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Although bulk III-V alloys exhibit phase separation, vapor-phase epitaxial growth of
Gao.zino, &P/GaAs (001) at 900—1000 K shows spontaneous ordering into the (ill)-oriented mono-
layer (Gap)&(lnP)& superlattice (the "CuPt" structure). Only two superlattice directions ([111]and
[111],which define the CuPtz variant) out of four possible are seen. Both [111]and [111]subvariants
are observed on flat surfaces or when surface steps are perpendicular to the cation dimers. Ordering
was seen also in nonstoichiometric (e.g. , Gao, &lnp. &P) alloys. Previous total-energy calculations at
T=0 show that (i) phase separation is eliminated by the constraint that the alloy and its constituents
are coherently matched to a substrate; (ii) the epitaxially stable chalcopyrite order is eliminated by
surface reconstruction; (iii) surface reconstruction stabilizes the Cuptg variant over the other struc-
tures. A relaxed but unreconstructed surface does not lead to any significant preference for ordering.
Here we develop thermodynamic (TQ0) calculations based on cluster-variation solutions to a configu-
rational Hamiltonian whose interaction energies are St to T=0 total-energy calculations. This shows
that (iv) significant CuPt~ ordering persists to 1500 K not only for the equimolar Ga051no. sP
alloy, but also at other compositions, e.g. , Gao, 7lnp, 3P; (v) the cation-terminated surface couples to
the fourth layer in such a way as to select the correct three-dimensional CuPtz structure; (vi) once
formed, the two-dimensional CuPt~ layers near the surface are remarkably stable towards atomic
swaps; (vii) a flat surface leads to a sufliciently small coupling between cation layers so that either
of the two CuPt~ variants can form. We conclude that the main features of the observed ordering
can be explained as a thermodynamically stable phase at growth temperatures of either the surface
or the erst few subsurface layers, depending on how deeply into the alloy atomic mobilities remain
su%ciently large.

I. INTRODUCTION

Recently, many observations have been made of spon-
taneous long-range order in III-V semiconductor al-
loys of composition +III BIIICv and CIII+v Bv 1 1 1

The ordering patterns observed can be described as
short-period (AC)z/(BC)z superlattices in orientation
C and repeat period p. They include (i) the CuAu-
I structure (p = 1, C = [001]) seen in Alp. sGap sAs
(Ref. .l) and Ino sGaa sAs/InP, ~ s (ii) the chalcopyrite
structure (p= 2, C = [201]) seen in GaAso sSbo s/lnP,
and (iii) the CuPt structure (p = 1, G
[111]) seen in Gas sino sP/GaAs, s InAso sSbs s/InSb, e

Alp sino sP/GaAs, Gao sino sAs/InP, Inn sAlo sAs/
InP, s GaAso sPa s, ta and (AleGaq e)ylnt &P/GaAs.
These observations have created interest both in the
ordering mechanism12 22 and in the technologically at-
tractive possibility of tuning alloy band gaps at fixed
composition through ordering. ' To clarify the ori-
gins of ordering, first-principles total-energy and phase-
diagram calculations were initially conducted for (i)
three-dimensional (3D) bulk ordered structures s and
alloys, and (ii) 3D epitaxial superlattices and alloys co-
herent with a substrate. These calculations showed
that, for alloys with lattice mismatch between the con-
stituents, the T=O lowest-energy 3D bulk configuration
corresponds to phase separation, followed by the chal-

copyrite structure and then the random alloy, with the
energy of the CuPt structure being considerably higher
still. Metastable chalcopyrite ordering was predicted
to occur below a critical temperature in the range 200—
500 K (depending on the system). The lowest-energy 3D
epitanal structure is chalcopyrite, again with CuPt be-
ing considerably higher in energy. Since the observeds '1
CuPt phase is not the ground state in any of these cal-
culations, it was suggested that this type of ordering
could be driven by surface thermodynamic rather than
bulk thermodynamic effects.

