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Magnetoresistance in dotlike and antidotlike structures
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The magnetotransport in a two-dimensional electron gas in strongly modulated potentials is investi-
gated. For dotlike and antidotlike lateral surface superlattices, a well-defined negative-differential-
magnetoresistance behavior is observed followed by a large peak at low magnetic fields. Calculating the
electron drift in the modulated potential by taking the external electric fields and the Hall field explicitly
into account, two different groups of electrons are obtained, which are in a detailed balance. As only one
of these groups contributes to the current flow, the occurrence of the negative differential magnetoresis-
tance in two-dimensional lateral surface superlattices is thus explained. Moreover, the observed max-
imum in the magnetoresistance is also obtained from this model.

Electrons in low-dimensional systems are a topic of in-
creasing interest in the last few years. In such systems of
confined geometry and reduced dimensionality, the trans-
port properties are influenced by various effects, whose
occurrence depends on the geometric dimensions of the
investigated structures and the position of the Fermi level
relative to the confining potential. One of the parameters
that can be used to classify a lateral surface superlattice is
the ratio A=E/eV,,, where eV, denotes the potential
modulation and Ej the Fermi energy in the system.

In weak linearly modulated potentials, where the Fer-
mi level is much higher than the potential modulation
(A>>1), Weiss et al.’? and Winkler, Kotthaus, and
Ploog® observed magnetoresistance oscillations being
equally spaced as a function of 1/B. The period of these
oscillations is determined by the ratio of the Landau ra-
dius and the period the modulated potential. For smaller
values of A, these oscillations start to disappear and a
positive low-field magnetoresistance is generated, which
is related to the ratio of closed and open electron trajec-
tories.* Similar effects also occur in square superlattice
geometries’ and hexagonal geometry superlattices gen-
erated by latex sphere etching masks. ®

For A~=1, two additional sets of low-field magnetoresis-
tance oscillations were observed in linearly modulated po-
tentials.” Due to a locally modulated density of states,
electrons are transferred between regions of high and low
mobility. This leads to resistance maxima each time the
electron concentration is high in low-mobility areas and
resistance minima, as electrons are transferred into areas
of high mobility.

For A <1, the electron gas is constrained in a zero- or
one-dimensional system, depending on the geometry of
the modulation. In the case of quantum wires, Thornton?®
showed that an anomalous magnetoresistance peak
occurs at a position that scales with the ratio of the Fer-
mi wave vector and the wire width. He explained this be-
havior as a consequence of diffusive boundary scattering
processes at rough interfaces. A similar peak was also
observed in antidot superlattices.”!® Using a classical
model of ballistic motion, the observed maximum in the
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resistivity p,, was explained by a magnetic-field-
dependent diffusion constant. Most recently, evidence of
commensurate orbits impaled upon small groups of anti-
dots was also found. !

In this paper, we investigate the transport properties of
dot- and antidot-type lateral surface superlattices
(LSSL’s) in a regime, where the Fermi energy is in the
same order of magnitude as the potential modulation
(A=1). In both cases, a large negative differential mag-
netoresistance (NDMR) is observed at low magnetic
fields, which is followed by a pronounced maximum. To
explain this behavior, we calculate the electron drift in a
two-dimensional LSSL, taking the external electric field
and the Hall field explicitly into account. A detailed bal-
ance between two groups of electrons is obtained from
our model, whose ratio depends on the magnetic field.
As one group of electrons contributes to the current flow
while the other does not, the NDMR in a two-
dimensional LSSL is explained for the first time. In addi-
tion, the low-field magnetoresistance maximum is also de-
scribed.

The samples consist of an unintentionally p-type doped
GaAs layer grown on a semi-insulating substrate
(N4<10" cm™), followed by an undoped spacer
(d=120 A) and doped Al ,Ga,_,As (d =400 A,
Np=2X10"¥ cm™3, x =32%). The additional GaAs cap
layer was also highly n-type doped (d =150 A,
Np=3X%10"® cm™3). Bar-shaped mesas (300X 100 um?)
were etched into the sample and Ohmic contacts were al-
loyed using Au-Ge. Photoresistant grid structures with a
period of @ =475 nm and photoresistant dot arrays
(a =630 nm) were fabricated on the mesas using uv-laser
holography. Developing the photoresistance dots and
antidots having a diameter of d ~a /2 were obtained. To
induce a modulated electron density, the photoresistance
patterns were transferred into the GaAs by wet chemical
etching ([H,0]:[H,0,]):[NaOH]= 500:2:1). The resulting
potential modulation of V,,=9 meV for a dotlike
(a =630 nm) and V,, =12 meV for an antidotlike LSSL
(¢ =475 nm) was deduced from etch depth-dependent
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electron-density measurements on unstructured test sam-
ples. Finally, a Au gate was evaporated. The mobility of
the samples is p=7X 10° cm*/Vs at T=4.2 K. A
schematic view of the sample is shown in Fig. 1(a).

