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Coherent-state functional-integral methods are used to develop approximation schemes for the
description of coupled electron-phonon systems far from equilibrium. We consider an interacting-
electron system which is coupled to a system of phonons and subjected to an external —not necessarily
weak —perturbation. For systems where the electron-phonon interaction is linear in the phonon vari-
ables, the phonon degrees of freedom can be accounted for exactly. From a formally exact representa-
tion of a suitable generating function for the expectation value of electronic observables, approximation
schemes based on mean-field solutions can be derived. Within the lowest order of approximation, the
coupled electron-phonon system may be treated as a self-consistent system of indepenent electrons.
Higher-order corrections are shown to give a random-phase approximation based on self-consistent
mean fields. This approach is applied to electronic two-level systems coupled to phonons under a large
external bias. We find that the coupling to acoustical-phonon modes leads to a damping of the quantum
beats and drives the system into a new equilibrium state. The coupling to LO phonons is shown to ac-
count correctly for resonance effects which arise when the level splitting is close to the LO-phonon ener-

gy.

I. INTRODUCTION

It can be shown that a very important class of coupled
electron-phonon systems in thermal equilibrium can be
conveniently treated by functional-integral techniques. '

This class of systems is standard in transport theory, as
well as the theory of superconductivity, and is character-
ized by an electron-phonon coupling which is linear in
the phon on creation and annihilation operators and
quadratic in the corresponding electron operators. '

Here, we extend our approach to treat the nonequilibri-
um state. We believe that functional integrals offer a
physically more transparent approach to many-body
problems than the more commonly used diagrammatic
techniques. The motivation for this work is to develop a
functional-integral formulation of high-field quantum
transport in electron-phonon systems. In particular, we
are interested in a microscopic formulation which can ac-
count for charge transport in solids where the charge car-
riers (strongly) interact with each other and the lattice
ions. Virtually every solid-state problem, of course, is a
coupled electron-phonon problem and various quantum
transport theories have been formulated in the past.
Due to the complexity of the problem, however, either
formally exact, but very complicated, or more tractable,
but rather phenom enological approaches, have been
developed. ' For the former, the Keldysh-Baym-
Kadanoff formalism is probably the most widely pursued
approach. Progress in this direction has been seriously
hampered by its complexity. Without the incorporation
of simplifying ad hoc assumptions, it seems to be hope-
less to apply this formalism to realistic situations as, for
example, encountered in microdevices. For a recent re-
view on the problems concerning the Keldysh-Baym-

Kadanoff formalism and its application to actual calcula-
tions, see, for example, Ref. 8. The latter type of trans-
port models is usually some extrapolation of classical
transport theory and/or treats the carrier-lattice interac-
tion on semiclassical grounds. Weak and/or simplified
particle-particle interactions and weak external perturba-
tions have frequently been assumed in these models. In-
terest in quantum theories of transport in dissipative sys-
tems which allow actual calculations has recently been
revived due to advances in nanostructure fabrication.
The geometry of these systems makes quantum-
confinement effects important. At the same time, howev-

er, inelastic scattering in the form of electron-electron,
electron-phonon, and/or electron-impurity scattering is

present, at least in the ancillary parts of the structure.
For simplicity, nanostructures have traditionally been

investigated on the basis of independent-particle pictures
which has led to conceptual difficulties and/or incon-
sistencies in the treatment of scattering processes and the
treatment of structure boundaries. ' Here, we develop a
general approach to transport in dissipative electron sys-
tems which is complementary to weak-coupling, small-
perturbation models by incorporating particle-particle in-
teractions and external perturbations in a nonperturba-
tive fashion. Our approach is based on an expansion
about a mean-field approximation to the coupled
electron-phonon system in which the electron-electron
and electron-phonon interactions are accounted for up to
all orders in the coupling strength. Corrections to the
mean-field approximation can be included up to arbitrary
order.

As for the system in thermal equilibrium, we resort to
a coherent-state functional-integral (CSFI) representation
of ensemble averages, integrate over the phonon fields, in-

45 ll 496 1992 The American Physical Society



45 COHERENT-STATE FUNCTIONAL-INTEGRAL APPROACH TO. . . 11 497

troduce an auxiliary field, and integrate over the electron
fields to arrive at a formally exact representation in the
form of a functional integral over the auxiliary field. The
stationary-phase approximation (SPA) is then used to
derive mean-field equations whose self-consistent solu-
tions are used to derive approximate expressions for the
expectation value of electronic observables within, in
principle, arbitrary degree of accuracy. However, only
the lowest-order corrections are simple enough to be of
practical value. It is, therefore, of importance to seek a
physically relevant mean-field approximation as the start-
ing point for such an expansion. For simplicity and be-
cause of its importance in semiconductor physics, we will
here confine ourselves to a derivation of Hartree-type
time-dependent mean-field equations. "

The paper is organized as follows. In Sec. II, we devel-

op a formally exact representation of a suitable generat-
ing function in the form of a CSFI. This generating func-
tion is constructed so as to facilitate the calculation of the
ensemble average of any normal-ordered n-electron
operator as a function of time. In Sec. III, we apply the
SPA to the CSFI representation of the generating func-
tion to obtain time-dependent mean-field equations for
the system. Self-consistent solutions to these equations
will be discussed. Approximate expressions for time-
dependent quantum-statistical averages will be presented
in Sec. IV at several levels of approximation. In Sec. V,
the qualitative nature of the approximations involved in
this approach will be discussed at the example of an elec-
tronic two-level system coupled to phonons. In particu-
lar, it will be demonstrated that the theory above pro-
vides a term which introduces dissipation and irreversi-
bility into the time evolution of the electron system. Fi-
nally, summary and conclusions wi11 be given in Sec. VI.

II. FUNCTIONAL-INTEGRAL
REPRESENTATION OF QUANTUM-STATISTICAL

AVERAGES OF ELECTRONIC OBSERVABLES

We consider a system of electrons and phonons given
by the following Hamiltonian

H =H, +H h+H, ph+ U(t),

where

r

t
'Wt, O)=7' exp ——f H dt'

fi o

is the propagator according to the Hamiltonian operator
H and 7 is the usual time-ordering operator. po is the
grand canonical density operator for the system in
thermal equilibrium

—p(HO —pH)
Po=e

where

and

Ho H +Hph +H ph

N=gb b

Using the Von Neumann equation implies that the in-
teraction between the system and the bath is neglected as
soon as the system evolves in time under the influence of
the external perturbation. This issue will be discussed in
more detail in Sec. V.

p(t) contains the statistical information about the sys-
tern as it evolves in time. The physical processes, which
arise as a consequence of the applied perturbation, can be
studied by calculating statistical averages of observables
using the ensemble defined by p(t). One may express any
electronic observable in terms of a normal-ordered Her-
mitian operator A and write its average at time t =T as

be known. The electron-phonon coupling term H, h is
linear in the phonon operators and quadratic in the elec-
tron operators with, in general, complex coupling con-
stants M'qr'. U(t) is an external time-dependent perturba-
tion to the system which is zero for times t ~ 0 and can be
of arbitrary strength for t & 0.

