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or nonoverlapping charge densities in terms of multipole moments
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The solution of Poisson's equation in terms of a Green's function expanded in spherical harmonics

is presented. No restrictions are imposed on the charge density. An angular-momentum representa-
tion for the potential is obtained ready for application in self-consistent ful}-potential band-structure
methods, which are based on a multicenter expansion of the one-electron Green s function into
spherical harmonics.

I. INTRODUCTION

Electrostatic interactions are quite important in many
areas of condensed-matter theory. Poisson's equation de-
scribes these interactions by relating a charge distribu-
tion to the potential function contingent upon certain
boundary conditions. The general solution can be found
in terms of the Green's function (see Jacksoni).

In condensed-matter theory Madelung2 calculated the
energy of point charges distributed on a regular lattice;
Ewald generalized the problem to a charge distribu-
tion of nonoverlapping spheres each centered at a lattice
site and obtained the corresponding potential function.
These methods and derivatives of them have been applied
quite successfully in various areas of condensed-matter
theory, but always assuming certain geometrical restric-
tions on the charge density. Removing these restrictions
of nonoverlapping spheres poses certain difBculties.

Especially in band-structure calculations, which use
the local-density approximation (LDA) of the density-
functional theory, Poisson's equation plays a central role.
The solution of the effective one-electron Schrodinger
equation provides a charge density of the crystal, which

in turn is related to the solution of the Poisson equation-
the crystal potential. In the LDA the ground state of the
system is found if the crystal charge density, obtained
from the solution of Schrodinger s equation for the crys-
tal potential, has as a solution of Poisson's equation the
same crystal potential (self-consistency). Approximat-
ing the cells of a crystal by mufBn-tin spheres makes the
numerical solution of these two differential equations eas-
ier. But in order to describe the crystal more realistically
these geometrical restrictions have to be abandoned, pos-
ing mathematical difFiculties for a correct numerical solu-
tion of the effective Schrodinger equation and the Poisson
equation. In this paper a solution for the latter one will

be presented.
Considering space-filling nonoverlapping Wigner-Seitz

(WS) cells (Voronoi polyhedra), Morgan tried to de-

rive a solution of Poisson s equation using only angular-
momentum basis functions. But this result is valid only
for limited domains of space and is incomplete. A dif-
ferent approach was used by Weinert. 5 He divided each
cell into a sphere plus the remainder. Using different
representations of the charge density, namely spherical

harmonics within the sphere and plane waves outside, he
obtained the solution of Poisson's equation in each re-

gion in the corresponding representation. At the sphere
boundary one has to match these two different represen-
tations. To obtain a smooth potential function one has
to use a sufficient number of plane waves and of spherical
harmonics. This makes the problem numerically more in-

volved. In order to reduce the number of basis functions,
it is well known that the angular-momentum represen-
tation has a very compact basis, namely the spherical
harmonics. Only a small number of these functions has
to be taken into account to obtain convergence in numer-
ical calculations.

The aim of this paper is to present a method that gives
the crystal potential as an expansion into spherical har-
monics. The expansion coef6cients are given in terms
of multipole moments of cell charge densities contained
in a cell centered at different sites. The equations are
valid in all space and for any geometrical arrangement of
the cells. The usefulness of the derived equations will be
demonstrated by applying the method to a nonspherical
charge density for which the corresponding potential is
known.

II. SOLUTION OF POISSON'S EQUATION
FOR ARBITRAILY SHAPED OVERLAPPING

OR NONOVERLAPPING CHARGE DENSITIES

The general solution for the Coulomb potential due to
a charge distribution in a crystal in terms of a Green's
function is given by

V(ri) = 2 dry .t (rs)
r2 —ry

(2 I)

where p" represents the true charge density when r~ is
contained in the WS cell 0& and vanishes everywhere

else, one can rewrite~ Eq. (2.1),

) V(ri + R.„)= ) V,"(ri) + V~"(ri), (2.3)

Assuming that the charge density can be represented as
a sum over cellular charge densities

(2.2)
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by making use of the translational invariance of a crystal
(this is a convenient but not a necessary assumption for
the following). R& denotes a real-space lattice vector.
The potential due to the charge distribution within the
central cell is given by

external cells is given by

"()=)
A„ Ir2 ri + Rp. I

(2.7)

Vi"(r) = 8z ) (21+ 1) Yi(Y)[r'Pl"(r)+ r QL(t')],
L

(2 4)

To expand the Green's function iri —r2+ R„„i i (ri C

Q„, r2 g 0„,R&„—R —R„) into spherical harmonics
several difFerent geometrical cases must be considered.
According to Sack one has to distinguish four difFerent

regions for the bipolar expansion of the Green's function

where
r

Qp(r ) = / dB radrzrrp" (r|)Yz'(Pl)r(r|)
0

(2.5)
Sp .'iri —r2i ( R)d„( iri + r2i,

S, : » & I»+ R„.i,
is the L = (1, m)th multipolelike expansion term of the
charge density contained in a sphere with radius r, while

rc

Pr(r) = /, dA rtdrir, ' 'p" (r, )Y (rs)rr(ri)t,
r

S. : »& i»+R„.i,

Ss ' R„.& i»+r2i,

(2 8)

(2.6)

where r, is the radius of a sphere which circumscribes
the cell. The shape function a(r), as discussed in the
Appendix, assures that the integration is performed only
over the WS cell [o(r) is one if r is contained in the cell
and zero otherwise].

