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In applying first-principles molecular dynamics to metals, a fictitious temperature is usefully as-
signed to the electronic (Fermi-Dirac) occupation functions. This avoids instabilities associated with

fluctuations in these occupations during the minimization of the energy density functional. Because
these occupations vary with the ionic motion, they give rise to an extra contribution in addition to the
usual Hellmann-Feynman forces. If this extra force is omitted, energy is not conserved. We point out,
however, that ionic kinetic energy plus electronic free energy is conserved, and argue that this yields a
sensible and realistic conservative dynamics.

The Hohenberg-Kohn theorem of density-functional
theory' (DFT) was generalized to finite temperatures T,~

in 1965 by Mermin. Although this was an important re-
sult, practical applications have been rare. Recently, how-
ever, the interest in applications of finite-temperature
DFT has been renewed in the context of first-principles
molecular dynamics (FPMD). This method combines
a density-functional calculation of forces and stresses with
a classical molecular dynamics for the ionic motion.

The first and most common FPMD scheme is the Car-
Parrinello (CP) method. The original formulation for
semiconductors used (quite appropriately) was the T,~

=0
DFT energy, even when the ionic temperature TI was as
large as 1000 K. However, more recent applications to
metals benefit by using T,i & 0 Fermi-Dirac occupations
ft for electron orbitals (single-particle wave functions tlt;

and energies s;). The reason does not have much to do
with the possible nonzero temperature of the simulation.
Instead, the motivation is to avoid discontinuous changes
in the orbital occupations when these states cross the Fer-
mi level, a feature which does not plague a semiconductor
calculation.

Recently developed FPM D algorithms perform
self-consistent calculations at every MD time step and
these time steps are at least 1 order of magnitude larger
than in the CP method. This strategy retains the difficulty
of reaching self-consistency in the presence of a small gap:
Because of the Fermi surface sharpness in the zero-

temperature formalism, state occupancies oscillate and
may enter an endless loop rather than converging to a
self-consistent solution. The natural way to resolve this
difficulty is to allow partial occupations of the Kohn-Sham
orbitals. This is a practical and effective procedure which
can be traced back in the literature of conventional elec-
tronic structure calculations, ' and has also proved ef-
fective when combined with CP types of approaches.

Pedersen and Jackson " have recently noticed that
when the T,~

& 0 formulas are used in the computation of
the Kohn-Sham charge density p and in the eigenvalue
sum term (Ett) of the total energy,

E, =gef;,

p(r) =g
~ tl;(r) ~'f;

(where tlt; and s; are eigenvectors and eigenvalues), then
there is a difficulty in the calculation of the force F, acting
on the a ion. In order to conserve the total dynamical en-

ergy E =KI+U along the classical ionic trajectory, one
must take the total derivative of the Kohn-Sham energy
U=U[p(r)) by atomic position, including changes in U
caused by changes in the occupancy f;. Since the Kohn-
Sham functional with variable occupations is not varia-
tional with respect to these occupation numbers

(BU/af, ~0), a new term arises in the forces The true.
energy-conserving force F' which appears in the Lagrange
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or Hamilton equations of motion is 0.1
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where F is the force that would have been found if occu-
pations had been held fixed, and which obeys (in an exact
calculation) the Hellmann-Feynman theorem. The last
term above vanishes in a T,t

=0 semiconductor calcula-
tion (because Bfj8z 0), but at T, i & 0 is a new term in

the force.
The question then arises whether it is either necessary

or worthwhile to use the energy-conserving form (3) when

performing FPMD. In this paper we offer the answer
"no." We find a plausible argument for using the Hell-
mann-Feynman part F, alone, and we find a good conser-
vation law to replace It't+U. Specifically, the quantity
conserved when Hellmann-Feynman forces are used in

gi+ 0, where Q is the Mermin free energy'
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Here U is the ordinary DFT energy, except with the
T,i &0 modifications of Eqs. (I) and (2). Mermin's for-
mulation of DFT for T,i & 0 generalizes the Hohenberg-
Kohn-Sham theorems of T,i

=0 DFT by showing that the
true charge density p(r) at T,i & 0 is the one which mini-

mizes 0 and that the minimum value of 0 [i.e., when 0 is

stationary with respect to both p(r) and f; l is the exact
thermodynamic free energy. The property of being sta-
tionary with respect to f; makes the gradient of the free
energy just equal to the Hellmann-Feynman forces,

(6)

That is, the extra piece of F' disappears when the entropy
term is included. This establishes the simple conservation
law Ki+ 0 for the Hellmann-Feynman forces.

