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A method for treating strongly inelastic scattering of light atoms and molecules from rare-gas
overlayers with close-coupling wave packets is proposed. The multiphonon distributions for the exci-
tation of the rare-gas atoms, treated as Einstein oscillators, are calculated in one and two dimensions
for a single excited oscillator as well as for in-phase excitation of the overlayer. Strong inelasticity
and deviations from Poisson distributions are found especially for the scattering of Hz from Ar,
less from Kr or Xe. We also show that this method is able to handle the dynamics of sticking and

trapping on these overlayers.

I. INTRODUCTION

The study of inelastic scattering of atoms and
molecules from surfaces is one of the central fields in sur-
face science. Recent advances in thermal molecular-beam
scattering from well-characterized surfaces have made it
possible to make detailed studies of the mechanisms be-
hind gas-surface energy transfer and sticking of atoms
and molecules on surfaces. Even for a nonreactive sys-
tems several different issues remain to be settled con-
cerning these mechanisms, like the relative importance
of electron-hole pairs and phonons at metal surfaces, the
role of rotations and vibrations of the incident particle,
and the relative importance of inelastic scattering and
surface corrugation on sticking. The theoretical descrip-
tion of these processes also poses a many-body scattering
problem of fundamental interest in its own right.

The physisorption of atoms and molecules on surfaces
is one of simplest classes of systems to describe theo-
retically. The physisorption interaction is believed to
be electronically adiabatic in most cases, which means
that the substrate phonons are the dominant channels
for energy transfer. A quantum-mechanical description
of the energy transfer to phonons has been found to be
imperative in many cases for light atoms and molecules in
this class of systems. The importance of quantum effects
has for instance been demonstrated for the sticking of
Ne on Ru(100) (Ref. 1) and also for hydrogen molecules
on Cu(100).2 These two cases, as well as the scattering
of thermal He beams from clean surfaces, are examples
where the inelasticity is weak and where the energy trans-
fer is dominated by one-phonon processes at low incident
energies. The one-phonon regime of inelastic scattering
can be handled theoretically by the distorted-wave Born
approximation® while in the situation of strong inelastic
scattering: the-theoretical- description is-mudr less devel:
oped.

A most interesting class of surfaces where strongly in-
elastic scattering can be studied in the quantum regime
both theoretically and experimentally is provided by the
ordered rare-gas overlayers on metal surfaces. The He-
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beam scattering studies from ordered Xe overlayers on
Cu(100) by Mason and Williams* have shown that the
low-energy adsorbate phonons in these systems can be
multiply excited. Such multiple excitations have more re-
cently also been observed on Ar, Kr, and Xe monolayers
on Ag(111),>6 and Kr and Xe monolayers on Pt(111).7®
In these later experimental studies the Einstein-oscillator
character of the adsorbate modes were demonstrated
from measurements of their dispersion with momentum
transfer parallel to the surface. Another most attractive
feature for the theoretical modeling of this class of sys-
tems, besides the simple nature of the surface vibrational
modes, is that the particle-surface interaction is known
from measured atom or molecule rare-gas potentials and
the van der Waal particle-metal-surface interaction. In-
elastic scattering of He from Xe overlayers has been stud-
ied theoretically by Kosloff and Cerjan.® Their mean-field
treatment of the atom-phonon interaction gives, however,
a poor description of the large inelastic effects in this sys-
tem.

We have developed a fully quantum-mechanical
method that is able to handle the effects of both strong
inelasticity and surface corrugation on the energy trans-
fer and sticking. The method is based on the approxi-
mation that multiphonon excitations can occur only at
a single site in the inelastic scattering of a particle from
an ordered lattice of Einstein oscillators and solving the
resulting equations using a pseudospectral technique for
propagating close-coupled wave packets. This approx-
imation is developed within the framework of a for-
mally exact multiphonon expansion introduced by Stiles,
Wilkins, and Persson.!? The Einstein-oscillator character
of the phonons and the localized particle-surface inter-
action gives the physical motivation for the approxima-
tion. We have also compared our results with an in-phase
multiphonen-approximsation-where-all- Einstein-oscillator-
phonons are excited in phase. However, this approxima-
tion will not describe sticking but only temporary trap-
ping since the energy transferred to the phonons will be
transferred back to the trapped particle.

This quantum-mechanical method has been applied to
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the scattering and sticking of a hydrogen molecule at
Ar, Kr, and Xe overlayers on Ag(111). We have cho-
sen to study a hydrogen molecule instead of a He atom
since the well depth of the molecule-surface interaction
is sufficiently deep to also make experimental studies of
the sticking practical. The calculations of multiphonon
excitations and trapping and sticking coefficients have
mostly been performed at a single energy, and we have
restricted the motion of the molecule to be two dimen-
sional and in the in-phase multiphonon approximation
we have also considered the further restriction that the
motion should be one dimensional. All calculations are
done at normal incidence and at zero substrate tempera-
ture but can readily be done at off-normal incidence and
nonzero temperatures.