The importance of surface effects was recognized also
by others: Suzuki, Gomyo, and Iijima~2 proposed that
the size difference between A and B atoms could favor
CuPt ordering at the (001) surface just because of atomic
relaxation without reconstruction. In this context, it
is important to note that the four (111) crystalline di-
rections (along which a CuPt structure can be grown),
which are symmetry equivalent in the bulk, divide into
two classes in the presence of a surface: ([111],[111]}
(termed the CuPt~ variant) and ([111],[111])(termed
the CuPt~ variant). The model of Suzuki, Gomyo, and
Iijima implies that mixed-cation alloys (e.g. , Gas sino sP)
give CuPttr ordering while mixed-anion alloys (e.g. ,

GaAso sSbo s) would give CuPtg ordering. However,
Murgatroyd, Norman, and Booker and Chen, Jaw, and
Stringfellow have established conclusively that both
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types of alloys exhibit the same variant (CuPt&). Fur-
thermore, the total-energy calculations of Froyen and
Zunger ' showed that A-B size differences are easily ac-
commodated at the free unreconstructed surface by all
ordered structures (through atomic relaxation perpendic-
ular to the surface plane) so that size differences could
not provide a selective driving force for ordering. Mat-
sumura, Kuwano, and Oki' followed the suggestion of
Suzuki, Gomyo, and Iijima and investigated the ground-
state structures of a quasi-two-dimensional Ising Hamil-
tonian representing the ideal (i.e. , unreconstructed) sur-
face and its interactions with the underlying layers. They
found that CuPt order can appear for a certain range
of the ratio between second- and first-neighbor cation
interactions. Use of realistic surface interaction values
(see Sec. VIA below), however, shows that the CuPt
structure is not the ground state in the model of Mat-
sumura, Kuwano, and Oki and that no ordered phases
at all occur at growth temperatures. Along similar lines,
Boguslawskiie calculated the surface energies of various
relaxed but unreconstructed surfaces, again ending small
energy diR'erences. These conclusions pointed to the pos-
sible role of surface reconstrucfions. zt zz

It is well known that the (001) surface of III-
V compounds exhibits not only relaxation but also
reconstruction. The dominant feature is the for-
mation of cation and anion dimers4o that introduce
new surface symmetries. In mixed-anion alloys (e.g. ,

GaAstt, sSbp s) the CuPt~ variant requires dimers be-
tween unlike atoms (i.e. , As-Sb) on anion-terminated sur-
faces, while the CuPtA variant requires dimers between
like atoms (i.e. , As-As and Sb-Sb). Murgatroyd, Nor-

man, and Booker suggested that ordering in mixed-
anion alloys is related to an energetic preference at the
surface for mixed (e.g. , As-Sb) dimers. This would give
the observed variant provided that the mixed dimers are
oriented with the same sense. However, in mixed-cation
alloys, the CuPtB variant in cation-terminated surfaces
requires dimers between like atoms (e.g. , Ga-Ga and In-
In), while the CuPtA variant requires dimers between
unlike atoms (e.g. , Ga-In). Hence, the observed ordering
of Gait slntt sP cannot be explained by the mechanism
proposed by Murgatroyd, Norman, and Booker.

Froyen and Zunger~ investigated the energetics of
surface reconstruction for both anion- and cation-
terminated (001) surfaces of GaP, InP, and Gati 51no sP.
They found that, in addition to dimerization, the cation-
terminated surfaces exhibited two other electronically
driven reconstruction modes: First, pairs of neighbor-
ing dimers along the [110] dimer rows buckle (i.e. , re-
lax in opposite directions perpendicular to the surface),
creating rows of alternating "high" and "low" dimers.
Second, the high dimer tilts in the [110] direction, be-
coming nonhorizontal [Fig. 1(b)]. For the fully cov-
ered cation-terminated surface, pure dimerization lowers
enormously the surface energy (by 600 meV/surface
atom), with little energy difference between different
Ga/In configurations. However, when buckling and tilt-
ing are permitted, the energy is lowered further by
100 meV/surface atom and a clear energetic preference
emerges for the two-dimensional (2D) CuPt-like configu-
ration consistent with the observed 3D CuPtg structure
in GaoslnosP/GaAs. Pure dimerizationts hence does
not provide a driving force for CuPt surface ordering,
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FIG. 1. Geometry of uppermost layers of (a) and (b) reconstructed, cation-terminated Gao zino sP; and (c) and (d) recon-
structed, anion-terminated Gao.&In0.5P. Top views of ideal cation positions at the surface and in layers m = 1, 2, and 3 are
given in (a) and (c). The dashed lines indicate the surface dimers. Side views are given in (b) and (d). Sublattices n, P