The contribution to the potential from all the other,

using the same notation as Sack. With this distinction
and using the exact, mathematically derived formulas by
Sack one gets the following expressions for the contribu-
tions of the external cells to the potential of the central
cell.

In the nonoverlapping case (region Ss) the standard
expression for the potential is obtained:

ll
Vq" (ri) = 2) 16ir YL, , (ii) si&+ & !!

1

where GL'& is the integral over the whole angle

Gp'p, = f Yp (P)Yp, (i)Yp, (P)dB.

(2li + 2lz —1)!!
(21 + 1)tt ' '+ ~

) QI, R„„' Yg, (R„„),
V

of a triple product of spherical harmonics (Gaunt numbers)

(2.9)

(2.10)

The term (li, mi) = (0, 0) corresponds to the Madelung potential. The cell multipole moment is given by Q&
=

Qi(r = oo) = Qf (r = r, ) in Eq. (2.5).
To treat the overlap region (nearest-neighbor lattice vectors) one first subtracts from Eq. (2.9) the nonoverlapping

contributions of the corresponding lattice vectors and uses instead

PV~"(ri) = 2) (—I)"4tr'YL, ,(ti)) (—1)"+ ') Gi'
Lg Lg L3

V

4 2ls —1!!

(li + !2 —la+ 1)!!(li+12+ ls)!![2(li+12+ la) + 1].r(—[-,'(1, + 1, + 1,) + 1] + u+ ~)r(—[-,'(1, + 1, —1,) + 1] + u+ ~)r(-,' —1,)r(-', —1,)
I (—[

i (1, + 1 + 1 ) + 1])r [—i (1, + 1 —1 ) + 1]I'( i —1, + u) I'( i —1 + v)

( ri ') '" ( 1
Q"-t, —+,—,(R~.j &R» )

(2.1 1)
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where I'(o.) is the Gamma function, (n)!!denotes the double factorial (—1)!!= (0)!!= 1, (n)!!= n(n —2)(n —4). . .,
u, v are integers, and L = (I, —m). The overlap multipole-moment-like functions iQL(ri) and Q" i i+&„(ri) are
given by the following integrals:

~C

QL (ri) — [p (r2)+(r2)r2'YI. , (r~)]dr2
l~ I-l&xl

(2.12)

,("i) =
Tc

[p"(rq)o(rq)rz" + "YI,,(i2)]dr2,
~ l-l~il

(2.13)

where v runs over the index of the nearest neighbors.
These integrals are quite easy to solve numerically. Using
a finite number of spherical harmonics to represent the
cell potential (Li) and assuming a maximum I value for
the I s sum all internal sums (Ls, u, v) are finite.

So far we assumed that the radii of the circumscribing
spheres are only overlapping, ' which is legitimate if one
divides the crystal into nonoverlapping WS cells. For
less symmetric cells it is possible that a neighboring cell
is contained completely within the circumscribing sphere
of the central cell. In this case the bipolar expansion
formulas valid in the domains Si or S2 have to be used.
Even in the case of overlapping cell charge densities the
solution of Poisson s equation in terms of spherical har-
monics is a straightforward extension of the above.

III. A NUMERICAL TEST CASE

To demonstrate the validity of Eqs. (2.4), (2.9), and
(2.11) we chose as test charge density4

p(r) = B) exp(t T; r),

where the not-converged charge density of Eq. (3.3) with
lz

——4 was used. The error due to the nonconverged sum
for the charge density incidentally cancels almost the ne-
glect of the correction term Eq. (2.11). The same charge
density should have been used when comparing the two
different expressions for the potential. Then the result
shows that the overlap corrections are important.

In the present calculation I used l&
——ly

——8 as max-
imum I values for the charge density as well as for the
potential expansion into spherical harmonics. One must
note that the integrals in Eqs. (2.5), (2.12), and (2.13) are
extended over the WS cell and not over a sphere. There-
fore higher multipole moments than lq ——8 exist and have
to be included in the summations. These moments are
only due to the shape of the WS cell, and can easily be
calculated by using the expansion of the shape function
into spherical harmonics (see the Appendix). Without
these higher terms the result converges much slower and
the expansion of the potential has to go up to higher tq

values.
Figure 1 shows such a calculation for the (001) direc-

tion pointing to the farthest corner of the WS cell. The

where T; is the set of eight vectors ( 1, 1, 1 & 2s'/a of a
fcc crystal with a lattice constant a = 10.263 Bohr radii
and B = 0.005 Ry. With this set of parameters the cell
potential is given by4

V(r) = 8xp(r)/T; + 0.24176 Ry.