To investigate the transport properties of these lateral
surface superlattices, magnetoresistance measurements
were performed in a configuration where the magnetic
field is oriented perpendicular to the two-dimensional
electron gas. Figure 2 shows the magnetoresistance
curves for an antidotlike superlattice (curve A1) and a
dotlike superlattice (curves D1 and D2 for two different
gate voltages). At low magnetic fields (B <0.1 T), a clear
NDMR is evident in all cases. For the antidotlike LSSL,
however, this behavior is more pronounced than for the
dotlike LSSL. In addition, a large maximum in the mag-
netoresistance is observed at B =0.43 T for the antidot-
like LSSL (curve A1) and at B=0.3 T for the dotlike
LSSL (curves D1 and D2). This peak is also observed by
other groups on antidot lattices.®® The NDMR has also
been seen by several groups, but was never discussed.
The inset of Fig. 2 shows the Shubnikov—-de Haas oscilla-
tions for the antidotlike LSSL (A1) up to B =4 T.

To explain these properties quantitatively, we now con-
sider electrical transport in a two-dimensional lateral sur-
face superlattice in terms of a classical Drude model.
The classical magnetoresistance is given by the expres-
sion p,, =m*/(Ne’r), where m* denotes the effective
mass, e the electron charge, 7 the scattering time, and N
the number of electrons per unit area that contribute to
the current flow. In our model, N is obtained from

Ep+k

T
N(B)=PBn, [~ L f(EME (1

kT Ep

where n; is the two-dimensional electron concentration,
f(E) the Fermi distribution, and P(B) the magnetic-
field-dependent percentage of electrons that contribute to
the current flow. Note that such effective electron densi-
ties were also used to describe the influence of random in-
homogeneities on the magnetotransport properties of
bulk crystals. 12
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FIG. 1. (a) A cut through the sample. The shapes of the dot-

like potential (b) for k=1 and the antidotlike potential (c) for
k=0 are also shown.
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FIG. 2. Measured low-field magnetoresistance of an antidot-
like LSSL (curve A1) and a dotlike LSSL. Curve D1 was traced
at ¥,=—50 mV, curve D2 at ¥, =—100 mV. The inset shows
the magnetoresistance for larger fields, where Shubnikov-de
Haas oscillations are clearly resolved.

To calculate P(B), we now consider the classical Ham-
iltonian, including the two-dimensional periodic potential
V(x,y) and the applied magnetic field perpendicular to
the LSSL. In addition to calculations performed by other
groups, >® we also include the external electric field E,,,
(x direction) and the Hall field Ey,; (y direction). Using
a symmetric gauge A =1(—By,Bx,0), the Hamiltonian
has the following form:

_ (p.+eBY/2) 4 (p, —eBx /2)*

2m* 2m*
+V(x,p)+eE 4 x +eEy,y . (2)
The Hall field is given by Ey,;=(eBr/m*)E,,
=w,7E.. Neglecting the higher Fourier components,
the periodic potential is given by the expression
£
V(x,y)=—4— cos + cos —Zaly
27
—K cos - cos +2+k|, (3

k=1 stands for a dotlike potential and k=0 denotes an
antidot-type potential [see Figs. 1(b) and 1(c)]. For our
calculations, we used a potential modulation of V,, =9
meV for the dotlike (a =630 nm) and V,, =12 meV for
the antidotlike (a =475 nm) LSSL. Different gate volt-
ages are simulated through different Fermi energies.