, and b are indicated at each layer m. Cations are denoted by open circles and anions by solid circles.
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but the combination of dimerization, buckling, and tilt-
ing does. Repeating the same calculation for the lattice-
matched Alo 5Gao 5As/GaAs (001) system revealed~i no
significant preference for any ordered structure, consis-
tent with the fact that this system exhibits no ordering
on a (001) substrate at 50%-50% composition. For the
anion-terminated Gao 5Ino 5P surfaces, buckling of dimer
rows is also found, but the amount of buckling is smaller
than for the cation-terminated surfaces, and the dimers
remain nearly horizontal.

Ogale and Madhukar" i have studied the adsorption of
Ga and Al on a dimerized As-terminated (001) GaAs sub-
strate using simulations based on semiempirical interac-
tion potentials. They assumed simple, horizontal As-As
dimers and neglected dimerization of the adsorbed cation
pairs. Their calculation revealed that anion dimeriza-
tion induces specific site preferences for the adsorbed Ga
and Al such that the top surface at 50%-50% composition
takes up a 2D pattern at T=0 consistent with the CuAu-
I structure along [100] or [010] (or with the chalcopyrite
structure along [201]). Simulations for a second mixed-
cation layer, and for an additional As layer covering it,
suggested that the three-dimensional stacking of these
layers would form the CuAu-I structure. However, order-
ing is only observed in Ala 5Gao qAs for a (110)substratei
on which dimerization does not occur. Further, this cal-
culation gives no indication on the behavior expected for

Gao 5lno 5P, which was found to differ substantially in
surface energetics from Alo 5Gao sAs.

Total-energy calculations for a single surface (or sub-
surface) layer alone are insufficient to determine whether
the individual, surface-stabilized 2D CuPt layers of
Gao sino 5P will stack up in a correct 3D structure. Al'-

ternative possibilities are (i) the (GaP)q/(InP)q superlat-
tice oriented along [110],in which the 2D CuPt-like layers
stack differently than in bulk CuPt, and (ii) a disordered
stacking of the 2D CuPt-like layers. This question of
"phase locking" was recently addressed by Bellon et al.
and by Chen and Stringfellow. is Both groups suggested
that surface steps may be involved in the preferential ob-
servation of one of the two possible ([111]or [111])CuPt~
subvariants. Both CuPt~ subvariants are observedis
on flat substrates or when surface steps are perpendicular
to the cation dimers. It has been shown that the pres-
ence of parallel steps can select one CuPtB subvariant
over the other. Hamada and I&urimoto20 showed that Ga
is energetically favored over In immediately near a step at
the plane below the step. Such a mechanism could pro-
vide correlations between nearest-neighbor cation layers,
which could decide which of the two CuPt~ subvariants
is observed on vicinal (i.e. , nonflat) substrates. However,
the step model would need to include correlations in the
[001] distribution of steps to account for the formation of
the 3D CuPtii structure —rather than the (GaP)q/(InP)q
t = [110] superlattice or a disordered stacking of 2D
CuPt~-like layers. It has become interesting, therefore,
to investigate whether the presence of a reconstructed
surface can exert an energetic preference for particular
layer stackings. Bernard, Froyen, and Zunger com-
pared the elastic energy of various subsurface 2D struc-
tures and found an energetic preference for the correct

CuPtB stacking between the surface layer and the sec-
ond cation layer below (four planes apart), even in the
absence of surface steps.