The overall behavior of the calculated multiphonon loss
distributions can be understood semiquantitatively from
a forced-oscillator model combined with the results from
a simple Baule model for the energy transfer. In particu-
lar we find that our calculated loss distributions are close
to a Poisson distribution for Hs on a heavy rare-gas atom
overlayer like Xe, while large deviations are found on Ar
where the inelasticity is stronger due to the larger mass
ratio. A result that should be of direct experimental in-
terest, and that we plan to calculate in the future, is the
calculation of the full momentum-resolved multiphonon
loss distributions, which can be directly compared with
measured distributions. In the single-site approximation
we find that the calculated sticking coefficient is close
to the calculated initial trapping coefficient in the in-
phase approximation even in the one-dimensional calcu-
lation. This result can be understood from the fact that
the energy transfer back to the trapped particle is slow
compared to the time it takes for the particle to move
away from the excited atom. A most important result in
the single-site approximation is that the calculated ini-
tial trapping coefficient into states with a perpendicular
energy less than zero is much larger than the sticking co-
efficient into states with energy less than zero. This is
a combined effect of strong corrugation and inelasticity,
which makes it possible for the particle to scatter into
states with large momentum parallel to the surface at
normal incidence. This is an important effect for these
systems, which also should be of direct experimental in-
terest and is not expected for systems with weak inelas-
ticity and surface corrugation. For instance, in the case
of sticking of hydrogen molecules on Cu(100) the trap-
ping into such states is appreciable only at large angles
of incidence.

The remaining part of this paper is organized as fol-
lows. In Sec. II we first define the particle-surface scat-
tering problem by introducing its Hamiltonian while the
details of the molecule-surface interaction is postponed to
the last subsection. The equations of motion obtained in
the single-site and in-phase multiphonon approximations
together with a detailed presentation of their solution in
terms of close-coupled wave packets are also given in this
section. In Sec. III we give and discuss the results for
the multiphonon loss distributions and the sticking of Ho
at the Ar, Kr, and Xe overlayers on Ag(111). Finally, in
Sec. IV we summarize and conclude.
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II. THEORY

A. Hamiltonian

As already mentioned, we want to treat the inelas-
tic scattering and sticking of a hydrogen molecule on
a metal surface covered with a monolayer of noble-gas
atoms. Inelastic He scattering studies have shown that
the energy transfer to the adsorbate layer is dominated
by low-energy adsorbate modes polarized normal to the
surface. These modes show no dispersion with the mo-
mentum transfer, and the observed energies of the mul-
tiple losses are well described in the harmonic approxi-
mation. These facts are the main reasons why we only
include these Einstein-oscillator phonons in our model.
The molecule is treated as a structureless particle with
no internal vibrations or rotations. The neglect of in-
ternal vibrations is obviously justified in our case since
the vibrational energy is very large compared to the con-
sidered energy scale of the molecule-surface interaction.
Even the rotational spacing of about 44 meV (j = 0 —
2) of the hydrogen molecule is relatively large compared
to this energy scale. This fact combined with the small
anisotropy of the hydrogen-rare-gas atom potentials jus-
tifies the neglect of the rotations in this context.

The Hamiltonian H of the molecule-phonon system
can be written as a sum of a molecule part, Hp, a lattice
part, Hy.i, and an interaction part, Vi,

H = Hp “+ Hlatt + ‘/int(ry{uZ(R)})‘ (1)

Here r is the position of the center of mass of the molecule
and u,(R) is the displacement of the noble-gas atoms
from its equilibrium positions, R. The rigid surface po-
tential Vp(r) is included in the particle part of the Hamil-
tonian,

p?
H, = — + Vy(r), 2
p 2mp + 0(1‘) ( )
where m,, is the particle mass. The Hamiltonian corre-
sponding to the undisturbed two-dimensional lattice of
Einstein-oscillator modes can be written

Hiare = Y _wg [B(R)TB(R) + 1], (3)
R

where b(R)! creates an Einstein-oscillator phonon at site
R. The Einstein-oscillator frequencies wg are listed to-
gether with the lattice constants in Table I for the con-
sidered rare-gas overlayers. Note that we use units where
h=1.

The total interaction potential V (r, {u,(R)}) between

TABLEI. The energies of the Einstein oscillators and the
lattice constants for the different rare-gas overlayers.

Phonon energy Lattice

hwg (meV) parameter (ao)
Ar 3.7 7.18
Kr 2.9 7.56
Xe 2.8 8.31
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the molecule and the surface is expanded in the displace-
ments u,(R) of the noble-gas atoms perpendicular to
the surface. The zero-order term is Vy(r), which is in-
cluded in H,; the other terms are included in Vip. In
our calculations we have found that the low energy of the
Einstein-oscillator modes together with the rather strong
molecule-surface interaction potential makes it necessary
to go beyond a linear coupling model, and to include also
the second-order term in the expansion of V (r, {u,(R)})
in u;(R). The interaction term Vip; can then be written
using the expansion

1

u:(R) = 2mywEg

[b(R) + b(R)'] (4)

Vine (v, {u:(R)}) = ) _ g(r, R)[B(R) + b(R)']
R

+ 3 d(r, R, R)[B(R) + b(R)!]

