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Gradient-corrected pseudopotential calculations in semiconductors
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We have computed cohesive properties for Si, Ge, and GaAs in the framework of pseudopotential
density-functional theory, including gradient corrections to the local-density approximation (LDA).
Computed cohesive energies are in significantly better agreement with experiment than those given
by the LDA, while lattice constants show only a minor improvement. The Kohn-Sham single-
particle spectrum reveals a systematic k-dependent repulsion between occupied and unoccupied
states. Finally we discuss the screening properties of a gradient-corrected homogeneous electron gas.

In recent years, the local-density approximation (LDA)
to the density-functional theory (DFT) has gained gen-
eral recognition as an accurate, reliable, and simple
method to perform total-energy computations for atoms,
molecules, and solids.

Although the limitations of this approximation are now
well assessed, inhomogeneity corrections [mainly gradient
corrections (GC): see Langreth and MehP (LM), Becke,s

Perdew;~ for a general reference see Parr and Yangs] to
the LDA have not been systematically explored, espe-
cially in extended systems.

Early computations within the LM recipe produced
significantly improved results for the cohesive energy and
electron density of bulk beryllium and silicon. Excita-
tion energy computations via band structure, however,
showed little or no improvement in the case of the tran-
sition metals vanadium and copper. After these studies,
nearly a decade elapsed before the interest in GC was
revived by the failure of the LDA to predict the cor-
rect ground-state geometry for ferromagnetic solids. A
series of computationss '2 have shown that GC stabi-
lized the ferromagnetic bcc phase for iron, giving the
correct structure and therefore providing an important
improvement over the LDA. Recent gradient-corrected
studies of CaCuOz have shown that the correction to the
LDA brings this material closer to an antiferromagnetic
instability.

In this paper we investigate the eR'ects and the impor-
tance of GC to the LDA for selected semiconductors. We
focus our attention on cohesive and structural properties,
although a short discussion of the resulting band struc-
tures will also be given. In the last part of the paper we

discuss the screening properties of a gradient-corrected
recipe in the limit of a homogeneous electron gas.

Pseudopotential —plane-wave computations have been
performed for bulk Si, Ge, and GaAs. Our results show
that GC provide a significant improvement in the calcu-
lated cohesive energies. Lattice constants show little or
no improvement, , with a systematic error opposite in sign
with respect to that of the LDA.

According to pseudopotential DFT, the total energy
in atomic units of a solid of lattice constant a is the min-
imum of the functional:
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where p is the valence electron density, (g„k) and if„k}
are the Kohn-Sham eigenfunctions of the Bloch type
and their occupation numbers, respectively. VH is the
classical Coulomb-Hartree potential. V&, is the sum
of the atomic pseudopotentials of the ab initio, norm-
conserving, semirelat;ivistic type. ~ E; „, is the classical
potential energy of nonoverlapping ions. E«[p] is the
exchange-correlation functional, here approximated by
two closely related schemes: the well-known local-density
approximation and the gradient-corrected scheme. For
the gradient-corrected computation we used the semiem-
pirical exchange correction by Becke and the correlation
correction by Perdew4 (BP), that in the spin-unpolarized
version reads (Hartree atomic units)

E„c[p] = p c„,(p; V'p) dr,

with
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11 32S 1992 The American Physical Society



45 BRIEF REPORTS 11 329

TABLE I. Structural properties of three selected semicon-
ductors in the LDA and the BP approximation; nlcc stands
for nonlinear pseudocore correction on Ga atom only.

System E, —t„,;„, (eV)
LDA BP Expt.

ao a u.
LDA BP Expt.