A number of workers~ ~ have considered the possi-
bility that the observed ordering does not correspond
to a (local or global) minimum of the energy of ei-
ther the bulk or the surface but that it represents in-
stead a purely kinetic phenomenon. For example, hav-
ing observed that nonstoichiometric (e.g. , Ga071nosP)
alloys show ordering, Kondow ef al. conjectured that
this must reflect a kinetic product, since there is no
known [111]ground-state structure with that composi-
tion. However, as we show below (Sec. VI B 3), a thermo-
dynamic approach does produce CuPtii ordering at non-
stoichiometric compositions. More recently, Chen and
Khachaturyan (CK) have considered systems whose
ground state corresponds to phase separation (PS) but
where a given ordered phase (0) can have lower en-

ergy than the homogeneous random alloy (R). A two-
dimensional kinetic simulation of an Ising model with
these properties then produced a temporal evolution ex-
hibiting at finite times ordered domains ("virtual order-
ing") of type O. This was then offered as a possible
mechanism for explaining ordering in III-V alloys. It
had been previously shown, 7 however, that the en-

ergy sequency E(PS) & E(O) & E(R) assumed by CK
is present in lattice-mismatched III-V alloys only for the
chalcopyrite ordering type 0, which is not the one ob-
served experimentally. s In this case, VVei, Ferreira, and
Zungers4~b& showed that while metastable chalcopyrite
ordering does exist, the ordering temperature is below
growth temperatures. For the frequently observed order-
ing 0 = CuPt, the energy sequency is E(PS) & E(R) &
E(O),~s s4 s7 so the CK model does not apply.

To summarize, previous calculations indicated that the
energetics of (i) 3D bulk alloys, (ii) 3D epitaxial alloys,
(iii) 2D relaxed surfaces, and (iv) 2D surfaces with sim-
ple dimerization cannot explain the observed symmetry
of Gai In P ordering, while fully reconstructed 2D sur-
faces are consistent with observations but do not ad-
dress the question of whether this ordering persists at
finite temperatures or at nonstoichiometric compositions.
While the slow diffusion of buried atoms certainly sug-
gests that kinetics could play a role, kinetic models have
not produced to date the correct symmetry for which
ordering was actually seen.

The present study focuses therefore on the finite-
temperature thermodynamics of the surface and subsur-
face layers in Gai In P/GaAs(001) at z = 1/2 and
z g 1/2. We use first-principles T = 0 total-energy
results for the surface and first subsurface layers, as
well as a large number of elastic energy calculations for
various subsurface structures, to extract a realistic con-
figurational Hamiltonian. The latter is formulated as a
series of 2D layer Hamiltonians, each representing (with
different parameters) the configurational energy of a sur-
face or a given subsurface plane. The T=o ground-state
structures of this Hamiltonian, as well as its Tg 0 ther-
modynamics, are then investigated.

Our major findings are the following. (i) As a conse-
quence of reconstruction, the cation-terminated surface
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orders in the CuPt~ structure and shows only a grad-
ual decrease in the degree of order with temperature,
ivifh no phase transition. Indeed, a significant CuPt~
order parameter persists up to 1500 K not only in an
equimolar Gas sino sP alloy, but also at other composi-
tions, e.g. , Gas 7Ino sP. This agrees with the experimen-
tal findings by Kondow ef al (.ii) Also as a consequence
of reconstruction, the cation-terminated surface couples
to the fourth subsurface layer in such a way as to se-
lect the correct 3D stacking of the 2D ordered CuPt~
structures in those layers. (iii) A study of the energies
of intralayer atomic swaps shows a remarkable resilience
of the two-dimensional CuPt structures at the surface of
cation-terminated alloys and at the second cation sub-
surface layer of anion-terminated alloys. (iv) For the flat
(i.e. , no steps) surfaces studied here, the coupling be-
tween first-neighbor cation layers is very small, so that
either of the two CuPt~ variants is free to form, as ob-
served.

AEd(Z) = Ed(Z) —(1 —z)Ed(GaP) —zEd(lnP) . (3)

These direct calculations are performed by a combination
of ab initio pseudopotential and elastic valence-force-field
(VFF) methods (see Sec. IV below). The ncF parame-
ters (JF}of the cluster expansion (CE) are determined
by projecting the set of nd(» ncE) directly calculated
energies into the CE by minimizing the error

In the final step, these interaction energies (JF}are used
in Eq. (2) to study the T g 0 thermodynamics by means
of the cluster-variation method.