R,R’
x [b(R') + b(R)'], (5)
with
1 av
R = e u.(0) ©
and
d(r,R,R/) = 1 v (7

4m,wg Ou,(R)0u,(R')’

where m, is the noble-gas-atom mass. The explicit form
of the rigid surface potential Vy(r) and the linear and
second-order coupling terms g(r,R) and d(r,R,R’) for
the scattering of a hydrogen molecule from the Ar, Kr,
and Xe overlayers will be discussed in a later section.

B. Single-site multiphonon approximation

The inelastic particle-surface scattering problem posed
by the Hamiltonian in (1) is a formidable many-body
problem despite the simple nature of the adsorbate vibra-

|
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tional modes. This problem is attacked within a theoret-
ical framework based on a formally exact multiphonon
expansion developed by Stiles, Wilkins, and Persson.!?
The particle-phonon interaction is of very short range,
and in most situations limited to a single adsorbate atom.
Our proposed approximation is based on the assumption
that multiple phonon excitations are created only on a
single site in the initial collision. For comparison we also
consider the other extreme case where all the Einstein
modes are excited in phase. The proposed approxima-
tions are developed for zero substrate temperature but
can be generalized to nonzero temperatures.

The amplitudes corresponding to the multiphonon ex-
citations are characterized by the number of phonons ex-
cited at each site R, {n(R)}. We define the amplitude
for the hydrogen molecule to be at r when the noble-gas-
atom oscillators are in the state {n(R)},

<QE(R,t)"(R) 1/3(r,t)>

¥(r, {n(R)},1) = (8
) [Tn(R)!

R

where the angular brackets denote a thermal average.
The time evolution of the amplitude operator

Y(r, 1) = et (rle= 7 (0)) 9)

is governed by10

.0 - . .
zazﬁ(r,t) = [H,, + Vint(l‘,t)] P(r, ). (10)
Here x(0) is the initial particle wave function, and oper-
ators with a caret are defined by

O(t) — eiHl'“tOe_iHl‘“t, (11)

Taking the time derivative of ¥ in (8) and inserting
the equation for the amplitudes (10) and keeping for
the moment only the first-order terms in the particle-
phonon interaction (5), we arrive at the following cou-
pled set of equations for the multiphonon amplitudes

¥(r, {n(R)},1),

i—%¢(r, {n(R)},t) = (H,, + Zn(R’)wl.;') ¥(r, {n(R)}, 1)
RI
+ 3 g(r, R)VaR) T 6(r, {n(R)+brr}, ) + ValR) 6(r, (n(®)—bnr b0, (12)
RI

where 6r r' is the Kronecker symbol. The second-order
terms in the interaction are too lengthy to write out,
but they contain amplitudes like ¥(r, {n(R) + ép.r' *
br,r~},t). It is evident from this infinite set of cou-
pled equations for the multiphonon amplitudes that it
is necessary to introduce some physically motivated ap-
proximations. As we have already stressed, we assume
that most of the excitations occur due to the first impact
of the molecule on the surface, and that therefore only

f

single-site multiphonon excitations are allowed. This ap-
proximation introduces a constraint

¥(r, {n(R)},1) =0,
(13)
if n(R)n(R')#0 forsome R #R/'.
Furthermore we will make use of the periodicity of the

overlayer by considering an incident particle with a wave
vector K, parallel to the surface. At zero temperature
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no thermally excited phonons are present, and the initial
state is

’(/J(l‘, {0}»t) t—"‘——’oo d)mmal(r t) = "r/)m(z t) C'Kin.ra (14)

with all other initial multiphonon amplitudes being zero.
The amplitudes corresponding to multiple excitations of
phonons at different sites then differ from each other by
a phase factor, and can be written

Y(r, {n(R)},t) = 'Kin Ty, (r — R, 1)
for n = n(R) and n(R') =0, R’ #R.

(15)

The zero-phonon amplitude is independent of R and peri-
odic over the adsorbate layer. A multiphonon excitation
at a single site breaks the translational symmetry, and

J
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the corresponding amplitude is not periodic over the sur-
face. Furthermore, the periodicity of the overlayer and
a pair potential description of the particle-adsorbate in-
teraction simplifies the linear and second-order coupling
terms, and makes the second-order term diagonal over
the adsorbate sites,

g(r,R) = go(r — R), (16)
d(r,R,R’) = do(r — 17

Finally, we can collect all our results obtained in the
single-site multiphonon approximation and from using
the surface periodicity. If ¢ is the column vector con-
taining the amplitudes ¢,, the equations of motion (12)
can, after the introduction of the second-order terms in
(5), be written as

R) 6R,R’ .

i%d’(r:t) = {Hp(Kin) + [we + 2d0(r)]N + go(r)M(l) + do(l')M(z)}d)(r,t)

+ 3 [go(r—R)AD + do(r-R)A®]$(r—R, 1) .