We consider the system to be in thermal equilibrium
with a bath for t ~ 0. For t )0, the external perturbation
U becomes effective and drives the system out of equilib-
rium. The state of the complete system can be character-
ized by a density operator p(t) which fulfills the von Neu-
mann equation and evolves in time according to

p(t) ='M(t, O)p, 'Mt(t, O), (6)

where

H, =gcbtb +—,
' g U sb b bbs, ( A ) &=—Tr[Ap(T)],1

(9)

Heph g ~q~quq
q

a.r
U(t)= g U (t)b b

a, a'

and b's and a's are electron and phonon operators, re-
spectively. H, is the electron part which contains a free-
electron Hamiltonian and a two-electron interaction U.

Here, the phonon part H h is of simple harmonic oscilla-
tor type. The eigenstates of the free-electron system
I ~a) ] and the free-phonon system [ ~q ) ] are assumed to

P(J,J)=(exp Xbj exp XJ b
a T

(10)

where the sources IJ',J ] are Grassmann variables.
The quantum-statistical average over any normal-ordered
electron operator A can be written as

where Z =Tr(po) is the equilibrium grand partition func-
tion of the system.

Rather than studying specific observables or Green's
functions, we introduce a generating function which al-
lows us to conveniently express the ensemble average for
any electron observable,
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( A(b, b)) T= A —, Q(J*,J)BJ' J=J =0

(0 &)

The generating function can be conveniently expressed as
a CSFI over electron and phonon variables. ' ' Follow-
ing Ref. 1, the Trotter formula

—
A.B h [( 3.eB—)M] (12) (0,0) (T, 0)

with @=M ' and B an operator, is used to write

3M — H
G(T, O)p0% (T,O) = lirn g e

M~ oo

(13)

FIG. 1. The integration path in the complex time plane.

H, s=1,2, . . . , M
H, = Ho —pN, s =M+1, . . . , 2M

H, s =2M+1, . . . , 3M,
(14)

and

l T
s =1,2, . . . , M

Es s =M+1, . . . , 2M (15)

l T
s =2M+1, . . . , 3M .

Here, we have introduced a unified notation for real and
imaginary time, where

T

Thus p(T) has the structure of a propagator for a
time-dependent Hamiltonian operator which takes the
system along the real-time axis from (T, O) —+(0,0), corre-
sponding to s =1,2, . . . , M, then along the imaginary-
time axis from (0,0)~(O,P), corresponding to
s =M + 1, . . . , 2M, and finally from (O,P)~(T,P), corre-
sponding to s =2M+1, . . . , 3M. This time path is given
schematically in Fig. 1. It is similar to the time path in-
troduced by Keldysh.

Equation (10) is formally of the same structure as the
generating function previously introduced for coupled
electron-phonon systems in thermal equilibrium. ' The
main difference is that here the "Hamiltonian operator"
which enters the density operator (13) is explicitly time
dependent.

Following Ref. 1, one may write the generating func-
tion as a CSFI over a set of electron and phonon variables

3M
Q(J*,J)= lim J g dp(g )dp(P )e

M~ Qo 43~ 40

~3M ~0

with
3M

~(e. 0,. 1'4q. 4q, . —1'» J)= X— y(e.0 ~ 0.0,. i)+ y(4q. 4q—. 4q. 4q, .—1)
s=1 a q

+,H, (Q~„f~, i&Pq, &Pq, i) —g (J(zt(('a 3M 1 Q(z 3MJ~) .
a

(17)

Due to the linearity of the electron-phonon interaction in the phonon variables, the integral over the phonon fields can
be carried out exactly

0(J*,J)= lim
Zh 3M

ph j g d (q )
eff q'a&'q'», &

—1'

3M
p e

where,

3M M 3M

S.d0.*, 4. , i
J* J)= g +[4.*,4., —P.*,f., -i(1—~,e.)1+ g +

s=1 a s =1 s =2M+1 a, a'

2M

X p X e 0 4, —&+J 4,3M —&+4,3MJ
a s =M+1

3M
+—,

' g
s=l
3M

s, s'=1

~s U aya'y' as ys y', s —1 a', s —1

g hq*[(g.*,g. , ) ]e.2'. .'.e..hq [(g.*., g.. , )],
q

(19)
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pcs
e 'n, for s'=3M and s =1

pco
e 'nqa3~a3~ 1. . . a, .+1, for s' & 3M and s =1

pro
e qnqa, i

. a, a3M. . . a,.+„ for s —1(s' and s ) 1

pro
e 'n, for s —1=s' and s ) 1

pcs
e 'n a, 1. . a +1, for s —1)s' and s &1

6 CO

where a, =1—e, co =e ' ', and n is the Planck distri-
pco

bution, 1/(e ' —1). Moreover, we use the abbreviation

~q [(es ~os —1)] y Mya tasty, s —I

a, y

iiq[(4,* ij', -i)1= g M "y'0:.4y, . i-
The partition function of the free-phonon system,

Z h= 11» (1—e ') ', which arises from the integral
over the phonon variables, cancels with the equivalent
term in the partition function Z. Besides the direct
electron-electron coupling, an additional electron-
electron interaction term due to the phonon coupling ap-
pears in the exponent of the integrand of (18). Both
prohibit direct integration over the electron fields.

In anticipation of the desired type of mean-field solu-
tion, we pair electron variables according to

Xl(x, T,P) = lim
3M

g [I—e,A, (x)]
s=1

n
—eA (x)

e
$=1

(23)

where the A, 's are N XXmatrices of the form

ca~ay+ Uays+Xays

for 1~s ~M or 2M+1~s ~3M
A y, (x}= '

(Ea p@ay+Xays ~

for M+1&s ~2M .

