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We use some recent results, relating the optical mass to the sensitivity of a system of interacting lattice
fermions to boundary conditions, to obtain the scaling properties of the effective mass close to a metal-

insulator transition due to correlations.

In a recent Letter, Shastry and Sutherland! (SS) made
the remark that the coefficient governing the finite-size
scaling corrections to the ground-state energy density of
an interacting system is the same as what appears in the
free-acceleration term of the conductivity. That is, they
obtained the relation AE /L¢xD,/L? where AE /L is
the difference in the ground-state energy density between
periodic and twisted boundary conditions imposed on a
d-dimensional hypercubic system of finite size L. Then
they showed that the charge stiffness D, appearing in this
relation is associated with the free-acceleration term of
the real /part of the frequency-dependent conductivity,
i.e., Reol, (w)=(2me?/#)D 8(#iw). Shastry and Suther-
land discuss the possibility of a metal-insulator transition,
due to correlations (Mott transition), occurring in an in-
teracting lattice fermion system associated with the van-
ishing of D,. In fact, the scaling behavior of D, close to
the zero-temperature metal-insulator transition can be ob-
tained from finite-size-scaling theory” under the assump-
tion that this transition, as described by the Hubbard
model, is continuous. This is supported by renormaliza-
tion group® and other approaches® to this model. We find
D, = |g|*~*~%, where the dimensionless quantity g mea-
sures the distance in parameter space to the transition
(g =0 defines the critical point). In this expression a and
v are standard critical exponents associated with the un-
stable zero-temperature fixed point controlling the transi-
tion.* Specializing to the fixed density transition of the
half-filled Hubbard band model’ (d >1) and using the
modified hyperscaling relation*® 2—a=w(d +2z), we
have D, «|U—U,|"¥**72  where U, is the critical
value of the Coulomb repulsion U and z is the dynamical
critical exponent, which plays a central role in the theory
of quantum critical phenomena.*®

The critical behavior of the charge stiffness, when ex-
pressed as D, <£ @272 implies that the frequency-
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dependent conductivity of the interacting system behaves
as o,, < §2_df(co'r§), where 7, &% as expected from
purely dimensional arguments.” We may then identify
the diverging length £« |g|™" with the conductivity
correlation length in the metallic phase.” As emphasized
by SS, the quantity D, is the inverse of the conductivity
effective mass m* «<1/D_, which diverges at the Mott
transition due to the vanishing of D, for d +z —2>0.
Alternatively the scaling properties of m* can be ob-
tained directly from the expression for the frequency-
dependent conductivity if, following Kohn,® we define the
effective mass m* through the relation (—ne?/m*)
=lim,,_, oo Imo , (») and take Imf(w7,) < (1/07¢) in the
limit @7,—0 as is the case for a perfect conductor.® It is
interesting that the optical mass m* considered above
scales differently from the thermal mass* my, defined
through the linear term of the specific heat, my < C/T,
close to the metal-insulator transition.

The scaling arguments presented above turn out to be
sufficiently general to apply for lattice boson systems at
the continuous superfluid-to-insulator transition.® In this
case the charge stiffness is replaced by the generalized
superfluid density p, which scales as D, and vanishes at
the transition.® For one-dimensional quantum systems
and in the Lorentz-invariant case, i.e., when the dynamic
exponent z=1, we get d +z —2=0 and D, or p; becomes
a constant independent of the interactions. This result is
expected from conformal invariance since the coefficient
of the L ~? term of the finite-size-scaling corrections to
the ground-state energy at criticality is in this case a
universal constant.” It does not apply, however, for the
half-filled Hubbard band at d =1, the lower critical di-
mension for the fixed density (n =1) transition.’ In this
case U, =0 and the charge stiffness'® D, =0, i.e., the sys-
tem is an insulator for all U > 0.

The authors in Ref. 1 have shown the existence of a
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metal-insulator transition in the one-dimensional Hub-
bard model as the electron density n approaches the criti-
cal value n, =1 for a fixed U >0. For small U the charge
stiffness D, vanishes linearly with the hole concentra-
tion,!! i.e., D. < (n —n_). With the critical behavior of
the relevant physical quantities expressed in terms of
(u—p,), where u is the chemical potential and pu, is its
value at the phase boundary, this exact result, together
with the fact that vz=1 for this density-driven transi-
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tion,*® allows us to determine unambiguously the ex-
ponents v=1,z=2, and a=1. The same exponents have
been obtained for an interacting one-dimensional Bose
system at the density-driven Mott insulator to superfluid
transition.% 12
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