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Theory of holes in quantum dots
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The single-particle spectrum of holes in parabolic quantum dots in a magnetic field is investigated.

The calculated Landau-level structure and allowed transition-energy spectrum for the heavy and light

holes is considerably more complicated than that obtained for quantum dots containing electrons. This

is because of the valence-band mixing, which produces strong anticrossings of the Landau levels and

substantial wave-function mixing. It is noted that the band mixing causes Kohn's theorem to be

violated, thus allowing for a richer far-infrared optical response.

With recent progress in nanofabrication technology it
has become possible to confine electrons in all three spa-
tial dimensions in semiconductor structures called quan-
tum dots. ' Quantum dots can be viewed as artificial
atoms with the atomic Coulomb potential replaced by the
confinement potential of the dot. While it was anticipated
that quantum dots would exhibit rich optical spectra
reflecting a complicated energy-level scheme, as is the
case for atoms, the observed far-infrared (FIR) spectra
were considerably simpler, being dominated by only two
peaks. ' This surprising result was shown to be essen-
tially a consequence of the parabolic form of the
confinement of the electrons in quantum dots. For such
confinement, the generalized Kohn's theorem states
that the electron-electron interactions do not influence the
long-wavelength response because the dipole field couples
only to the center-of-mass motion of the system. Thus,
the many-electron system exhibits a single-electron
response consisting of two dipole-allowed transitions in
finite magnetic field.

This peculiar result raises the question of what
quantum-dot systems might exhibit more complicated and
interesting spectra. It has been shown that in a two-
dimensional (2D) hole gas the strong coupling between
heavy- and light-hole (hh and lh) states causes Kohn's
theorem to be violated. ' This result applies even if the
confining potential is parabolic. In this work, we present a
theoretical investigation of a quantum-dot system in

which heavy and light holes are confined rather than elec-
trons. Below we develop the formalism to calculate the
single-particle energy levels and dipole transition energies
of quasi-2D holes in a GaAs-AI, Ga~ „As quantum-well
system grown in the [001] direction, which is laterally
confined by a parabolic potential. A magnetic field
B (O,O, B) is assumed, with a vector potential, in the
symmetric gauge, A B/2( —y, x,O).

The Hamiltonian for this problem is given by

H ~HL+ V(z)+ V(p),
where
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is the 4X4 Luttinger Hamiltonian in the presence of a magnetic field, " V(z) is a quantum well or heterojunction poten-
tial, and V(p) —,

' Kp, p2 x +y, is the lateral confining potential. The diagonal terms

P~Q= (y~+ 2yz), + (y~~y2) p+ —A
a' e (3)
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together with V(z) give rise to the heavy- and light-hole subband states and corresponding Landau levels. The off-
diagonal terms,
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introduce the mixing between heavy- and light-hole states.

(4)
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If this mixing is neglected (R =S=0), the correspond-
ing eigenstates become distinct. It is then convenient to
include the lateral confinement, V(p), by introducing in-
dependent sets of "hybrid oscillators"' for heavy holes
and light holes, respectively. The single-particle spectra
for the two species of holes consists of two contributions:
The z confinement gives rise to a series of subbands whose
splittings are determined essentially by the corresponding
mass along the z direction, (yi T-2yz) ', the lateral
confinement produces a series of Landau ladders with
splittings determined by the in-plane masses, (yi ~ y2)
in the high-field limit (see Fig. I). The full single-particle
spectrum is just the superposition of these two spectra.

I

For vanishing magnetic field, the degeneracy of the eigen-
states is characteristic of the SU(2) dynamical symmetry
of the 2D harmonic oscillator. '

The coupling between heavy and light holes produced
by the oA'-diagonal terms in the Luttinger Hamiltonian
leads to a much more complicated spectrum. Its evalua-
tion, using the two sets of hybrid oscillators mentioned
above, requires the calculation of matrix elements be-
tween heavy- and light-hole oscillator states. While we
have performed this calculation, we present here an alter-
native approach. We consider only a single hybrid oscilla-
tor defined by