S'(x,J,J)=
—,
' g x, V ',bxb —ln det[I +2)(x, T,P))

a, b

+ g J'[I+2) '(x, T,P)] ' Py, (22)
a, y

and

Then we can write the fourth-order terms in the electron
fields as

(24)

3M

l X X 0 ays Vays, a'y's'0 a'y's'

The integral boundaries and the normalization are
such that

s, s'=1 a, a', y, y'

Here, we have introduced the matrix
exp —,

' g p. V.

blab

=(det V)
a, b

~ays, a'y's'
1

U aa'yy' ~ss'
Es

+ Q (M'~'*M'&y ~ P,q,
'

q

(q)e (q) ~q)
(20)

X dp x exp 2 +a~ah +b
U a, b

+ ggr, x,

The non-Gaussian factors of the integrand in (18}can
be rewritten by introducing an auxiliary field
[x y, ],"' to give the integral over the electron vari-
ables Gaussian form. Consequently, this integral can be
performed analytically and one can give the generating
function the form of a functional integral over the auxili-
ary field x

is fulfilled. For simplicity, we assume that V is nonsingu-
lar and use the abbreviations a =(a„a,',s, ),
b =(a„,ab, sb). Equations (21)—(24) are an exact repre-
sentation of the generating function. In the next section,
it will be used to develop an approximation scheme for
the calculation of ensemble averages.

III. STATIONARY-PHASE APPROXIMATION

0(J*,J)= lim

with

Z h
(d t V)

—1/2

)(j d ( )
—S'(x, J*,J) (21)

Since an exact (numerical) evaluation of the functional
integral (21) would be rather difficult, we calculate the
generating function within the stationary-phase approxi-
mation (SPA). ' Strictly speaking, there is no large ex-
pansion parameter which a priori justifies this step. As
for any mean-field approximation, its justification is ulti-
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mately provided by physical criteria. Mean-field approxi-
mations have played a significant role throughout
condensed-matter physics. For instance (relativistic)
mean-field approximations for fermion-boson couplings
have been developed previously in nuclear physics, ' '
and quantum optics. ' While they can be obtained
within standard diagrammatic techniques, they most
directly can be derived from functional-integral represen-
tations. '

Equation (21) provides an exact representation of the
generating function and any expansion, provided that it is
either convergent or asymptotic, is legitimate. However,
one is, of course, interested in an expansion which pro-
vides a good zero-order approximation and, therefore, re-
quires merely a small number of correction terms. Tech-
nically, the resulting expansion is directly related to the
way in which the fourth-order terms in the electron vari-
ables in (19) were regrouped. As the Hartree approxima-
tion has a long history of success in connection with
semiconductor physics, we follow an approach which
gives time-dependent Hartree-type mean-field equations
which account for both the two-electron and electron-
phonon interactions. In the absence of the electron-
phonon coupling, the present resummation gives the
well-known time-dependent Hartree equations, except
that single-particle states are populated according to a
Fermi-Dirac filling factor, rather than being either empty
or filled.

An important part of the evaluation of the functional
integral is the calculation of the determinant of
[I +2)(x, T,p}], which can be expressed in terms of the

—P(A. —p)
eigenvalues of 2)(x, T,P), [e ', i =1,2, . »]
general, these eigenvalues are not real and left and right

eigenkets of 2)(x, T,p) are not identical. Resorting to the

Dirac notation, we introduce

dl lulo)

i&—lvl(t, o) ) —A(x, t, o) Iu, (t, o) ) =o,j3

as (0,0)~(o,p); (26)

i&—lvl(t, p) ) —A(x, t, p)lv, (t,p) & =o,

as (0,p) ~( T,p) . (27)

These eigenkets fulfill the boundary conditions

Iul(T P)) =e ' Ivl(T, O)).
As discussed in our previous paper, ' strict application

of the SPA to the generating function (21) will give sta-
tionary solutions which depend on the specific observable
under investigation. In particular, application of the
SPA to (21) would give a stationary solution x which isJ' and J dependent. Moreover, the statistical average of
an observable within the SPA would depend on whether
the explicit form or the generating function is used for its
calculation. In order to avoid this ambiguity and to
make the physical meaning of the mean fields transpar-
ent, we expand the integrand in (21} with respect to the
auxiliary field x which extremizes only the J* and J in-
dependent terms in S'(x,J',J), i.e.,

—,
' gx, V ',bxb

—lndet[I+2)(x, T,P)] .
a, b

This stationary field is

N 3M

x'-,.= —X X X"
I = 1 a', y' s'=1

v. .. , (wl, la &(y'Iv„)
—p(iP( —p)1+e

(28)

as ( T,O) ~(0,0); (25)

) lvl(O, r) &+A(x, O, r) lu, (O, r) ) =O,a

and

( Wls I ( Wl 3M Id3M ds+I

Thus, from Eqs. (25)—(27), the set of equations which
specifies the eigenvalues and eigenfunctions of 2)(x, T,P}
1s

where

( )
S S y

i A —E —5 —U «(t) x«(t) (y Iul
—(t, o) ) =0,a

t

Then, the eigenvalue equations for 2)(x, T,p) are

Ivl3M & =2)(x, , T,P)lulo& =e '
Iulo&

—p(~ —p)
( Wlol (Wl, 3M12)(x, T p) ( WI, 3M Ie

y

+E —p 5 «+x «(r) (ylvt(o, r))=0,c}

a~

(29)

(30)
It is convenient to introduce a continuum notation in
which we write ifg——s 5 —U «(t) x«(t) (ylul (t,p))—=0 .~ C}

Ivl(t„o) ) = lim Iul M, ), s =1,2, . . . , M;
M~ oo

lvl(0, ~})= lim Ivl, ), s =M+1,M+2, . . . , 2M;
M~ oo

Iu, (t„p})= lim Iu„), s =2M+1,2M+2, . . . , 3M;
M~ oo

where, t, 6 [0,T] and rE [0,p].
The time evolution of these states can be written as

(31)

These equations are of Hartree type where the interaction
term accounts for all particle interactions within a mean-
field picture. Together with the boundary conditions,

—p(x' — )
lv,'(T,p)) =e ' "'lu,'(T, O)),

they must be solved self-consistently. Expansion of the
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exponent in (21) around x and subsequent integration
over the auxiliary field allows a systematic expansion of
the generating function in terms of [ A,

& J and [ I v& ( t, r) ) J.
The problem of self-consistently calculating the eigen-

values of 2)(x, T,p) and the functions [ I v& ( t, r ) ) J is non-
linear and one cannot expect a unique solution without
implementing further physical constraints. First, it can
be shown that choosing 2)(x, T,p) to be Hermitian is