R#0

The particle Hamiltonian is now given by

(p + K, )2

HP(Kin) = 2m

+ Vo(r) + )_do(r —R),
R

(19)

and N is a diagonal matrix that gives the number of
Einstein-oscillator phonons in the multiphonon ampli-

tudes,
Nn,n’ =n 6n,n'-

(20)

M@.2) and A(1:2) are the matrices introduced by the lin-
ear and quadratic coupling terms in (5) that couple the
different multiphonon amplitudes,

,(117)1' - \/_671 n/41 + \/_6n+1 n', (21)

(2):—\/71(71—1 6nn+2 + vn ’(n —-1 6n+2n,

(22)
AL, = 8408011, (23)
AQ) = V260,060 2. (24)

Note that the introduction of the second-order coupling
term renormalizes the static surface potential in the par-
ticle Hamiltonian from its value in the rigid lattice sit-
uation and makes the Einstein-oscillator frequencies de-
pendent on r. The latter renormalization is found to
be an important effect in the solution of this coupled
channel problem. The set of coupled equations in (18)
conserves the total probability to find the particle any-
where in space and is accordingly a unitary approxima-
tion. Note that in terms of the zero and multiphonon
amplitudes this unitarity condition is given by

1—_-/ dr|¢o(r,t)|2+Z/dr|¢"(r,t)|2,

(25)

(18)

where the integration of the zero-phonon probability den-
sity only takes place over the surface unit cell (u.c.).

The in-phase multiphonon approximation is obtained
by forcing periodic boundary conditions on the nonzero-
phonon amplitudes at the edge of a single surface unit
cell and taking away the sum over different sites in
(18)( A1) = (). This corresponds to the fact that all
Einstein-oscillator phonons in the adsorbate overlayer are
coherently excited with the same phase or, in another ter-
minology, the multiple excitation of the delocalized Ein-
stein phonon at the center of the surface Brilluoin zone.

Finally, we would like to stress that the single-site ap-
proximation is not equivalent to the approximation that
we have scattering from a single Einstein oscillator in an
otherwise rigid ordered overlayer. The latter situation
corresponds to the fact that we only allow multiple ex-
citations on a particular site, e.g., R = 0, while in the
single-site approximation we allow for a multiphonon ex-
citation on any of the adsorbed atoms. The physical dif-
ference between these two approximations is subtle but
it is revealed by considering the following situation. As-
sume that the particle is scattered by the surface cor-
rugation without making any phonon excitation into a
trapped state characterized by the fact that the energy
of the normal motion is less than zero. In the single-
site approximation this elastically scattered particle can
excite phonons at any site, which means that the proba-
bility for the particle to move along the surface without
having made any excitation decays in time. In the other
approximation that probability is constant as long the
particle does not interact with the site R = 0.

C. Close-coupling wave-packet solution

The equation of motion for the multiphonon ampli-
tudes in (18) is on a form which is well suited for the so-
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lution with close-coupling wave packets.!! This method
is based on a propagation of a set of wave functions or,
in this case, multiphonon amplitudes in time on a grid
using a pseudospectral technique to handle the kinetic
part of the particle Hamiltonian. One important advan-
tage of this method in this case compared to standard
coupled-channels techniques is that the strong surface
corrugation is treated effectively in real space without
introducing a large number of open and closed diffrac-
tive channels, whereas the motion of the noble-gas atoms
can be described with a few multiphonon amplitudes.

The pseudospectral technique introduces automati-
cally periodic boundary conditions at the grid bound-
aries. At the upper boundary of the grid we have added
an optical potential in a standard manner to prevent the
wave packets from being reflected against the back of the
surface potential. The single-site multiphonon approxi-
mation has been implemented by having a grid with sev-
eral unit cells and by also including an optical potential
at the sides of the grid for the nonperiodic multiphonon
amplitudes with n > 0, to prevent scattered parts of these
amplitudes to return to the interaction region. The in-
phase multiphonon approximation, on the other hand, is
implemented by simply keeping the periodic boundary
conditions and using a grid covering only a single unit
cell. From the final amplitudes after scattering we have
calculated the probability for the excitation of a certain
number of phonons. This calculated probability includes
also the probability absorbed by the optical potential.

We have found that if only linear coupling is included
between the hydrogen molecule and the noble-gas atoms
the solution converges very slowly in the number of chan-
nels included even in the case of weak inelasticity. When
quadratic coupling is also included the convergence is
rapid, and we have found that eight channels, i.e., a max-
imum of seven phonons are excited, is enough to describe
the scattering process.