Ho= p+ —A + 2 Kp =AQ(1+b)(at a —+ 2 )+hQ(1 —B)(a)a++ 2 ),e
2@1p c
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Here, the parameter b provides a measure of the strength of the cyclotron energy produced by the magnetic field to that
produced by the lateral confinement, while a+ and a t+ define the annihilation and creation operators. Using a represen-
tation in terms of 4&4 angular momentum matrices, J„J~ =(I/J2)(J„~iJ~) for J= —, the full Hamiltonian, in the
axial approximation (p 0), reads

2

[yi —2y2(Jz i J )) z
+ V( )z+Hp+h row'J,

2rrlp t)z

+ (J, —
—,
' J )[(I+b) (at-a —+ 2 )+(1—b) (a+a++ 2 ) —(1 —8 )(at-a)+a —ay)j

2 yl

+ an, &2(3 a ([J,J+j [(I+b)a ——(1 —B)a+]—[J,J-j [(I+B)a t——(1 —6)a+] )yi, P t|z

++[(I+b)2(J2 rr2 +J2 a'f2)+(I $)2(J2 ri$2+ J2 ri2 ) 2(1 b2)(J2 a rig+ J2 rr't rr+)] & (6)
2

with P (moo/hyi) '~ . The first two lines of Eq. (6) correspond to the hole Hamiltonian in the absence of band mixing.
The next term, proportional to y3, corresponds to the coupling term, S of Eqs. (2) and (4), while that proportional to y
corresponds to the coupling term, R. This Hamiltonian commutes with the total angular momentum operator,
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FIG. l. Energy of a few of the lowest hole states without band mixing deriving from the lowest subbands due to confinement in the
z direction vs magnetic field. (a) Heavy holes; (b) light holes. Thin solid lines indicate levels without lateral confinement.
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F, at a ——a)ay+ I,. Thus, a proper basis is

fj), v,n, n+), j H, L, v-1,2, . . . , n+ 0, 1, . . . n+ —n is fixed), (7)

where H(L) designates heavy (light) holes, v ranks the
subbands, and n+ (n —) is the eigenvalue of a $a ~
(at a ). For sufficiently large B or vanishing lateral
confinement, b 1 and H,"without V(z) becomes identi-
cal with the Hamiltonian of hole Landau levels under uni-
axial strain. ' ' This formulation has the advantage that
the oscillator part can be evaluated throughout by using
the algebra of a+, at+, however, the confinement poten-
tial V(p) is not diagonal in this basis.

Since no experimental data are currently available on
quantum-dot systems containing holes, we consider a hy-
pothetical but reasonable case of a GaAs quantum dot,
where the z confinement is produced by a GaAs-
Al, Ga~, As quantum well of thickness, L. The potential
energy then has the form V(z) hE, ,B()z) —L/2), where
hE, , is the valence-band discontinuity, and increasing hole
energy is measured as positive. We choose the following
set of parameters:

L IOOA, hE, , 130meV (x 0.3),
K 1.32X10 meV/A

and Luttinger parameters: y~ 6.85, y2 2.1, y3 2.9,
and N. 1.2. These parameters give uncoupled heavy- and
light-hole oscillator energies of 3 and 2.2 meV, respective-
ly.

We retain the lowest two heavy-hole and lowest two
light-hole subbands in our calculation. The inversion

symmetry with respect to z requires that the subband
functions entering each envelope function component have
definite parity. For this case, R (S) couples heavy- and
light-hole states of the same (opposite) parity. ' Since the
angular momentum, F„ is conserved, we define the quan-
tum number, I n+ n —+M—J —2, and coupling occurs
only between states deriving from Landau levels with the
same I. For each I, the envelope function components con-
nected with hole spin Mq (eigenvalue of J, ) are expanded
in a basis of oscillator functions with diff'erent n —and n+,
but fixed n~ n I——MJ+ & . Up to fifteen oscillator
functions are required for each component in order to
achieve convergent results for the lowest five states with
fixed I.