III. BASIC ASSUMPTIONS

We made the following basic assumptions in t;he

present study.

II. METHODOLOGY: CONSTRUCTION
OF CONFIGURATIONAL HAMILTONIAN

FROM DIRECT TOTAL-ENERGY
CALCULATIONS

Our first step is to construct a configurational cluster-
expansion (CE) Hamiltonian 'RcE(o ) that describes the
energy of the surface and subsurface Ga~ In P epitaxial
layers in terms of a set of pseudospin variables

—1 for Ga
1 for In,

describing the occupations of the cation sublattice sites
i. (The common-anion sublattice is fully occupied by P.)
The configuration vector o describes the occupation of
N cations in each of the n layers: cr = (o i, o'2, . . . , o'~„j.
The configurational Hamiltonian is expanded as a series
of interaction energies (J~}within various "figures" (Fj
(clusters of nF sites):

'HCE( ) = N ) DF JF Il (F),

where the degeneracy DF is the number of symmetry-
equivalent figures and II~(o ) is the average spin product
o.;~& ~ ~„F.Such an Ising-like Hamiltonian is a con-
venient tool for (i) predicting the energy of configura-
tions a (not used in the fit), (ii) searching for T = 0
ground-state structures (by direct constrained minimiza-

tion), and (iii) calculating T g 0 thermodynamic func-
tions (by standard lattice statistics approximations such
as the cluster-variation method).

Rather than design an a priori phenomenological con-
figurational Hamiltonian, we first perform a large
set of direct total-energy calculations for many special
3D configurations (Z}, and then identify the significant
interaction energies that should enter the Hamiltonian
'HcE. For each configuration Z we define from the di-
rectly (d) calculated total energy Ed(Z), the excess en-
ergy with respect to an equivalent mixture of phase-
separated epitaxial GaP/GaAs and InP/GaAs slabs as

A. Neglect of surface segregation

Denote by (X, Y) the surface plane and by Z its nor-
mal direction. Many previous studies have focused on
the Z dependence of (X, Y) average-d quantities, such as
composition. ~ These studies reveal segregation pro-
files along Z, but average over the internal structural
degrees of freedom within the (X, Y) planes. Since the
present study concerns ordering, we focus on the latter.
Although segregation can occur in III-V alloys, it is
probably not a decisive factor in the ordering mechanism.
Suppose that mobility is high enough to lead to an equi-
librium situation in the upper ro layers of the alloy and
that it decreases abruptly so that it becomes negligible in
deeper layers. The rnth layer must then have the correct
bulk stoichiometry before its mobility becomes negligible
as a result of coverage by subsequent layers. The details
of the interactions of the mth layer with upper layers may
be influenced by composition variations of the upper lay-
ers. As we will see below, however, the crucial feature
deciding the energetics of the deepest equilibrated layer
is the presence of geometrically induced ("on-site") in-
teractions that are approximately independent of surface
composition. We will therefore focus on the thermody-
namic description of the particular forms of order of each
(X,Y) plane at a given composition.

B. Decoupling of geometric and topological
degrees of freedom

There are two classes of positional degrees of freedom
within the (X, Y) planes: (a) Layer topology, i.e. , the dis-
crete occupation variables of various assed lattice sites in
the (X, Y) plane by A and B atoms. A number of previ-
ous studies have focused on the statistics of the surface
topology in alloys. 's i ~" ~s~ (b) Layer geometry, i.e. ,

the continuous geometrical degrees of freedom available
to the atoms with a fixed topology. The thermodynamics
of dimerized surfaces of elemental semiconductors, with
dimer-dimer "geomet, iC"" interactions was studied by Ihrn
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et al. 5 and Needels, Payne, and Joannopoulos. Dimer-
ization eff'ects on subsurface layers have been discussed
for the (IV-IV) Si-Ge alloy by Kelires and Tersoff. s~

In our statistical model we assume that different
cation-terminated surfaces retain similar equilibrium ge-
ometries for any topological occupation of the sites by A
and B atoms. The assumed equilibrium geometry cor-
responds to the lowest-energy 2 x 2 dimerized surface
of Gap 5Inp 5P and is presented in Figs. 1(a) and 1{b)
(for cation-terminated slabs) and Figs. 1(c) and 1(d) (for
anion-terminated slabs). For both cation- and anion-
terminated surfaces, total-energy pseudopotential calcu-
lations confirm that the lowest-energy 2 x 2 surface ge-
ometry does not depend much on the site occupation.