Some care is needed in the choice of the method for
time propagation. In the calculations using periodic
boundary conditions the split-operator scheme works
nicely since it is straightforward to numerically expo-
nentiate the Hamiltonian matrix. This scheme starts to
become prohibitive for a large number of multiphonon
amplitudes since the Hamiltonian matrix is nondiago-
nal, and has to be diagonalized at each lattice point
before being exponentiated. In the case of the single-
site approximation the periodicity of the zero-phonon
amplitude ¢o introduces coupling between its value at
one point, ¢o(r,t), and the one- and two-phonon ampli-
tudes a lattice vector away from this point, ¢;(r — R, 1)
and ¢, (r — R, t), which makes the corresponding Hamil-
tonian matrix grow rapidly with the number of surface
unit cells included in the calculation. This rapid growth
has prevented us from exponentiating this matrix and
from using the split-operator propagation scheme'? in
this case. Instead we have used the second-order differ-
encing scheme (SOD) of Askar and Cakmak,!® which can
be implemented in a straightforward manner. Unfortu-
nately the time step necessary for a stable propagation
in this method is approximately one-twentieth of the one
needed in the split time propagation scheme. The time
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step also has to be shorter the more channels that are in-
cluded in the calculation, due to the fact that the largest
eigenvalue of the potential matrix is n dependent.

Propagation in an optical potential is no problem in
the split-operator propagation scheme; it just means mul-
tiplying with exp(Im{V}At) in each time step. The
second-order difference scheme is known to be unstable
in the case of an optical potential. We have circumvented
this problem by including the optical potential —iV;,, di-
rectly in SOD in an analogous way to the split-operator
scheme. If the Hamiltonian of the system is decomposed
as H = Hy — tVjy, then the Schrédinger equation can be
written

i [V p(@)] = (VmtHo eV [Vmty(n)] . (26)

Now SOD can be directly applied to this Schrodinger-
like equation for the transformed wave function e¥imt4)(t)
with the time-dependent Hamiltonian eYim!He~Vimt
which gives

Yt + At) = e 2imbly(t — At) — i2Ate™VimAt Hoy(t).
@7

This equation amounts to contributions calculated from
the wave function a time step At earlier multiplied by
exp(Im{V}At) just as in the split-operator scheme.

D. Molecule-surface interaction potentials

Our model for the molecule-surface interaction poten-
tial follows closely the construction of the He-rare-gas-
overlayer potential developed by Sibener et al.!4 The in-
teraction between the hydrogen molecule and the surface
has two different contributions; one part from the metal
surface underneath the noble-gas overlayer and one part
from the noble-gas atoms. The adsorbed overlayer pre-
vents the molecule from coming close to the metal sur-
face and the hydrogen-metal interaction is therefore dom-
inated by the van der Waals attraction,

Cy
VHg,metal(z) = _( W (28)

z— zygw )3’
where Cyqw = 0.1639 a.u. for the silver surface. The
origin for the z axis is chosen to be at the equilibrium
position of the noble-gas overlayer, and the positions of
the van der Waal planes, z,qw, are listed in Table II for
the different overlayers. The hydrogen-overlayer interac-
tion is modeled with a sum of pair potentials,

Vi, noble gas(r, {R}) = Z v(|r — RY). (29)
R
These pair potentials are chosen to have an exponentially
repulsive part, and in the attractive part only an r—¢
term is included:

o(r) = Ae™ " —

C br
Cafelir) (30)

where we have followed Tang and Toennies!® suggestion
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TABLEII. Potential parameters for the hydrogen-surface
interaction.
zvaw (@o) Cs (a.u.) b (ao) A (a.u)
Ar -3.515 28.4 1.79 15.25
Kr —3.704 40.2 1.87 46.86
Xe —4.176 56.2 2.04 280.5

to damp the van der Waal attraction at short distances
by

6 .k
fo(z) =1 — Z%e-x. (31)
k=0

The parameters b and Cg agree with the corresponding
parameters suggested by Tang and Toennies in their anal-
ysis of gas phase scattering data using a more sophisti-
cated potential, while the parameter A has been adjusted
to reproduce their derived well depths. All these poten-
tial parameters are listed in Table II. The attractive
terms due to correlated charge fluctuations over more
than two atoms have been shown to be a small effect
for the interaction of He.'* These many-body interaction
terms are neglected in this work.

The total molecule-surface interaction potential is now
given by

V(ra {R}) = VHg,noble gas(ry {R}) + VHg,metal(Z)-

The rigid surface potential Vp(r) is obtained from V by
clamping the adsorbates at their equilibrium positions
and the linear and quadratic coupling terms are obtained
from V using (6) and (7). The resulting V(r) are shown
in Fig. 1 for the different rare-gas overlayers. Note that
the well depths are about the same for all the different
layers, while the distances from the overlayers to the po-
tential minima increase with increasing size of the rare-
gas atoms.

