Ax + g p, + Ax
A'c M,.

&

'P Ac

2

+r, g g +r, g g —2r gg =T+U,1 1 1

1 j+jlr;, —r, , l I J+l lr;~ —
r~~l j, lr;, r, — (A2)

where T and U are the total kinetic- and potential-energy
operators, respectively. We now take derivatives of (A 1)
or (A2) with respect to various parameters, and at the
same time apply the Hellmann-Feynman theorem;" for
example, differentiation with respect to r, gives

Equations (A8) and (A9) are exact partial differential
equations for the full quantum-mechanical internal ener-

gy (E—:(,H ) ). The general solutions are easily found to
possess the scaling forms

a(e~lH~[e& aH
Br, Br,

(A3)

and

f (m, r„m~r„Ar, }

N
(A 10)

(where Hl 4 ) =El 4 ) ). It is straightforward to show that
if (A3) is applied to (A2) and combined with the definition
of the total current

E g(e r, ;A r, )

N r2
(Al 1)

J=—(x p;z+(e/c) A p, , —(e/c) A

it finally gives (with E = ( T ) + ( U) )

d E 1

dr, N r,
(T) E 1 Vi+—+———A J

N N r, Nc (A4)

which has exactly the same form as Eq. (1) of the text.
On the other hand, differentiation of (Al) with respect

to each mass independently leads to

which are exact properties of the ground-state energy of
the two-component Coulomb system. These scaling rela-
tions are independent of the phase of the nuclei, and are
valid to all orders with respect to the gauge field A.

The same method can be applied to the standard one-
component Coulomb system of point particles in a rigid
uniform compensating background of opposite sign. In
this case the Hamiltonian consists only of the first and
third terms of (Al). Invoking exactly the same procedure
as above leads again to Eq. (1) of the text, and also yields
the partial differential equations

BE BE(T)=—m, —m'Bm, ~ Bm
(A5} r, —m —A = E(r m;A), —BE BE BE

'dr, Bm
(A12)

and differentiation with respect to e leads to

(U)= —e ——A J1 BE V

2 Be c
(A6)

(A7)

(AS)

r, —
—,'e —

—,
' A = 2E(r„e;A) . —BE , BE , BE

(A9)

A final differentiation with respect to A leads to

e BE
VBA

Combination of (A4), (A5), and (A7) then yields

BE BE BE BE
rq m~ m' Br, ' Bm, ~ Bm, B~

E(r„m„m;—A) .

Similarly, combination of (A4), (A6), and (A7) yields

as well as Eq. (A9), with the general solutions being in the
form (2) of the main text.

It has therefore been shown in this appendix that Eq.
(1) has the same form for both the two- and one-
component systems, although the quantities entering
(such as ( T) or J) have different values (and origins) in
the two cases. As a result, Eq. (1) provides a criterion for
the metal-insulator transition for both cases, in terms of
the relation between the establishment of the insulating
phase and the complete lack of dependence of the energy
E on the gauge field A. The generality of (1) shows that,
in the two-component case, the criterion neither requires
further information on the phase of the nuclei nor does it
provide it; similarly, in the one-component case, it does
not require any special treatment of the rigid back-
ground. However, in the latter case, a translational
symmetry-broken state can be expected, as discussed in-

dependently in Secs. III and IV.
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APPENDIX B

Equation (1) of the text indicates that the ratio of the
change in energy (that distinguishes between a metal and
an insulator) to the value of J A is an extensive quantity.
Although this is shown explicitly in Appendix A for a
simply connected space, we also show it here by consider-
ing a multiply connected region (e.g. , a torus) and then
taking the thermodynamic limit in the way described in
the text. At the same time, we explicitly calculate here
the values of a and p of Eq. (3) of the text.

Consider electrons on a torus with vanishing electric
and magnetic fields but with a nonzero flux 4 existing
only in the hole. Since on the physical region we have
V A=VX A=O, we must have A= 2 P and also

4= Al. = A2mr . (81)

For noninteracting electrons this gives a Hamiltonian

pri pzi fi(
2 + 2

)
n;—

2 /pe 7' @p

with 4 =Ohc/e and n; =integer. This appears to show
that the energy, if written in terms of the enclosed flux 4,
would go as L' ' and is therefore not extensive (in our
case d=3, but it could as well be d=2 if we had con-
sidered a cylinder, or d = 1 if we had considered a ring ).
However, if we write (82) in terms of A, by using (Bl),
and then take the thermodynamic limit precisely as de-
scribed in the text to produce a simply connected physi-
cal region but with a constant A along, say, direction x
(what was formerly direction P), then we can easily see
that the ratio of the energy to A is indeed an extensive
number [essentially because of the cancellation of r in
(82)]. This conclusion can also be reached by Eq. (A4) of
Appendix A, where no 4 but only an A is considered
(actually in that case of simply connected space the corre-
sponding 4 would be infinite after the thermodynamic
limit is taken). The important point here is the use of the
right conjugate variables for the description of a thermo-
dynamic system: the variable conjugate to J for our
infinite system is A and not an enclosed flux.

In more detail, this mapping between the torus and
the simply connected space produces wave vectors
k„=2'/L(n —4'/40), k» =(2'/Ls)n~, and k,
=(2'/L, )n„ i.e., the ground state of noninteracting
electrons is a Fermi sphere but displaced along the x
direction by —2sr(A /C&o). The k space density of levels
is therefore V/(2n. ), which gives k~=3tr (N/V) for the

E 221 R + eRy+
N p 2 pygmy

(83)

and once again we note that the coefficient of A is exten-
sive.

Finally, we can proceed in the same spirit to the case of
interacting fermions. Hence we can include exchange
through the standard Hartree-Fock approximation, and
correlation through a RPA, merely shifting the x com-
ponent of all wave vectors by —2m A /4p. It is shown in
the text, by use of the scaling relations of Appendix A,
that if we wish the energy for small A, we can consider
fermions with m ~~ and take the limit r, ~0 in such a
way that the product mr, remains a constant. On the
metallic side, where this constant is small, the above pro-
cedure leads to the following results.

(1) There is no A dependence of the exchange energy,
i.e., E,„=—0.916/r, Ry.

(2) The correlation energy has the form

=2 A,
—5E„„= (1—ln2)ln Ry,

q, —5
(84)

where A, =2(4/9')' r„q, is a dimensionless parameter,
and 5=(2trA/@o)/kF. Here r, =(m/m, )r, with m —+ oo

and r, ~0 again in such a way that mr, is finite, and also
in such a way that A, «q, « l. Equation (84) has the
standard RPA behavior in the absence of the gauge field
(5=0) and for the particular choice m =m, . Finally, an
expansion of (84) around 5-0 leads to

Ecorr
1/3

(g =0) e 4
A

N 2mc2 9
(1—ln2)

~s
vr

(85)

The results (83) and (85) determine the values of a and

p which appear in the text under Eq. (3) for the weak-
coupling region. In turn, these values imply a critical
point r, p for the metal-insulator transition as is discussed
in the text.

radius of the displaced Fermi sphere. A subsequent cal-
culation of the energy will then give

E 2
V d3kkk

(2sr )
3 DFs 2m

where DFS stands for displaced Fermi surface. If we
write k= k'+ (2n. d /4o)x, then this finally gives
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