To estimate the importance of defects in the dimer
rows of Figs. 1(a) and 1(b), we have calculated by the
first-principles pseudopotential method the energy for a
2 x 4 geometrical structure consisting of two neighboring
upper (In-In) dimers and two neighboring lower (Ga-Ga)
dimers. The results indicate that the average energy of
upper-upper and lower-lower dimer defects in a dimer
row is 320 meV. Long rows of dimers in the 2 x 2

geometry should therefore occur at growth temperat, ures

{T 900 K) before any defects are created Th.ere re-
mains the question of what makes the dimer rows main-
tain their "correct" mutual position, so that upper dimers
in one row stay close to upper dimers on a neighboring
row. Our calculations show that sliding a row by one
dimer with respect to a neighboring row results in an en-

ergy change of less than 20 meV/dimer. When multiplied
by the average length of a perfect dimer row, however,
the resulting effective row interaction is suKciently high
to maintain the 2 x 2 geometry at growth temperatures.
We hence deal in this paper with only the topological
degrees of freedom in both the surface and subsurface
layers.

C. Assumption of fully covered surface

We assume a fully covered top surface. Pashley et
al. and Biegelsen et al. observed scanning-tunneling-
microscopy patterns of GaAs (001) surfaces that are
consistent with incomple/e As coverage. (A fully cov-
ered Ga surface in GaAs apparently has never been ob-
served. ) The calculations of Qian, Martin, and Chadi4P

indicate that, a 3/4 monolayer coverage of As with a 2 x 4
periodicity may have the minimum energy. There is,
however, the possibility that a completely covered sur-
face is stable in other semiconductors. In fact, pseu-
dopotential total-energy calculations have shown that,
whereas fully covered GaAs and GaP cation-terminated
surfaces are indeed unstable with respect to the forma-
tion of bulk metal, the reconstructed surfaces of InP and
Gap 5lnp 5P are stable at full coverage We will further.
assume that the reconstruction calculated at full cover-
age persists at the atmospheric pressures characteristic of
metal-organic-chemical-vapor-deposition growth experi-
ments.

D. Independent-layer statistics

Whereas the full Hamiltonian includes intralayer and
interlayer interactions, we describe in this study the ther-
modynamic properties of the surface and of each of the
upper subsurface cation layers independently. This is
jusJified for very thin (less than three cation layers)
Gap 5Inp 5P slabs, since the interactions between z = 1/2
cation planes are negligible for first-neighbor layer struc-
tures, although not negligible for some combinations of
second-neighbor layer structures. Therefore, in princi-
ple the thermodynamics of upper layers should be sup-
plemented by the contributions from interactions with
deeper layers. However, we show in Secs. VI and VII be-
low that the on-site terms in the cluster-expansion Hamil-
tonian [Eq. (2)] are responsible for ordering at growth
temperatures in the upper layers of Gai In P. Inter-
layer interactions are small compared to the on-site en-
ergies.

IV. DETAILS OF CALCULATION

Having described our basic methodology {Sec.II) and
assumptions (Sec. III), we now describe the details of the
calculation. The reader interested in the results can skip
to Sec. V.