(32)

0.002
0.001
E
=
g Of
-0.001 : : : -
4 6 8 10 12 14
z (a.u.)
FIG. 1. The zero-order contribution to the potential en-

ergy for a hydrogen molecule above the top of a noble-gas
atom.
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III. RESULTS AND DISCUSSION

In this paper we only consider normal incidence of the
hydrogen molecule on the adsorbate layer and also re-
strict the motion to be either one dimensional or two
dimensional. In the one-dimensional calculation the
molecule is incident on top of an adsorbed rare-gas atom,
while in the two-dimensional calculation the molecule is
allowed to move in a plane oriented along the [100] di-
rection of the hexagonal adsorbate layer and normal to
the surface. These two situations are illustrated in Fig.
2 and will henceforth be referred to as 1D and 2D.

Two extreme situations for the multiple excitation of
the Einstein-oscillator modes have been considered in the
two-dimensional calculation: in-phase excitations of the
Einstein-oscillator modes on all the atoms in the con-
sidered plane, and excitations at a single site. We give
results for the probabilities P(n) for the excitation of n
Einstein-oscillator phonons in the Ar, Kr, and Xe mono-
layers by the hydrogen molecule. In the 1D calculation
for Ar we consider two different incident energies, while
in all other calculations we consider only a single energy.
We have also calculated the trapping probability at this
energy. Only in the 2D situation of single-site multiple
phonon excitation will this trapping give rise to sticking.
The energy resolution of the incoming wave packet has
been chosen to be 1 meV in all cases.

A. Multiphonon distributions: P(n)

The results for P(n) in the 1D situation in Fig. 3 show
clearly that we have strong multiphonon excitations. The
increase of the inelasticity when going from Xe to Kr and
to Ar is expected from the fact that the coupling strength
is determined by 1/,/m, and that both the interaction
potentials and the Einstein-oscillator frequencies are sim-
ilar for these systems. The magnitude of the multiphonon
losses and their variation over these systems can be un-
derstood semiquantitatively from using the Baule result
in a forced-oscillator model 16719

The Baule model is classical and builds on the assump-
tion that the interaction of the particle with the adsorbed
atom is impulsive. The result for the energy transfer AE

“,....
Y
)=
x
Y=
]
S
WV

FIG. 2. The plane in which the 2D calculations are per-
formed is indicated by the stripes. The thick vertical line
denotes the path followed in the 1D calculations.
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in this model is given by

4p

AF= Tap
where u = mp/m,, E; is the incident energy of the par-
ticle, and D is the well depth of the particle-surface po-
tential. We use this result for the energy transfer di-
rectly in the forced-oscillator model in order to get a
quantum-mechanical multiple phonon loss distribution.
In this model such a distribution is obtained by treat-
ing the Einstein-oscillator mode quantum mechanically
and the particle classically. The force from the particle
drives the oscillator and gives rise to multiphonon losses,
Prom(n), that are distributed according to a Poisson dis-
tribution,

(E: + D), (33)

n

Prom(n) = exp(—/\);\l—!. (34)

The intensity A is the ratio of the definite energy loss,
E.), obtained in a classical description of the oscillator
and its vibrational energy wg. By equating E. with

0.8 : — —

10 meV 20 meV
0.7 b

Ar, 10meV -+— |
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FIG. 3. The probability P(n) for multiphonon excitation
as a function of the number n of excited phonons for hydrogen
scattered from an overlayer of rare-gas atoms. These calcula-
tions are performed in 1D, and the hydrogen molecule comes
down on top of a rare-gas atom. (a) When the energy of the
molecule incident on an overlayer of argon is increased from
10 to 20 meV, the inelasticity increases. No special effects
occur at the vacuum edge, which is marked at the upper edge
of the diagram for the two energies, respectively. (b) Larger
mass of the rare-gas atom gives decreased inelasticity.
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AE obtained from the Baule model and using (34), we
get the zero-phonon probabilities P(0)=0.18, 0.33, and
0.48 at an incident energy of 10 meV. This should be
compared with the corresponding probabilities from the
one-dimensional calculation, which are 0.26, 0.44, and
0.63 for Ar, Kr, and Xe, respectively. The Baule model
thus overestimates the inelasticity, but explains nicely
that it increases with decreasing m, and with increasing
incident energy E;.

We find that if the multiphonon distributions P(n) are
compared to Poisson distributions with the same prob-
ability for zero-phonon excitation, then the largest de-
viations occur in the case of strong inelasticity. As can
be seen in Fig. 4 the distribution for Xe is close to a
Poisson distribution, whereas for Ar at E;= 20 meV the
deviations are large.