Si
Ge

GaAs
GaAs-nlcc

5.35
4.65
8.16

4.41
3.68
6.45
6.13

4.63
3.85
6.7

10.15
10.52
10.41

10.38
10.80
10.70
10.80

10.26
10.69
10.68

8.723, and 6 = 0.472.
The reasons for the selection of this functional are

listed in Ref. 15. Here we note that this choice gives
smooth and transferable ionic pseudopotentials. To
study the structural properties of Si, Ge, and GaAs we

performed self-consistent calculations for a periodically
repeated fcc cell containing two atoms. All LDA compu-
tations used the Perdew-Zunger parametrization of the
exchange-correlation energy functional, also used in the
computation of e„"D+ in Eq. (3). The Kohn-Sham eigen-
functions (Q„i,) were expanded in a plane-wave basis set
with kinetic energy up to 48 Ry for structural proper-
ties and 24 Ry for band-structure calculations. Special
point techniques were used to sample the irreducible part
of the Brillouin zone and 10 Monkhorst-Pack special k
points proved to be enough to provide an accuracy of
the order of 0.01 eV for all the systems studied (checks
were done with 60 k points). We took the LDA pseu-
dopotentials from Ref. 18, while we generated those used
for the gradient-corrected computations according to the
prescriptions of Ref. 15.

In Table I we report results for the cohesive energy
(&cohe„„) and equilibrium lattice constant (a()). As
usual, the cohesive energy is computed as a total-energy
difference between the solid in equilibrium and the iso-
lated atoms in their respective ground spin configuration.
We observe that the corrected ao is as good as the LDA
one for Si and Ge, while in GaAs the error is consid-
erably reduced by GC. While the LDA systematically
underestimates ao, gradient corrections tend always to
overestimate it, resulting in a weaker bond picture.

For the cohesive energy the improvement is indeed sub-
stantial. We observe that the roughly 20% error of the
LDA is reduced to 5%. Again, we find that the error of

BP has the opposite sign with respect to that of the LDA.
We recall that we have found the same qualitative trends
in finite systems (atoms and molecules)is is though in
that case the improvement was more impressive.

So far we have discussed the role of the nonlocal cor-
rections to the LDA from the total-energy point of view.
Although the Kohn-Sham eigenvalues do not have, in
general, a direct physical interpretation, we can try to
analyze the consequences of these corrections on the LDA
Kohn-Sham spectrum of the solid and compare it to the
experimental single-particle excitations. In order to un-
derstand the effect of inhomogeneity we have performed
band-structure calculations at the same lattice constant
(in particular at the experimental one), because spuri-
ous pressure effects mask the character of the many-body
corrections. From Tables II and III we observe a system-
atic repulsion between occupied and unoccupied states.
This repulsion is not a constant scissor operator but a
k-dependent one, and the sign of the correction brings
the computed values closer to the experimental excita-
tion energies.

In order to improve transferability of the pseudopo-
tentials we consider explicitly the nonlinear exchange-
correlation interaction between the core and valence
charge densities. Following Ref. 19, we introduce the
functional

lu) = f&i' (ui 'vt'i) —u ' (u 'vu )) d~ (4)

where pq
——p+ p, with p, the bulk pseudocore charge

density. p, is the true core charge density outside a given
cutofF radius „twhile for t' ( r, it is the sum of two
spherical Bessel functions:

p, (t ) = A jp(I~t) + B jo(2I~t.),
where A, B, and I& are parameters adjusted to enforce
continuity of p„p'„and p,

" at r, .
Because the core-valence nonlinear interaction is neg-

ligible in Si, Ge, and As we applied the previous formal-
ism only to Ga for the bulk GaAs computations within
the BP scheme. From Table I we observe that BP-
nlcc (nonlinear pseudocore correction) tends to slightly
worsen the BP result though it is still superior to the
LDA.

Concerning the single-particle spectrum we notice in
Table III that the occupied-unoccupied repulsion effect

TABLE II. Electronic energies of Kohn-Sham states of diR'erent symmetry at I', X, and L. All values are in eV and are
measured with respect to the top of the valence band (I'2si„). Calculations are done at the experimental lattice constant ao,
spin-orbit eR'ects were not considered. Experimental values for the corresponding excitation energies are taken from Re&. 20—22.

Si

LDA
BP

Expt.

LDA
BP

Expt.