I
a' t, 3M s—+ i & I

v ts & . (32)

As a consequence, the partition function is real up to any
order of approximation. x can now be expressed entire-
ly in terms of right eigenkets

consistent with the structure of x (see Appendix). As a
consequence, left and right eigenkets of $(x, T,p) are
identical and fulfill

N 3M
xo, = —g g pe,

1=1 a', y' s'=1

V r r ( v/, 3M —'+ f
la' & & y'

I vt

—P(X', —
j )1+e

(33)

with
I I vP(o) I I

= 1

The exact generating function has the property that
Q(J'=0, J=O)=1 for any external perturbation U. In
other words, Tr[p(T) J

=Z for arbitrary time T. We re-
quire this property to hold within any order of approxi-
mation. Imposed upon the lowest order of approxima-
tion, in which the integrand in (21) is evaluated for the
stationary field x (i.e., the "classical approximation"),
one finds that, for x =x, the first two terms in
S'(x,J',J), Eq. (22), must cancel with the corresponding
terms in the partition function. ' Therefore, the integrals
over the two paths parallel to the real-time axis must can-
cel each other. This is achieved if

Ivi(t, p)) =e ' Ivi(t, o))

is fulfilled. Due to the properties ofx, this has

x~r (t,P) =x ~r (t, o)

as a consequence which, in turn, is consistent with the
original assumption. Therefore, such a solution is indeed
supported by the structure of V, Eq. (20). Now Eqs. (29)
and (31) take the form of a generalized Schrodinger equa-
tion with a Hermitian Hamiltonian operator and are, in

—p(& —p)
fact, identical to each other. The eigenvalues [e
are now solely determined by Eq. (30) with the constraint

-p(~'- )

I vi (O,p) ) =e '
Ivi (0,0)),

which is identical to the eigenvalue problem for the parti-
tion function in thermal equilibrium. In particular, the
eigenvectors [ I v& (0,r) ) J are identical to the eigenvectors

I

[ Iv& (r) ) J introduced in Ref. 1 for the partition function.
Finally, any sensible approximation to the exact time

evolution of observables must ensure that the system
remains in thermal equilibrium in the absence of an exter-
nal perturbation. In other words, in the absence of an
external perturbation, the functions [ Iv& (t, o) ) ) may only
change by a phase factor. This is accomplished by setting

lv&(o, r)) =e '
lv&(0, 0)) (34)

for the eigenvalue problem (30). It should be noted that
this property ensures that, in the limit V~O, the solu-
tions Iv, (t, r)) reduce to the one-particle states [ll) J

with [A,
&
=e& J. Moreover, it can be shown that an itera-

tive solution to the eigenvalue problem (30) in powers of
V also leads to the solution which fulfills (34).

With these constraints implemented and the introduc-
tion of the states

IP&(t, o))=lv&(t, o)), as (T,O)~(0,0);

lg((o, r))=e '
Iv, (o,r)), as (0,0)~(O,P);

lp'(t, p)) =lv,'(t, p)&, as (O, p) (T,p);

the procedure for finding the eigenvalues and mean-field
solutions [IP&(t,r)) j can be summarized as follows.
First, self-consistently solve the eigenvalue problem

g [s 5 r+x r(0, 0)](ylg((0, 0)) =A((alg((0, 0)) (35)
y

with

x'.,(o,o)= y y v..„,—y " " " "
&y', (0,0)Ia )(y'Iy', (o,o)&f»(&,ot),

1=1 a', y' q COq

and the normalization Ilgwu&(0, 0) I I
= 1, with l = 1, . . . , K. This problem is identical to the eigenvalue problem which was

obtained for the partition function of the system in thermal equilibrium. Subsequently, the functions lg, (t, o) ) can be
found from the time-dependent Schrodinger equations

iR e5,—U —(t—}—x' (t, o) (yIP', (t,o)) =0,a
a'

where the eigenfunctions IP&(0,0) ) from the eigenvalue problem (35) provide the initial conditions and

(37)
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N

x r (t, o)= p g f„D(A,, ) v & $, (t, o) la' & & y'loot(t, o) &

1=1 a'y'

'(t' —t)
ya a y'e y a' aye

x & y', (t', o) la' & & y'lp', (t', 0) &

—1 —I

ya a y'e y'a' aye

x & y', (0,0) la' & &)"l
y', (0,0) & (38)

represents the self-consistent mean-field introduced by
the electron-electron and electron-phonon interaction.
The electron-electron coupling in these equations appears
in the form of a Hartree-like potential and has a rather
simple interpretation. Each electron is exposed to an in-
stantaneous potential produced by the charge of all elec-
trons in the system. The occupation probability of the
one-particle states j lPt(t, r) &] is given by Fermi-Dirac
factors f„D(At ) = [1+exp[P(lt —p)]] '. The electron-
phonon interaction also appears in the form of a
Hartree-type potential. However, this potential depends
on the previous history of the system. In particular, the
last term in (38) represents the influence of the initial
state of the system prior to the onset of the external per-
turbation. The two contributions under the time integral
arise from phonon emission and absorption after the on-
set of the external field. Note that these two terms ac-
count for modifications in the phonon emission and ab-
sorption rates. Phonons emitted or absorbed relative to
the equilibrium Planck distribution affect the time evolu-
tion of electrons at a later point in time, which causes a
non-Markovian form of the time evolution. This is an ex-
plicit example for non-Markovian time evolution of a re-
duced system. ' Even within the lowest order of approxi-
mation, a fully quantum-mechanical treatment of the
electronic system is maintained. If the interaction goes to
zero, an exact description of the electronic system is pro-

vided. This makes the present approach better suited for
the study of quantum-confined systems than the conven-
tional Feynrnan-path integral approach, which, in the
lowest approximation, gives a classical description of the
system.

In the absence of an external perturbation, it is easy to
verify that [i/i(t, o)&j, indeed, changes merely by a
phase factor,

l((), (t, o)&=e ' '
'lp, (0,0)& . (39)

IV. THERMAL AVERAGES OF OBSERVABLES
WITHIN THE SPA

With the self-consistent solutions from above and
x =x —x, the generating function can be written as

At present, we did not account for phonon decay other
than reabsorption and the combined system of electrons
and phonons forms a closed system. Finite phonon life-
times due to phonon-phonon coupling may be incor-
porated via quadratic and anharmonic terms in the pho-
non Hamiltonian operator which, however, would greatly
complicate the treatment of the functional integrals. Al-
ternatively, finite phonon lifetimes may be incorporated
into the self-consistent mean fields on a phenornenologi-
cal level. ' '

9(J*,J)= lim (40)

with the hope that a small number of terms in the ex-
ponent will provide a sufficiently accurate approximation.
In this section, we will consider terms up to order x
i.e., the SPA.