The combined effects of the strong corrugation and
multiphonon excitations of the rare-gas monolayers are
investigated in the 2D calculations. The results in Fig. 5
show the probabilities P(n) to excite n Einstein-oscillator
phonons. No attempts have been made to make a reso-
lution onto final parallel momenta of the particle leaving
the surface, but it can easily be calculated from the k-
space distribution of the final wave packet. The upper
panel shows the result for P(n) using periodic bound-
ary conditions over the unit cell, which corresponds to
an in-phase excitation of the Einstein-oscillator modes in
the plane. In the lower panel the periodicity has been
broken by introducing absorbing boundary conditions at
the edge of the grids. This means that only the atom in
the middle cell is excited, which in the limit of an infinite
number of unit cells corresponds to a single-site multi-
phonon approximation. The results from using two and
four unit cells, respectively, show that P(n) converges
rapidly with the number of cells. In the case of in-phase
multiple excitations of the Einstein-oscillator modes the
inelasticity decreases compared to the 1D case for all sys-
tems, while in the case of single-site multiple excitations

0.8 T T T r T T
Xe, 10meV ——
0.7 + Ar, 20meV ----
Poisson dist. ‘‘Xe,10meV’’
1 Poisson dist. ‘‘Ar,20meV’’ +
0.6 J
0.5 1
=
T 04 g
03 1
0.2 1
0.1 ]
0.0 L
0 1 2 3 4 5 6 7
n
FIG. 4. The probabilities from Fig. 3 (lines) are compared

with Poisson distributions (points) with the same probabil-
ity for zero-phonon excitation. The two extreme cases are
shown: scattering from Xe gives almost Poisson distributed
multiphonon excitation probabilities; scattering from Ar at
20 meV gives large deviations from a Poisson distribution.
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FIG. 2. Depth distributions of the active donor concentration
in Schottky diodes on n-type silicon after hydrogenation and
after subsequent minority-carrier injections (MC1) at 250 K.
Each distribution is labeled with the total elapsed time ¢, of
MCI. Also shown is the depletion width Wp, corresponding to
Vg =20V during MCI.

depths within the depletion layer there is a rapid recovery
of active donors; (2) near the depletion edge Wp, within
the space-charge layer, the recovery is greatly suppressed;
(3) in the immediate vicinity of the depletion edge there is
a detectable increase in the PH concentration during the
early intervals of hole injection; and (4) after prolonged
hole injection (i.e., 1, — 0) the donor distribution of the
unhydrogenated material is recovered. (The segments of
the measured donor profiles nearest the surface are ob-
tained from CV data recorded at or near zero bias, which
are subject to the greatest error from the commonly used
depletion approximation in the CV analysis; therefore, the
donor recovery kinetics were not analyzed at these shal-
lowest depths, as further discussed below.) In the absence
of minority-carrier injections (MCI) there was no detect-
able change in the active donor distribution for the mea-
surement conditions of Fig. 2. When holes were injected
under zero bias (i.e., into a charge-neutral region), the
time scale of the recovery increased by approximately an
order of magnitude, due to significant recapture of H by P
in the charge-neutral region, and there was no evidence of
a (field-dependent) depth redistribution of PH complexes.

The rapid recovery of active donors at the shallower
depths of the space-charge layer, the suppression of the
recovery at the greater depths, and the slight increase of
the PH concentration at (and immediately beyond) the
depletion edge indicate that hole-induced PH dissociation
is accompanied by a redistribution of PH complexes
within the space-charge layer and that recapture of disso-
ciated hydrogen is greatly reduced at the shallower
depths. These observations permit a simplified analysis of
the dissociation kinetics. We introduce a phenomenologi-
cal capture cross section o), to describe the interaction be-
tween a free hole and a PH complex. For the shallower
depths of the space-charge layer we consider only hole-
enhanced dissociation of PH complexes with the rate
equation

onpu(x,1)/9t = — opvpp (xInpu(x,t) , (1)
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where npy is the concentration of PH complexes at a
depth x and (elapsed) time ¢, v, is the mean thermal ve-
locity of holes, and p(x) is the free-hole concentration at
x. Within the space-charge layer, the hole density is ob-
tained directly from the measured hole current:

Jo=qp(x)upE(x), (2)

where q is electronic charge, y, is the hole mobility, and
E (x) is the electric-field intensity at depth x. The electric
field at any time is readily calculated from the measured
active donor profile via Poisson’s equation, since the densi-
ty of mobile charges in the space-charge layer is very
small. In the absence of recombination, the solution to
Egs. (1) and (2) yields an exponential decay of npy with a
characteristic time constant

tp=qupE/o,v,J, . (&)

The data were analyzed at the shallower depths (e.g.,
~0.6 um in Fig. 2), where the simplifying assumptions
were most closely approximated, to obtain the decay time
constant, and hence from Eq. (3) the capture cross sec-
tion, over a range of temperatures. An Arrhenius analysis
of o, is shown in Fig. 3 and yields an activation energy of
~0.3 eV. Note that all of the data were recorded at or
below room temperature, where the unassisted thermal
dissociation rate is negligible.

The details of the mechanism by which holes accelerate
the dissociation of PH complexes remain to be elucidated.
As a first step we discuss here the necessary framework
for such an elucidation, distinguish the different conceiv-
able mechanisms, and cite some evidence favorable to one
mechanism and unfavorable to another.