Figure 2(a) displays a few of the lowest hole Landau
levels obtained by diagonalizing H,"as a function of mag-
netic field B, for several diA'erent values of the total angu-
lar momentum l. It is apparent that the coupling between
heavy and light holes produces a dramatic diff'erence in

the spectrum. The terms, R and S, break the dynamical
SU(2) symmetry and cause a partial lifting of the B 0
degeneracies observed in Fig. 1. They also cause a strong
mixing of the basis states, which in general does not allow
a strict classification as heavy- or light-hole states and
leads to anticrossings between levels corresponding to
states of the same angular momentum quantum number l.
This is illustrated in Fig. 2(b), which displays the lowest
few Landau levels for the case 1 0, in the range B 0 to
20 T with (solid lines) and without (dashed lines) band
mixing. The strength of the level repulsion is reAected by
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FIG 2. (a) Energy of hole states as in Fig. I, but with band

mixing included. For this case, the heavy- and light-hole states
are no longer distinct and exhibit strong anticrossings that cause
the levels to have a weaker field dependence. (b) Coupled (solid
lines) and uncoupled (dashed lines) hole levels for I 0. Strong
anticrossings cause the coupled levels to be more closely spaced
and to exhibit a weaker Aeld dependence.

I

the considerably weaker field dependence and strongly
compressed level spacings of the solid lines.

We consider now the effect of applying a microwave
electric field, E Ette ' ', where Eo E,x+E~y. The
corresponding vector potential is given by A'- —(ic/ru)E.
Following the general formulation developed by Trebin,
Rossler, and Ranvaud'I to determine the selection rules
for electric dipole transitions between Landau levels in
zinc-blende semiconductors, it is straightforward to gen-
erate the perturbation matrix, H', which is proportional to
E v where v 8H/Bhk is the velocity operator derived
from the Hamiltonian of Eq. (I). Therefore, v is deter-
mined by the Luttinger Hamiltonian, HL [Eq. (2)], and
has matrix character, i.e., the valence-band mixing
modifies the selection rules.



lj 398 D. A. BROIDO, A. CROS, AND U. ROSSLER

w 7.5
E

3 5.0

2.5

0
0

I

10

8 (Tsslo)

I

20 30

FIG. 3. Energy of dipole transitions vs magnetic Aeld.
Dashed lines are obtained without band mixing. Solid lines are
the lowest transition energies for hl + 1 including band mix-
ing.

Neglecting the band mixing produced by the off-
diagonal terms in H and H', the selection rules lead to
only four allowed transition energies, two for each species
of hole: aii, 1, + and ai11, +. Figure 3 shows these transition
energies as a function of 8 (dashed lines). For zero field,
the + and —frequencies for hh and lh coincide while for
fields sufficiently large that the cyclotron frequency is
much larger than the oscillator frequency, the 2D spec-
trum is recovered with the —frequencies tending to zero
and the + frequencies approaching the hh and lh cyclo-
tron transition energies.

Taking into account the valence-band mixing we obtain
for the lowest transition energies the solid lines shown in

Fig. 3. The remarkable reduction in energy of the upper

transition compared to the case where mixing is neglected
is a consequence of the substantially weaker field depen-
dence of the corresponding hole Landau levels (compare
Figs. I and 2) and their correspondingly smaller energy
spacings. While these transitions are obtained by consid-
ering only the diagonal terms of the dipole interaction ma-
trix, H', the off-diagonal terms will allow for otherwise
forbidden transitions to become allowed and further modi-
fy the uncoupled spectrum. These characteristics should
provide the most noticeable differences between the opti-
cal properties of quantum dots containing holes and those
containing electrons.

The matrix structure of the Hamiltonian, Eq. (1), and
the dipole interaction H' is expected to have consequences
if the Coulomb interaction between holes is considered.
Following the result for electron systems it is straight-
forward to show that when the Coulomb interaction is in-
cluded but the band mixing neglected, the radiation dipole
operator only connects the many-electron eigenstates
whose energies differ by hanoi, p+ and hai1„~, and thus the
single-particle spectrum is obtained. Including the band
mixing, which can be understood as a coupling between
the hole spin with the orbital motion in the confinement
potential, the dipole operator takes a more complex form
which leads to a violation of Kohn's theorem. It is there-
fore anticipated that the FIR response of quantum dots
containing holes will be much richer that for dots contain-
ing electrons.

In summary, we have investigated the single-particle
properties of holes in quantum dots. We have shown that
the strong mixing between heavy and light holes leads to
dramatic changes in the Landau-level spectrum and in the
allowed optical transitions compared to the case of elec-
trons in quantum dots.

On leave from Dipartimento di Fisica Aplicada, Universidad de
Valencia, Valencia, Spain.
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