The lowest-order contribution to the generating func-
tion, which is obtained by evaluating the integrand of (21)
at the stationary point, is

Q(J*,J)=exp —g I*[I +2) '(x, T,P)] ' .J ~

a, a'

(41)

I
P[H ( T)—pN]eff

(42)

In this approximation, the generating function has an
independent-particle form. Approximate expressions for
ensemble averages of observables can be obtained via
Eq. (11). For a one-particle operator, A

& a
l
A

l

a'
& b b , one obtains'

N

& A & = g &y', (r, o)l A lpl(r, o) &f„(A,', )
1=1
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This expression has a simple physical interpretation. At
time T=O, the system is in thermal equilibrium. The oc-
cupation probability of state I/i(0, 0)) is given by the
Fermi-Dirac factor fFD(A, &

}. At times T ~ 0, the system
evolves such that the states IP&(T,O)) diagonalize the
(effective one-particle) density operator,

I
13[H ( T)—pN]

~(T}=
I+e

which approximately describes the system at time T.
Within this approximation, the statistical average for a
general n-body operator can be found via Wick's theorem

(bt b b b )
n Jn J 1

=g( —1) (bt b )r. (b; bJ )r,
P n

where the sum is over all perm utations P of
[i„i2, . . . ,i„] and ( —1) is the sign of the permutation.
Thus, the interacting-electron system which is coupled to

I

a phonon system is approximated by an independent-
electron system for which the individual particles move
in an effective, time-dependent (and self-consistently cal-
culated) potential produced by the mutual interactions, as
well as the external perturbation. Particle-particle corre-
lations are accounted for only within a mean-field ap-
proximation.

It should be noted that the fact that the occupation
probabilities fFD do not evolve in time is linked to the
fact that, during the application of the external field, the
coupling to the bath with which the system originally was
in thermal equilibrium, is not accounted for when using
the Von Neumann equation. Such an approximation can
be justified if there is a hierarchy in relaxation processes.

The next-higher approximation is the stationary-phase
approximation, which takes into account the quadratic
fiuctuations around the stationary field x in (40). It in-
troduces particle-particle correlations within the
random-phase approximation (RPA). Within this ap-
proximation, the generating function takes the form

0(J',J)=exp —g J"[I+2) '(xo, T 13)] ' J ~
—

—,'Tr[ln[I (I —vr—o) ' vr'(J', J)]}
a, a'

+—,
' g S,'"(x,J*,J)( [I—V[r'+r'(J', J)]] ' V), S"'(x,J',J)

a, b

Where, with the abbreviations a =(a„a,', s, ) and b =(az, aI„s& ), we have used

(43)

and

I o =T (I+2) )
&

8 +(x, T, p) BB x' Tp (I+X )&b r 0 Bx Bxb 0 Bx 0
0

BXb

r,'&(J',J)= g J'(air,'ala')J ~,
a, a'

~."'(x',J*,J)= y J:& ~IS.'"I~'
&J. ,

a, a'

xp

with

SO=2)(x, T,P),
r

(I+& ), M)(x, T,p & ),M)(x, T,13)
ab 0 ax. BXb P

M)(x, T,I3) i M)(x, T,13) 8 2)(x, T,P)
0

xp
(I+n, )

S,"'=(I+2) )
' ' ' (I+2) )0

Xg xp

The structure of (43) is identical to the SPA result for the generating function of the system in thermal equilibrium. '

Here, however, the matrix 2)(x, T,13) depends on a complex time (t, r) according to the time path given in Fig. 1, rath-
er than being confined to a path from (0,0)~(O,P) along the imaginary-time axis.

Ensemble averages for any electronic observable can now be calculated within the SPA, using

&blab. . &,= &b.'b. )';"
N= g ($&(T 0)Ia)(a'Ip&(T 0))fFD(AI) —

—,'Tr[(I —vr ) '(a'I vl 'Ia)], (44)

which contains the zero-order result from before and a RPA correction term. Correlation terms for n-particle expecta-



11 504 W. POTZ AND J. ZHANG 45

tion values are rather complicated but can readily be evaluated from the generating function. For instance, the statisti-
cal average of a generic two-particle operator is approximated by

(b$ b$ b b ) (bt b )sPA(bt b )sPA
I 2 2 1

+—,'Tr[(I —Vt ) '(a']l Vt" la[)(I —Vt ) '(apl Vt" la2) ]

+ g (a', lS,"'la, )[(I—Vl ) 'V],b(azlSb" la2) — a,~a2
a, b

where the terms within the second pair of large brackets
are identical to the terms within the first large
parentheses, albeit with the unprimed indices a, and a2
interchanged. Higher-order correction terms can be ob-
tained in a systematic way by including higher-order
terms in x according to (40). This leads to loop correc-
tions to the SPA result. For any practical purpose, how-
ever, the complexity of these expressions makes such an
expansion rather academic in nature and, therefore, will
not be discussed here.

It should be stressed that, while these results can also
be obtained via diagrammatic techniques, we feel that
this approach is much more direct and simple. First, the
quartic term in (19) has a simple interpretation and suit-
able regrouping can be performed depending on the phys-
ical situation. From then on, the various levels of ap-
proximations can be obtained by evaluating (40). There is
no need to explicitly select and count all diagrams which
contribute to a certain order of correction. Moreover,
the mathematical apparatus, consisting essentially of cal-
culating Gaussian integrals, is rather simple. Approxi-
mate statistical averages can be performed directly via
(11). Finally, the equations of motion (37) have a simple
physical interpretation and are numerically tractable, as
will be shown below at a simple example.

V. APPLICATION TO T%0-LEVEL SYSTEMS

In this section, our results are applied to a two-level
system which is coupled to phonons. Two-level models
are well known to be applicable to a variety of physical
systems. Quantum beats, characteristic for these sys-
tems, have been observed for various systems. Most re-
cently, they have been observed in asymmetric semicon-
ductor double wells. ' An external electric field was used
to achieve resonance between the two lowest confined lev-
els in the wells. Monitoring the transmission probability
for light at the exciton energy of the wider well, evidence
for charge oscillations between the two wells could be
found. In an earlier experiment, LO-phonon-enhanced
tunneling was observed in double wells for which the lev-
el spacing was tuned to be equal to the LO-phonon ener-
gy.