Expanding Eq. (3.1) into spherical harmonics,
l 8

p(r) = 47rB) ) ) t jt(Tir)Yim(Ti)Yim(r),
l=0 m=-l i=1

(3.2)

(3.3)

0

8
0
CL

where ji(z) is a spherical Bessel function, we found that
for lz & 8 the series is converged.

Previously Eqs. (2.4) and (2.9) have been derived by
Morgan. In that paper it was argued that the discrep-
ancy between the exact potential and the one obtained
by using Eqs. ('2.4) and (2.9) was not too large and could
be neglected. It was also noted that for lz larger than 4
the results become worse. The explanation for that mis-
taken observation is quite simple now. The correction
[Eq. (2.11)] due to the overlap of the radii centered at
different expansion centers are important and have to be
taken into account. Morgan had compared the potential
of Eq. (3.2), where the charge density of Eq. (3.1) was
used, with the potential obtained by Eqs. (2.4) and (2.9),

I ' I

O. O I.O 2.0
I i I ' I

3.0 4-.0 5.0
r adius (a.u. )

FIG. 1. Different contributions to the potential: exact re-
sult obtained by Eq. (3.2) or the sum of Eqs. (2.4), (2.9),
and (2.11) (full line), the potential without the overlap cor-
rections [sum of Eqs. (2.4) and (2.9)] (dotted line), the single
cell term Eq. (2.4) (short dashed line), the correction term
Eq. (2.11) (long dashed line), and contributions of the exter-
nal cells Eq. (2.11) (dashed dotted line) for vectors pointing
along the (001) direction.



45 BRIEF REPORTS 11 317

exact result Eq. (3.2) (full line) was reproduced by the
sum of Eqs. (2.4), (2.9), and (2.11),where multipole mo-
ments up to l2 ——16 have been included. For illustration
the different contributions to the potential have been in-
cluded in Fig. 1: the single cell potential [Eq. (2.4)] start-
ing at about 0.5 Ry, the term due to the external cells
[Eq. (2.11)]starting slightly above 0.0 Ry, and the contri-
bution coming from the nearest neighbors in the overlap
region [Eq. (2.11)]beginning at 0.0 Ry. The dotted line is
the total potential without the overlap corrections, which
shows that the overlap corrections are important at the
cell edges.

In a recent paper, Gonis, Sowa, and Sternes treated the
same problem using a different approach. In their paper
they avoid the problem of having a mathematically cor-
rect angular-momentum expansion of I/r, which is valid
in the different regions, by the following procedure. First
they shift a point lying in the region Ss by a vector b
into the region Ss, then they use the appropriate bipo-
lar expansion, then they shift back by —b to the original
point and perform another bipolar expansion. The use-
fulness of their final result in band-structure calculations
is questionable, since for every nearest-neighbor lattice
vector one has to calculate the structure constants up to
l = 30 in order to obtain a converged result. Although in
principle one has to do this for each WS cell only once,
the computer memory it takes to store all these constants
is enormous.

The approach presented here is based on a mathemat-
ically exact derivation of the bipolar expansion of 1/r. It
has the advantage that the expansion does not depend
on any direction. All angular and radial dependencies
are factorized explicitly. The crystal potential is given as
an expansion into spherical harmonics, and the expan-
sion coefficients are presented explicitly. The expansion
is convergent, in contrast to the one found by Gonis,
Sowa, and Sterne. s Therefore the method is computa-
tionally quite fast (20 seconds for 700 radial points on a
CRAY YMP). The most time consuming part is the sum-
mation of the overlap correction [Eq. (2.11)],which takes
about I of the computer time. Currently I am using

this program in a full-potential Korringa-Kohn-Rostoker
(KKR) (Ref. 6) method.

IV. SUMMARY

Without imposing any restrictions on the shape or ex-
tension of the separate charge domains, the solution of
Poisson's equation in terms of spherical harmonics has
been presented. In the case of nonoverlapping, space fill-

ing cell charge densities corrections must be included due
to the overlap of the circumscribed spheres of two adja-
cent cells. The presented formulas are best suited for ap-
plications in self-consistent full-potential band-structure
calculations that use the angular-momentum representa-
tion such as the KKR method, or the linear-muffin-tin-
orbital method, and other related methods.
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APPENDIX: SHAPE FUNCTION

A convenient way to solve the three-dimenional inte-
grals [Eqs. (2.5) and (2.6)] numerically is to expand the
shape function into spherical harmonics, 4

~(~) =) «(r)&~(r)
L

(A1)

In order to obtain the coefficient or, (r), I used 2016
(Ref. 9) special directions in 1/48 of the WS cell for the
angular integral. In this way the evaluation of the three-
dimensional integrals is reduced to a one-dimensional nu-

merical integration over the radius. For a noncubic WS
cell a numerical procedure to calculate the shape function
was given by Stefanou, Akai, and Zeller. io
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