—11.88
—11.96

—12.5+0.6

—12.67
—12.73

—12.9+0.2

2.55
2.65
3.4

0.00
0.03
0.89

Xg„
—7.75
—7.81

—8.83
—8.85

—9.3+0.2

X4„
—2.82
—2.85

—3.3+0.2

X4,
—3.02
—3.04

—3.5+0.2

Xg,

0.63
0.83
1.3

Xg,

0.71
0.86

1.3+0.2

—9.55
—9.62

—9.3+0.4

Lg

—10.61
—10.65

—10.6+0.5

Lg

—6.93
—6.96

—6.7+0.2

—7.55
—7.55

—7.7+0.2

L31v

—1.17
—1.20

—1.2+0.2

—1.37
—1.39

—1.4+0.3

Lg,

1.46
1.59

2.4+0.2

Lg,

0.15
0.23
0.84
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TABLE III. GaAs I&ohn-Sham eigenenergies. (See Tables I and II for details. )

GaAs E'g, Xg X3 X5 Xy, I y

LDA
BP

BP-nlcc
Expt.

—12.55
—12.62
—12.66

0.55 —10.24 —6.70
0.64 —10.26 —6.72
0.53 —10.27 —6.77
1.63

—2.58
—2.62
—2.63
—2.80

1.43 —10.94 —6.52
1.63 —10.98 —6.54
1.61 —11.00 —6.57
2.09

—1.08 1.02
—1.11 1.13
—1.12 1.06
—1.30 1.93

still persists but there is a slight downward shift with
respect to the top of the valence band.

Up to now we have presented results of self-consistent
computations within the BP scheme. We should men-
tion that there exist other gradient-corrected calculations
for Si (pseudopotential) and Ge (all-electron) that
make use of diH'erent approximations to the exchange-
correlation functional. In the case of Si, conclusions are
not only qualitatively but also quantitatively equivalent
at least within the quoted error bars. For Ge similar
trends are observed if we compare our results to the ones
obtained within the LM recipe. It is not evident from
these computations whether a given recipe is better than
another.

The static dielectric response is a ground-state prop-
erty, and as such it is within the scope of DFT. Due
to the importance of this quantity in understanding
the response to external perturbations, we have ana-
lyzed the screening properties of a fermion gas within
the GC schemes, and, in particular, we have considered
its homogeneous electron-gas limit. The relevant quan-
tity to study is the second-order functional derivative

f„,(r, r') = b E„,/bp(r)bp(r'), which contains all the
difficult many-body contributions. Its computation from
Eq. (3) is an exercise in the calculus of variations and the
result is not an ordinary function but a distribution.

The Fourier transform of f„, in the homogeneous
electron-gas limit is

x b(k —k'),

where kF —3z z
p is the Fermi wave vector. The first term

is a negative constant, and corresponds to the LDA con-
tribution. The second (k2) term represents the gradient-
correction contribution. The value of this second term,
within the BP scheme with the choice of coefficients listed
above, is negative. In terms of physical density response

operators:

XBP = XLDA (Il +fxc XLDA)

From Eq. (6) 3,fxc —f„,—fL A is negative, so XBp-
gLDA is negative definite. That means that the BP cor-
rection to the LDA enhances screening.

This has to be contrasted to the results of refined
many-body computations showing that, up to kF,
f„,(k) is a rather flat function of k, with, however, a
positive k contribution. This would suggest that the
screening properties of the BP scheme are in fact worse
than those of the LDA, whose constant fLDA(k) well ap-
proximates the more reliable forms for slowly varying per-
turbations up to k of the order of kF.

Although semiempirical, a simple way to amend this
failure would be to decrease rl in Eq. (6) with respect to
the value used in the present computation. This possi-
bility, already suggested by Becke for extended systems
computations, could, at the same time, improve cohe-
sive energies, lattice constants, and screening properties.
Computations to explore this possibility are under way.

In conclusion, we have computed converged structural
properties for some selected semiconductors (Si, Ge, and
GaAs) using both the LDA and the BP approximation.
We observe that, though not so important as in finite sys-
tems, the BP scheme improves the energetics with respect
to the LDA. We found a band repulsion between occu-
pied and unoccupied orbitals when gradient corrections
are added to the LDA one-particle spectrum. Finally
we discussed electron screening within gradient-corrected
recipes, concluding that the BP approximation, in the
homogeneous electron-gas limit, overscreens an arbitrary
external perturbation. This is a possible explanation of
the slight overcorrection in the structural properties of
the semiconductors studied.
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