The Hamiltonian equations of motion, which are de-
duced from Eq. (2), were solved numerically for a set of
588 arbitrary initial starting points (x,y) and momentum
vectors (p,,p,). The corresponding kinetic energy was
then obtained by E,;, =E,—V(x,y). After a scattering
time 7=2.6X 10~ ! 5, which was obtained from the sam-
ple mobility, another set of arbitrary initial conditions
simulates the scattering processes in the modulated sys-
tem. To take the inelastic-scattering processes into ac-
count, the new set of initial conditions is always taken at
a constant energy, which guarantees that the particles do
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not accumulate energy in the average.

The external electric fields (E,,=~0.3 V/cm for both
samples) are 10°-10° times smaller than the internal
fields in the LSSL. Therefore, in good approximation,
the external electric field will not change the electron en-
ergy between two scattering processes. In contrast to
that, the situation in momentum space is changed
significantly. Two groups of electrons are established,
that coexist in a detailed balance. The first group P(B)
has a drift in the direction of the external field. Typical
trajectories for the antidotlike LSSL are shown in Fig. 3,
where the nodes of the grid represent the maxima in the
modulated potential. Curve (a) is obtained at B =0.3 T,
where the resulting trajectory is rather chaotic, but with
a clear drift in the direction of the external field. At
B =1 T, curve (b) shows the electron motion in a range
where the Hall field is much larger than the external elec-
tric field. Thus, a Ey,; X B drift is generated, which is
parallel to E.,,. The second group of [1—P(B)] elec-
trons moves either perpendicular to the external field
[curve (c), B =0.1 T] or on closed trajectories [curve (d),
0.5 T]. This kind of orbit always exists as long as the in-
tegral f (Eip T E o + Eyay )ds is zero. Here, the integra-
tion is carried out along the trajectory and E,;, is the
internal field resulting from the modulated potential. For
closed trajectories this condition can be achieved when
the center of the trajectory is not located in the potential
minimum between the surrounding antidot curve (d).

To evaluate the number of electrons contributing to
the current flow P(B), one has to know how many parti-
cles move in field direction [e.g., on trajectories of type (a)
and (b)]. For a fixed Fermi level and B=0 T, a
significant amount of the electrons channel through the
potential valleys perpendicular to the direction of the
external field. The other electrons move parallel to the
external field E ,; or have some random-walk-like behav-
ior with an average drift velocity v g in the direction of
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FIG. 3. Typical trajectories in an antidotlike LSSL. Curve
(a) (B=0.3 T) and (b) (B =1 T) represent trajectories on which
electrons drift in the direction of the external field. Electrons
on curve (c) (B =0.1T) and (d) (B =0.5 T) cannot contribute to
the current flow. The nodes of the grid are the maxima of the
modulated potential [see also Fig. 1 (c)].
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the external field. A look at different potential shapes
used in our calculation [Figs. 1(b) and 1(c)] clarifies that
the channeling behavior is much more pronounced in the
antidotlike LSSL than in the dotlike potential. In the an-
tidotlike LSSL only 50% of the electrons drift in the field
direction, whereas 80% drift in the field direction in the
dotlike potential. As the electrons that move perpendicu-
lar to the external field E,,, do not contribute to the
current flow, the B =0 T resistance of the nanostructured
samples is increased compared to unstructured samples.

We now consider the influence of very low magnetic
fields (B <0.2 T) on the electron trajectories. The in-
creasing magnetic field decreases the number of electrons
[1—P(B)] that move perpendicular to the external elec-
tric field and increases the relative number of electrons
P(B) (Fig. 4). The motion of these electrons can be de-
scribed as a random walk with an average velocity vy,
in the direction of E.,,. This behavior reflects the fact
that in a two-dimensional cosine-shaped potential, no
closed orbits can exist at very low magnetic fields, and
the normally expected E XB drift is suppressed. The in-
creased number of electrons, that are drifting in the
direction of the external field results in a NDMR. Such a
behavior turns out to be characteristic for all two-
dimensional periodic potentials and is independent of the
ratio of Fermi energy and potential modulation.

If B increases further (B >0.2 T), the interplay be-
tween the Hall field Ey,, =w7E,,, and the Lorentz force
evXB strongly influences the trajectories in the two-
dimensional modulated potential. In this regime, the
Lorentz force induces an increasing number of closed or-
bits. Simultaneously, P(B) is reduced due to a decreasing
number of electrons drifting in the direction of the exter-
nal field.