Our proposal differs from the "pseudoenergy" trick of
Pederson and Jackson. '' Their proposal is meant to keep
the Kohn-Sham functional variational even in the pres-
ence of fractional occupations and is strictly a T,i

=0 for-
mulation. Since the Mermin functional maps into the
Kohn-Sham at T,i =0, it is not obvious that these two ap-
proaches are equivalent; however, both schemes eliminate
the same undesirable instabilities, one at T,i 0 and the
other (Mermin) at T,i necessarily finite.

Figure 1 is a numerical demonstration of these con-
clusions. We have calculated classical trajectories for a
heated solid of bcc Li equilibrated at TI =350 K. The al-
gorithm and its parameters are the same as those de-
scribed in previous publications. ' The solid was de-
scribed by a supercell containing 16 atoms (with periodic
boundary conditions). If the ions had been stationary in
the perfect bcc 1attice, and only the 1 point of the Bril-
louin zone had been sampled, then there would have been
six degenerate states at the Fermi level and only one elec-
tron to be shared among them. When the ions are
thermally displaced from the equilibrium position, the de-
generacy between the states is removed and, at TI =350
K, a splitting Bs~ 10 eV is produced among them. If
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FIG. 1. Kinetic (Kt) (dashed lines), and changes in "poten-
tial" (dotted lines) and total (solid lines) energies (E) for a
heated bcc solid of Li described by a supercell containing 16
atoms equilibrated at Tt-350 K (lattice constant a 3.023 A).
In (a), E(t) Kt(t)+U(t), where U is the Kohn-Sham energy
(except with the T,i&0 modifications of Eqs. (1) and (2)j,
while in (b) E(t) A't(t)+O(t), where Q(t) is the Mermin
free energy. The lowest dashed line in (b) shows the noise and
drift in the total energy magnified 20 times. The time steps are
equal to 200 a.u.

one of these states is fully occupied while the others are
empty, then, for a fixed arrangement of atoms, the self-
consistent cycle enters in the endless loop previously de-
scribed. To achieve self-consistency in this example we
have introduced partial occupations corresponding to
T„i=600 K in the distribution function f;.

The dynamics has been generated by calculating self-
consistent Hellmann-Feynman forces —V A. %e have
plotted in Fig. 1(a) the kinetic energy and the changes in
potential (U) and total energies (E =Kt+U) as functions
of time. The Auctuations in the total energy depend
directly on the temperature T,t of the electronic system.
T„~ may be, but does not have to be, related to the average
ionic temperature Tt =(2/3ktt)ECt. T,i can be chosen ar-
bitrarily provided it eliminates instabilities within the
self-consistency algorithm. In this example the Auctua-
tions of E are approximately equal to 10% of the average
ionic kinetic energy and therefore not negligible. They
could be decreased by lowering the electronic tempera-
ture, but only up to a certain point, because below T,~= 150 K the self-consistent cycle becomes unstable. Fig-
ure 1(b) displays the enforcement of the new conservation
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law (E =Kt+ 0) associated with the Hellmann-Feynman
forces. The data were generated in the same run which
produced Fig. 1(a), except that now 0 includes the entro-

py contribution.
Finally, it is appropriate to ask whether there is any

reason to accept the realism of trajectories governed by
the Hellmann-Feynman algorithm as opposed, for exam-
ple, to trajectories which conserve Kt+U. Naively it
might appear that the latter is the correct conserved ener-

gy. However, the additional (non-Hellmann-Feynman)
force F' —F derives from the variation of the T,1 )0 occu-
pation numbers with particle displacement. This does not
represent correctly the actual microscopic dynamics. The
actual time evolution of electron occupancies is described
by a time-dependent Schrodinger equation; the Born-
Oppenheimer (adiabatic) approximation changes this to a
sequence of time-independent Schrodinger equations. An
additional statistical hypothesis enters when the occupan-
cy is chosen to be f;(T,~). There is no reason to believe
that the Kohn-Sham U with statistical occupancies f;
correctly describes the true nonadiabatic evolution of elec-

tronic wave functions. However, if a statistical tempera-
ture dependence is forced by practical necessity, then both
thermodynamics and the Mermin theorem tell us that it
is the free energy 0 rather than the internal energy U
whose minimization fixes the equilibrium behavior.
Therefore, —V, O should indeed be the right way to cal-
culate the force.

Aote added. After our manuscript was submitted, we
learned of work by Weinert and Davenport, ' which offers
a somewhat different justification for use of the Mermin
functional, and also offers a recipe to build alternative
functionals for use with other occupancies than Fermi-
Dirac.
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