Our motivation here is primarily to investigate the role
of the phonon terms which arise in the mean-field equa-
tions (35) and (37). Several theoretical studies have dealt
with the inclusion of dissipation into two-level models
("spin-boson models" ). Some have treated dissipation on
pure phenomenological grounds, ' others have fol-
lowed earlier work by Feynman and Vernon, and Cal-

I

deira and Leggett, and used Feynman-path integral
techniques to find a microscopic interpretation of dissipa-
tion. Here we show that the phonon-induced mean
fields, as derived above from our microscopic considera-
tions of coupled electron-phonon systems, provide an ap-
proximate, but nonphenomenological damping of the
electron system. Contrary to previous work, we do not
introduce classical variables to approximately treat the
system, but maintain a fully quantum-mechanical
description. We consider a situation as sketched in Fig.
2. A double well, originally in thermal equilibrium, is ex-
posed to an external bias U(t) which lowers the right
well relative to the left. We investigate the time evolu-
tion of the system under the inhuence of the bias. In par-
ticular, we address the question of whether and jor how
the system approaches a new equilibrium when the cou-
pling to phonons is accounted for via (36) and (38).

For a two-level system characterized by the states lL )
and lR ), the mean-field Hamiltonian in (37) takes the
form of a 2X2 matrix

cL V

V .„—U(r) +
x(r, O) x (r, O)

x(r, O} x(r, O)

The first matrix characterizes the two-level system plus
bias and the second matrix accounts for the electron-
phonon interaction. Here, we assume that the left and
right level couple to the lattice with equal strength.
Moreover, we do not account for the Coulomb interac-
tion. For convenience, we set %=1. We separately con-
sider acoustical and optical (LO) phonons.

A. Acoustical phonons

It is well known that dissipative effects can be obtained
if the phonons have a continuous energy spectrum which
is characterized by some cutoff frequency Q. Acousti-

IR&

t&0

FIG. 2. Schematic representation of the two-level system
considered here. The solid lines indicate the levels associated
with the individual wells, the dashed line indicates the position
of the eigenvalues of the two-level system.
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cal phonons provide such a situation. %e define

[q)M M
=JR + ~ Q.

q

Here, we use two independent real matrix elements,

~LL ~RR and iK =SfLR ~RL t«haract«ize
the coupling to acoustical-phonon modes. More realistic
electron-phonon couplings are presently under investiga-
tion.

In thermal equilibrium, the system has two eigenstates

i 1 ) and i2 ) with occupation probability f, and f2, re-

spectively, which can be used to express the matrix ele-
ments

x„,(0,0)= —2J)4,Q[JM, (f, +f2)
+2%Re(f, (LI 1 ) ( 1 lR )

+f2(Li2o) (2o~R ) )] (45)

and

x„,(0,0)=(JM, /A, )x„,(0,0) .

For the time evolution,

x„,(t, O)=At f dt'f„, (t t')[JN, (f—, +f 2) +2Af, Re[f, (L~1 (t'))(1 (t')iR )+f2(Li2 (t'))(2 (t')~R )]] .
0

(46)

Again, x„,(t, O) =(JM, /JK)x„, (t,O). Here,

f„,(t t') =— , [Q(t —t')cos[Q(t —t')] —sin[Q(t —t')]]2

(t —t')'

correlates events at time t to events which occurred at
time t' ( t f„,(t) .is given in Fig. 3 for Q =20.

For our calculation, we choose cL =0, cR = 10,
V = —1, P= 1.2, and Q =20. If we use meV as the energy
unit, these numbers are quite typical for semiconductor
quantum wells. The chemical potential is chosen to lie in
the center between the eigenvalues of the two-level sys-
tem. In all our calculations we set At=0. We give re-
sults for an applied bias U(t)= Uoe(t), where Uo =20.
%e denote the eigenstates of the biased two-level system
(in thermal equilibrium) il ) and i2 ). The coupling JR
is varied between zero and 0.2. The corresponding eigen-
values )(,; and occupation probabilities f; of the unbiased
two-level system are listed in Table I. It shows that the
electron-phonon interaction introduces just a minor re-
normalization in the present calculations.

In Fig. 4, we plot the probability ii(1 il (t))ii for
J14, =0 (dotted line), Jkt =0 05 (das.hed line), JV, =0.1 (dot-
dashed line), and J11,=0.2 (solid line). While this proba-
bility must be constant for JR=0, we see that increasing
At leads to a more and more rapid transition of the origi-
nal ground-state wave function il ) into the new one,
il ). A corresponding transition is obtained for the
second state, i 2 ). If the applied bias U is turned off again
(not shown here), the system is found to return to its orig-
inal ground state. Note that for the present choice of pa-
rameters, the probability plotted in Fig. 4 is roughly
equal to the probability for finding the system in the right
well.

In Fig. 5, we show the probability for finding the sys-

1.0

C)

O

fX

O

loo

0

—100--

—200--

-ooo I-

t i » i I i i i r I i i i i I

2 6 8

TIME
10

o.e

0.6

0.4

0.2

0 0 I I

0
I I I I

10

TIME
15 20

FIG. 3. The function time-correlation function f„,(t) for
0=20.

FIG. 4. The probability ii(l ~1 (t)ii for acoustic-phouon
coupling. Dotted, dashed, dot-dashed, and solid lines for cou-
pling strength A, =0, 0.05, 0.1, and 0.2, respectively.
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TABLE I. Eigenvalues li.„occupation probabilities f, , and the off-diagonal phonon-matrix element
x„,(0,0) of the two-level system at zero bias U as a function of coupling strength A.

x„,(0,0)

0
0.05
0.10
0.20

—0.1
—0.10
—0.12
—0.20

10.1
10.10
10.12
10.20

0.998
0.998
0.998
0.998

2.2X 10
2.2X 10
2.2X 10
2.0X 10

0
—1.02
—1.08
—1.44

tern in the original ground state, 1((1 (1 (t))1(, i.e.,
roughly the probability for finding the system in the left
well. For U0=20, the system is off resonance and rapid
periodic oscillations of rather small amplitude occur for
At=0. When the two-level system is put into contact
with the phonons, however, the situation changes
dramatically. The oscillations become nonperiodic and
some increase in amplitude is observed. Increase of the
coupling strength leads to an increasingly rapid transition
of the probability to a small and constant value, i.e., rath-
er than being periodic in time, the probability for finding
an electron in the left well has become rather small.