The dissociation process PH+hA*— P*+HP requires
the transformation of the system (Si crystal+P+H), in
the space of its nuclear coordinates, from the
configuration corresponding to the ground state of PH to
that corresponding to widely separated P* and H°, with
the hydrogen presumably at a bond-center site. Figure
4(a) illustrates the key features of such a transformation
with the ground-state electronic energy of the system
PH+h* plotted versus the P-to-H separation R along
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FIG. 3. Arrhenius analysis of the thermally activated cross
section for the capture of holes by PH complexes in the space-
charge layer of an n-type Schottky diode.
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the k-space distribution of each n-phonon amplitude
by summing all parts of the amplitude squared having
Ein — nwg — K?/2m < 0, where K is the momentum
parallel to the surface. In 2D this differs from the prob-
ability of having the total energy less than zero, as can
be seen for the case with periodic boundary conditions in
Fig. 6. Just as for the trapping described earlier, we find
a separation of time scales for energy loss and gain. The
decay of Pirap(t) is more rapid in this case than in the
total-energy calculations, since some of the particles have
a positive total energy and can leave the surface after
scattering against the surface corrugation. This trapping
probability is found to be large compared to the trapping
probability calculated from total energy, around 0.5.

In the single-site calculations much of the amplitudes
are absorbed at the edges of the grid during the calcu-
lation. If the probability of being absorbed close to the
surface is added to the probability of having a perpen-
dicular energy less than zero, the result is close to the
corresponding trapping probability in the in-phase exci-
tation, around 0.6 (see Table III).

In the single-site multiphonon approximation trapped
particles that have left the single excited oscillator can-
not experience any further energy loss to the Einstein-
oscillator phonons, they can only scatter from the surface
corrugation and will eventually leave the surface again.
In reality the trapped particles can continue to lose their
energy by exciting Einstein-oscillator phonons. The fate
of these particles can be studied in this approximation by
considering an initial state where the particle is trapped
at the surface with positive energy, and include the possi-
bility for excitation of phonons anywhere at the surface.

IV. SUMMARY

The scattering of light atoms and molecules from rare-
gas overlayers is strongly influenced by the large corruga-
tion and shows pronounced inelastic effects, due to vibra-
tional excitation of the rare-gas atoms, which can be de-
scribed as Einstein oscillators. To describe the possibility
of multiphonon excitations of the rare-gas atoms and the
corrugation effects at the same time we have proposed
a close-coupling wave-packet method, where the wave
packets correspond to either single-site multiphonon exci-
tations or in-phase multiphonon excitations of the entire
surface layer.

From our calculations in one dimension we find that
the scattering is strongly inelastic. The multiphonon dis-
tributions show large deviations from Poisson distribu-
tions for scattering against argon; for the heavier rare-
gas atoms the deviations are smaller. In two dimensions
with periodic boundary conditions, corresponding to in-
phase multiphonon excitations, the inelasticity is weaker
and the probabilities are almost Poisson distributed. For
argon we have also used absorbing boundary conditions
in the two-dimensional calculations, corresponding to
single-site multiphonon excitations. This gives multi-
phonon distributions close to the one-dimensional ones.
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TABLE III. The trapping probability for hydrogen on an
overlayer of argon calculated from the criteria of total energy,
Eiot, or energy for the motion in the z direction, E;, less
than zero. In the calculations over 2 and 4 unit cells, absorb-
ing boundaries are used at the end of the grid close to the
surface. The probability for being absorbed there is added to
the probability for having £, < 0.

Eiot <0 E. <0
1D 0.09*
2D, 1 u.c. 0.09? 0.50*
2D, 2 u.c. abs. bound. 0.06 0.64
2D, 4 u.c. abs. bound. 0.06 0.56

2In one dimension and in two dimensions with periodic bound-
aries the final trapping is always zero, since the initially
trapped particles never leave the interaction region. The value
given here is the initial trapping, which occurs directly after
the first collision with the surface.

In one dimension and in two dimensions with periodic
boundary conditions the particle can never leave the re-
gion of interaction, and can therefore never stick. The
trapping probability in these cases has been calculated
as the maximum of the probability to have an energy
less than zero as a function of time. The energy trans-
fer from the molecule to the surface is fast compared to
the reverse process, meaning that if the particle has a
large velocity it will leave the excited oscillator before
any energy transfer back to the oscillator has occurred.
In this case the scattered hydrogen obviously acquires
such a large velocity from the scattering against the sur-
face corrugation; the probabilities for sticking ( Etor < 0)
and trapping ( E, < 0 or absorbed close to the surface )
in the single-site calculations are very close to the cor-
responding quantities in the 1D calculation and the 2D
calculation with periodic boundary conditions, 0.1 and
0.6, respectively.

Here we have only calculated the distribution on differ-
ent multiphonon states averaged over all angles. This dis-
tribution might vary with scattering angle, so for a direct
comparison with experiments momentum-resolved distri-
butions are necessary. These can be calculated directly
from the momentum distribution of the final wave pack-
ets. To get quantitative agreement with experiments the
calculations also have to be extended to three dimensions;
this means a considerable increase in the computational
effort, but not so large that it should be prohibitive.
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