At even higher magnetic fields (B >0.25 and 0.5 T for
the dotlike and antidotlike LSSL, respectively), where the
diameter of the cyclotron orbit matches the period of the
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FIG. 4. Calculated magnetoresistance for the antidotlike
[solid curve (4)] and the dotlike LSSL [dotted curve (3)] for
V,=—50 mV. The negative magnetoresistance is more pro-
nounced in the case of the antidot LSSL than in the dotlike
LSSL. The calculated relative number of electrons P(B) that
participate in the current for the antidotlike [solid curve (2)]
and the dotlike LSSL [dotted curve (1)] is shown on the right
scale.
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LSSL, the Hall field Ey,, is so large that the stability of
the closed trajectories is destroyed and a regular Ey,;; XB
drift behavior comes up. This means that more and more
carriers drift in the direction of the external field, and
P(B) increases. The interplay between the Hall field and
the Lorentz force leads to a minimum in P(B). There-
fore, a maximum in the magnetoresistance is expected in
the range where the diameter of the cyclotron orbit
matches the period of the LSSL.

We now compare the theory with experimental results.
As a consequence of our model, the enhancement in the
resistance at B =0 T is due to a lowered amount of elec-
trons participating to the current flow and not due to a
decreased value of the scattering time 7. This is verified
by the fact that the calculated sample resistance at B =0
T fits well to the experimental data if the scattering time
7 of the unstructured samples is used. From the experi-
mental data (Fig. 2) and the calculated results (Fig. 4) it is
obvious that the NDMR at very low magnetic fields is
more pronounced for an antidotlike potential than for a
dotlike potential. This behavior is explained by the fact
that the antidotlike LSSL enables the electrons to chan-
nel through the potential valleys perpendicular to the
direction of the external field. In a dotlike potential such
channels do not exist, resulting in a less-pronounced
NDMR behavior that is predicted by our theory.

From the measured and calculated results, we find that
the magnetoresistance peak positions B, agree quite well.
For the antidotlike potential, which has a period 475 nm,
we obtain a value B;“C:O. 51 T and an experimental
value of B;*=0.43 T. For the dotlike potential
(@ =630 nm) we also find that the gate-voltage depen-
dence of the peak positions is predicted correctly by our
model. At more negative gate voltages, the peak is shift-
ed to lower magnetic fields. For V,=—50 mV, we obtain
a peak position of B;“lc=0.26 T, which is shifted to
B[f“k=0.22 T at ¥V,=—100 mV. Experimentally these
peaks are observed at B;**=0.30 T (D1) and B;*
=0.25 T (D2), respectively. As no fitting parameters
were used, the quantitative value of the calculated mag-
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netoresistance is in reasonably good agreement with the
experimental data. For the magnetoresistance of the anti-
dot sample (curve A1 in Fig. 2), we also find a second
very small peak at approximately B =0.2 T, which is not
understood yet. The remaining deviations between the
experiment and our theory, e.g., the small shift in the po-
sition of the peaks and the different shape of the magne-
toresistance, might be removed if a self-consistent poten-
tial and a spatial dependence of the scattering time in the
etched and nonetched areas are taken into account. Note
that the beginning of Landau quantization at about
B =0.6 T limits our semiclassical description of the situ-
ation.

According to the literature,® samples having a low mo-
bility (4 <25000 cm?/V s) do not exhibit a magnetoresis-
tance peak at low magnetic fields. In these samples, the
scattering time is too short to enable closed orbits. Thus
a magnetoresistance peak cannot occur according to our
model. However, trajectories perpendicular to the
electric-field direction still exist, which explains the well-
defined NDMR in such samples.’

In summary, we have investigated the transport prop-
erties of dotlike and antidotlike LSSL’s in the presence of
a low magnetic field. In both types of samples, a well-
defined NDMR followed by a large resistance maximum
is observed. Taking explicitly the external electric field
and the Hall field into account, we find that the modulat-
ed potential induces trajectories on which electrons move
perpendicular to the direction of the external field. For a
limited range of magnetic fields, closed orbits can also ex-
ist in the superlattice potential. By calculating the num-
ber of electrons in these orbits, the NDMR and the large
maximum in the magnetoresistance are quantitatively ex-
plained.
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