Finally, the corresponding off-diagonal phonon matrix
element x„,(t, O) is plotted in Fig. 6. We see that
x„,(t, O) provides a coupling which undergoes oscilla-
tions which eventually die out. The latter originate from
the correlation function (Fig. 3) and the fluctuations in
the occupation amplitudes for the left and right well in
Eq. (46).

Two comments should be made. First, in order to
achieve relaxation of the system into the new ground
state via x„,(t, O), we find that the cutoff frequency must
roughly fulfill 0 Qo, where

Qo=+ V + —,'(eL + Uo —e„)
is the oscillation frequency of the two-level system when
it is not coupled to the phonons. This can be seen from
the form of x„,(t, O) which, essentially, is a convolution
of two oscillatory functions. If the frequencies that
characterize these two functions are rather different from
each other, the time integral will be very small and un-

damped oscillations prevail. From a physical standpoint,
the condition on the cutoff frequency is rather clear. In
order for the phonons to effectively couple to the two lev-
els, phonons of proper energy must be available to ensure
energy-conserving transitions. Note, that our original
Hainiltonian operator in (1) permits only one-phonon
processes.

Second, our calculations have confirmed that, given a
suitable electron-phonon coupling, the old eigenfunctions
evolve into the new ones. Within the lowest order of ap-
proximation, the expectation value of an observable A

evolves according to

i =1,2 i =1,2

Note that the occupation probabilities f;, themselves, do
not evolve in time. As mentioned above, this is because
the time evolution of the system is treated via the Von
Neumann equation. A bath is needed to initially prepare
the system in thermal equilibrium (characterized by a
temperature and a chemical potential). However, the
Von Neumann equation neglects the presence of this bath
during the evolution of the system under the external
field. The present formulation is, therefore, only mean-
ingful if we have processes which occur on several
different time scales. In particular, energy and particle
exchange with the bath must be slow compared to in-
teraction processes which are accounted for explicitly by

0.6
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FIG. 5. The probability ll(1 !1 (t)l( for acoustic-phonon
coupling. Dotted, dashed, dot-dashed, and solid lines for cou-
pling strength Af =0, 0.05, 0.1, and 0.2, respectively.

FIG. 6. The matrix element x„,(t, 0). Dotted, dashed, dot-
dashed, and solid lines for coupling strength A, =O, 0.05, 0.1,
and 0.2, respectively.
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0 in (1). Such a situation is, however, rather common in
nature. For instance in polar semiconductors, electron-
electron and electron —LO-phonon interaction processes
are usually much faster than LO phonon decay processes
and e ectron —acoustical-phonon interaction

'
n processes.

e atter, in turn, are faster than the thermalization of
acoustic phonons. Thus, the choice of H, i.e., the "sys-
tem, " must be based upon the physical situation.

quivalently, one may try to directly modif th V
27, 28Neumann equation. ' Note, however, that the intro-

duction of a small non-Hermitian term into the Von Neu-

the
mann equation, as suggested in Ref. 29 does not resolv
he problem of constant-occupation probabilities. The

simplest way to account for the bath during the time evo-
lution of the system is to relax the occupation probabili-
ties f, to their new equilibrium value via a phenomeno-
lo

'
ogical time constant which is large compared to the time

constant with which the wave functions relax. In the ex-
treme case where no hierarchy in time scales exists, one
has to start from an isolated system and a microcanonical
ensemble and include all interactions explicitly. This
may be feasible only for simple model systems. '

B. Optical phonons

xip(0, 0)=— (~Lp(f i+f»

and

xLp (0 0)= (JH i p/JMLp )xi p (0 0)

Furthermore,

In this part, we briefly demonstrate how optical pho-
nons are conceived within the mean-fi ld- e approximation

~ ~

developed above. For simplicity, we neglect any disper-
sion in the LO-phonon spectrum and set

ay a'y' ay a'y'

q q ~LO

where coLQ=35 is the LO phonon energy. Again, we set
the diagonal coupling ALQ=O. With this definition, we
o tain

t
xLp t 0 =Jato dt fLp t t )IM pL(fi+f2)+ZAt pLR f'ef, &Lf1'(t')&& I'(t')fR &+f,&Lf2 (t' &&2' t'

and

XLp ( t 0 ) = (JRLp /Af Lp )xLp ( t 0 )

Here fi p(t) = —2 sin(coLpt). To demonstrate the effect
of the LO phonon term, we consider the double well from
above, but replace the acoustic phonons with LO pho-
nons. In the present calculation, we set At =0 d

LQ . The renormalized eigenvalues of the two-level
system are A, ,= —0.12 and A,&=10.12 with phonon cou-
pling and —0.10 and 10.10, respectively, without LO
phonon coupling. Thus, phonon renormalization efFects
are minimal; nevertheless, the time evolution is strongly

influenced by the coupling to the phonons, as will be
shown below.

We calculate the probability for finding the system in
the new ground-state wave function by solving the non-
inear mean-field equations (37) for the two-level system.

The result is shown in Fig. 7 for Uo =45 (resonance sol'd
hne) and Uo =25 (off-resonance, dashed line). As expect-
ed, at resonance (solid line) the system oscillates at a rath-
er low frequency but large amplitude. Absorption and
emission of optical phonons permit energy-conservin
transitions between the two levels. In the absence of the

g

electron-phonon interaction, the probability is constant
( otted line). Off-resonance (dashed curve)
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FIG. 7. The probability ff(1 fl (t)ff for LO- hor -p onon cou-
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FIG. 9. The matrix element xLo(t, 0). U0=45 with phonon
coupling (solid linc); UO=25 with phonon coupling (dashed
line).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have shown that functional-integral
techniques are a convenient tool to develop an approxi-
mate treatment of the time evolution of a certain class of
coupled electron-phonon systems in the presence of an
arbitrarily strong external field. It has been shown that
the treatment of such systems in thermal equilibrium,
performed by us previously, can be generalized to general
nonequilibrium situations. This approach is most direct
and simple. A generating function for the statistical en-
semble average of electron observables can be chosen and
functional-integral techniques used to find a representa-
tion in the form of a multidimensional integral over an
auxiliary field. This exact expression can be obtained for
any coupled fermion-boson system which, next to the
free-particle Hamiltonian operators, is characterized by a
two-fermion interaction and a fermion-boson interaction
which is linear in the boson creation and annihilation

transitions are suppressed and the amplitude of the oscil-
lation is so small that it can barely be resolved in the
figure. Complimentarily, the probability for finding the
system in the original ground-state wave function is given
in Fig. 8. The details of the oscillations in Figs. 7 and 8,
in particular the high-frequency structure, depend on the
choice of the parameters. The self-consistently calculated
off-diagonal electron-phonon matrix element xLo(t, O) is

given in Fig. 9. It oscillates periodically with the ampli-
tude modulated at the frequency of the oscillation of the
system.

