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We use some recent results, relating the optical mass to the sensitivity of a system of interacting lattice
fermions to boundary conditions, to obtain the scaling properties of the effective mass close to a metal-
insulator transition due to correlations.

In a recent Letter, Shastry and Sutherland' (SS) made
the remark that the coefficient governing the finite-size
scaling corrections to the ground-state energy density of
an interacting system is the same as what appears in the
free-acceleration term of the conductivity. That is, they
obtained the relation b,E/L" AD, /L, where hE/L" is
the difference in the ground-state energy density between
periodic and twisted boundary conditions imposed on a
d-dimensional hypercubic system of finite size L. Then
they showed that the charge stiffness D, appearing in this
relation is associated with the free-acceleration term of
the real part of the frequency-dependent conductivity,
i.e., Rect/„(co)=(2sre /R)D, 5(enrico). Shastry and Suther-
land discuss the possibility of a metal-insulator transition,
due to correlations (Mott transition), occurring in an in-
teracting lattice fermion system associated with the van-
ishing of D, . In fact, the scaling behavior of D, close to
the zero-temperature metal-insulator transition can be ob-
tained from finite-size-scaling theory under the assump-
tion that this transition, as described by the Hubbard
model, is continuous. This is supported by renormaliza-
tion group and other approaches to this model. We find

D, cc
~g~ ', where the dimensionless quantity g mea-

sures the distance in parameter space to the transition
(g =0 defines the critical point). In this expression a and
v are standard critical exponents associated with the un-
stable zero-temperature fixed point controlling the transi-
tion. Specializing to the fixed density transition of the
half-filled Hubbard band model (d ) 1) and using the
modified hyperscaling relation 2 —a =v(d +z), we

have D, ~
~
U —U, ~

~"+' ', where U, is the critical
value of the Coulomb repulsion U and z is the dynamical
critical exponent, which plays a central role in the theory
of quantum critical phenomena. '

The critical behavior of the charge stiffness, when ex-
pressed as D, ~g ' +' ', implies that the frequency-

dependent conductivity of the interacting system behaves
as

O„„ccrc

"f(cor&), where r&~P, as expected from
purely dimensional arguments. 7 We may then identify
the diverging length g cc

~g~
" with the conductivity

correlation length in the metallic phase. As emphasized
by SS, the quantity D, is the inverse of the conductivity
effective mass m'cc 1/D„which diverges at the Mott
transition due to the vanishing of D, for d+z —2&0.
Alternatively the scaling properties of m' can be ob-
tained directly from the expression for the frequency-
dependent conductivity if, following Kohn, we define the
effective mass m' through the relation ( ne /m')—
=lim„oco Imo„„(co) and take Imf(cow&) cc (1/cor&) in the
limit co~&—+0 as is the case for a perfect conductor. It is
interesting that the optical mass m considered above
scales differently from. the thermal mass mT, defined
through the linear term of the specific heat, mT ~ C/T,
close to the metal-insulator transition.

The scaling arguments presented above turn out to be
sufficiently general to apply for lattice boson systems at
the continuous superfluid-to-insulator transition. In this
case the charge stiffness is replaced by the generalized
superfluid density p, which scales as D, and vanishes at
the transition. For one-dimensional quantum systems
and in the Lorentz-invariant case, i.e., when the dynamic
exponent z=1, we get d+z —2=0 and D, or p, becomes
a constant independent of the interactions. This result is
expected from conformal invariance since the coefficient
of the L term of the finite-size-scaling corrections to
the ground-state energy at criticality is in this case a
universal constant. It does not apply, however, for the
half-filled Hubbard band at d=1, the lower critical di-
mension for the fixed density (n =1) transition. In this
case U, =0 and the charge stiffness' D, =0, i.e., the sys-
tem is an insulator for all U & 0.

The authors in Ref. 1 have shown the existence of a
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metal-insulator transition in the one-dimensional Hub-
bard model as the electron density n approaches the criti-
cal value n, =1 for a fixed U) 0. For small U the charge
stiffness D, vanishes linearly with the hole concentra-
tion, " i.e., D, ~(n n, )—. With the critical behavior of
the relevant physical quantities expressed in terms of
(p —p, ), where p is the chemical potential and p, is its
value at the phase boundary, this exact result, together
with the fact that vz=1 for this density-driven transi-

tion, ' allows us to determine unambiguously the ex-
ponents v= —,', z =2, and a =

—,'. The same exponents have
been obtained for an interacting one-dimensional Bose
system at the density-driven Mott insulator to superfluid
transition. '
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