In summary, we have shown that the mean-field ap-
proximation can account for phonon emission and ab-
sorption processes. This all is, of course, in qualitative
agreement with recent experimental results on semicon-
ductor double wells. ' In order to be able to make a
quantitative comparison with recent experiments, '
one certainly needs a much more refined model that ac-
counts for details such as the electronic structure of the
double well, the electron-electron interaction, a realistic
carrier-phonon coupling, and more.

operators and bilinear in the fermion annihilation and
creation operators. We have considered the standard sit-
uation where, up to time T=O, the system is in thermal
equilibrium with a bath. For time T& 0, an external per-
turbation in the form of a time-dependent one-electron
potential is applied. During the time evolution the cou-
pling to the bath has been neglected.

The functional-integral representation of the generat-
ing function has been used to derive a systematic approxi-
mation scheme for ensemble averages for the coupled
electron-phonon system. We have shown that, within the
lowest order of approximation, the time evolution of the
coupled electron-phonon system is that of a free-particle
system which evolves according to a generalized
Schrodinger equation that contains self-consistently
determined one-particle potentials. In the present ap-
proach, the effective potential is of Hartree type for the
electron-electron interaction, and of a non-Markovian
form for the electron-phonon interaction. Physical con-
straints, which are observed by the exact solution, allow
the selection of the proper mean-field solutions on which
to base the approximation scheme. Unlike in Feynman-
path integral formulations of transport, even the lowest-
order approximation gives a fully quantum-mechanical
description of the system and can account for quantum-
confinement effects.

Solving the mean-field equations for the coupled
electron-phonon system is slightly more complicated than
an ordinary time-dependent Hartree calculation for cou-
pled electron systems, as was shown for the comparative-
ly simple case of an electronic two-level system. More-
over, the eigenvalue and eigenfunctions from these
mean-field equations may be used to express all higher-
order. correction terms. In particular, the stationary-
phase approximation has been shown to give the
random-phase approximation for ensemble averages of
electron observables. This functional-integral approach
also provides a conuenient way to systematically find

higher-order corrections. ' Moreover, the approxima-
tion scheme developed in this work is complimentary to
the weak-coupling and/or weak-perturbation treatment
to which coupled electron-phonon systems have frequent-

ly been subjected.
A first application of this approach concerned itself

with electronic two-level systems, such as a double well,
with coupling to phonons. It has shown that the
phonon-induced mean fields can qualitatively account for
phonon emission and absorption processes. In particular
for acoustical-phonon modes, it was shown that these
mean fields provide dissipation terms which make the
effective one-electron Schrodinger equation irreversible in
time. These terms were obtained from a microscopic
theory. In the presence of an external field and a suitable
phonon system, they were shown to drive the system into
a new equilibrium state. A variety of numerical applica-
tions of this approach to other quantum-confined elec-
tronic systems can be foreseen in the near future.
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APPENDIX: SELECTION
OF PHYSICAL MEAN FIELDS

—P(A, —p)
genvalues [e '

j are real and left and right eigen-
kets of2)(x, T,p) are identical. It follows from

In this Appendix, the selection of the mean field x,
Eq. (33},will be outlined in more detail.

For that

& ]v]g I

=
& ]v],3]]t I

d 3]]t d, +,

—e,A, (x )&(x', 'rp)= »m
M~ oo

I

to be Hermitian,

A, (x )=A3M +](x }

must be fulfilled. According to the expression of A in

Eq. (24), this requires (x, ) =x 3M —+] where

V.„...&~]', la'& &y'lv]', &

1=1 a', y' s'=1 &+e

(A 1)

It is easy to show that x permits the choice of a Hermi-
tian 2)(x, T,p) because, if 2)(x, T,p) is Hermitian, its ei-

I~I,3M —s+] & (A2)

Using this identity and the symmetry properties of V in
(20), (x, ) =x3]]t +] can be shown.

The condition that Tr [p( T) J is time independent is
met by setting

x'„(t,p)=x', (t, o) . (A3)

—p(x' — )
I v,'( T,p) &

=e ' "
I v,'( T, o) &,

—p(z' — )
Iv](t,p)&=e ' Iv](t, o)&, for tE[O, T] .

The structure of V, Eq. (20), and (A4) leads to (A3).

(A4)

The consistency of this assumption can again be verified
by observing that, with (A3) fulfilled, the two time-
dependent Hartree equations (29) and (31) are identical
and thus, due to the boundary conditions

With these conditions imposed, resorting again to the continuum notation, and using the states [ I P] ( t, r) & ) which we

introduced in Sec. III, x takes the form

N P, , 0x'., (O, r)= —y y f dr'V r r(r r')&0](OP r')Ia'&&y'Ik](or')&f»(~])
1=1 a, y

0

for the imaginary-time path, and

(A5)

N

x r(t, o)= P P f»(A]) v r .r &P](t,o)Ia'&&y'IP](t, o)&
1=1 a', y'

—1 —1

dt'(M'v' M''(' e ' —M ~ M'~'e ')ay' y'a' aye

x &p', (t', 0)la'&&y'Ip', (t', 0) &

M' '*M
~ '+M ~ M' '

ya a'y'e y'a' aye

x & y', (0,0) la' & & y'Iy', (0,0) & (A6)

for the real-time path. The boundary conditions for the integral along the imaginary-time path, Fig. 1, are

lp'(0, 0) &
= lp'(o, p) &

and the normalization is II/](0, 0) II
= 1 for 1 = 1,2, . . . , N.

Finally, one needs to ensure that ensemble averages do not evolve in time in the absence of an external perturbation.
This is ensured by selecting the tiine-independent solutions to Eq. (30), i.e., by setting

lv, (O, r) & =e '
Iv] (0,0) &

for the imaginary-time path. This gives xo(o, r) the final form

(q)+ (q) (q)+ (q)

x'., (O, r}= y y v..„.—y " " " "
&y', (0,0)la &&y Iy', (0,0)&f»(x', },

1=1 a', y' q

(A7)

(A8)
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Without an external perturbation,

&y', (t,o)l~ &&@ ly', (t,o) & =&y', (0,0)i~ &&@ ly', (0,0) &

and the time integral in (A6) can be performed to give x (t, o) =x (0,0).
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