A. Choice of 3D configurations for direct
total-energy calculations

The set of special configurations (Z} was obtained as
follows: We first define as "building blocks" individual
2 x 2 two-dimensional cation structures, with composi-
tion Gai In~ (z = 0, 1/2, and 1). Each of these 2D
structures represents a different pattern of occupation of
the sites of a (001) layer by Ga and In. The layer struc-
tures used here correspond to cross sections of the 3D
CuPt~ (CP~), CuPt~ (CP~), and chalcopyrite (CH) or-
dered phases in addition to pure GaP and pure InP, used
to define phase separation (PS). We call the 2D periodic
structures CP~t, CP~z, CP~i, CPgy2, CHi, CH2, PSi,
and PSz. The unit cell for each of these 2D structures is
displayed in the heading of Table I with respect to the
geometric unit cell n~-P~-y~-6 of Fig. 1. Sublattices
a~, P~, y~ and b~ are defined in Fig. 1 for each layer
rn by the position of their sites with respect to the four
nonequivalent reconstructed-surface sites. The geometry
of a layer m )4 is the same as that of layer m —4. The ge-
ometries of subsurface layers are taken to be independent
of their topologies, as is the geometry of the surface.

We then create the 3D structures (Z} by stacking
these 2D layers in different combinations. For example,
the two 3D subvanants of CuPt~ are obtained by the
stacking sequences (82, 82, Bl, Bl, . . .} and (82, Bl,
81,82, . . .}. The sequences (82, 82, 82, 82, . . .} and
(82, Bl, 82, 81, . . .} correspond to the (GaP)q(lnP)q
superlattice along [110]. We have considered a total
of 1449 SD configurations Z for cation-terminated slabs
with four Ga~ In P layers and an equal number for sim-
ilar anion-terminated slabs.
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TABLE 1. Degeneracies DF and average spin products II+(rn) for intralayers figures F" (shown in Fig. 2) in the 2D structure shown on top
of this table. The heading depicts the topological unit cell of each 2D structure (PS~-CH2) used in the fits, with respect to the u~-P~-p
geometric unit cell of Fig. 1. In these cells, the horizontal axis corresponds to the [110]direction and the vertical axis to [110]. Open and solid
circles denote Ga and In atoms, respectively. The columns denoted s —sp display similar data for the z = 1/4 structures s„."Random" indicates
the 2D random alloy. The average spin products for structures s„with r = 3/4 can be obtained from those for the complementary x = 1/4 a„
structures by changing the signs of the IIF(m) corresponding to all {AJf). Since only interactions within the same dimer row are considered,

DF —1/2 for the m=0 first-neighbor [110]pair (corresponding to J2 ) and DF —1 for second-neighbor pairs (corresponding to Kg).
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B. Direct calculation of configurational energies

For each 3D structure Z, we calculated the excess en-
ergy of Eq. (3) using the method described by Bernard,
Froyen, and Zunger. The basic principle involved is
that, whereas the energy-minimizing geometry of the top-
surface layer (exhibiting dimerization, buckling, and tilt-
ing) can be accurately determined only by minimizing
the total electronic plus elastic energy [described here
using the local-density approximation (LDA)], the ge-
ometry of "buried" subsurface layers represents largely
the elastic response of atoms in these layers to the con-
straints placed on them by the structure of the top sur-
face. Thus, for structures consisting of a monolayer of
Gas sino sP on a GaAs substrate (the m = 0 and m = 1

cases), we calculate LDA total energies for reconstructed
cation- and anion-terminated surfaces with each of the
2D layer structures. For thicker epilayers, we calculate
the subsurface strain energies using an empirical VFF
(Ref. 54) whose parameters were determined by fitting
to LDA calculations. The energy of subsurface layers is
minimized with respect to atomic relaxations using the
conjugate-gradient method. After averaging over the
PS states in each layer, this gives a set of 2900 AEs(Z)
values.

For the first-principles calculations, the accuracy of the
differences between the energies for the various surfaces is
estimated to be better than 10 meV/surface atom, based
on a number of tests described in Refs. 21 and 22. The
principal contribution to this error is from interactions
between the two surfaces of the slab.

For the VFF calculations, there are three main sources
of error: (i) the chemical energy necessarily omitted from
an elastic-energy calculation, (ii) errors in the strain en-
ergy even in the bulk (e.g. , anharmonic contributions),
rejected in the inability to reproduce exactly strain en-
ergies calculated from first principles, and (iii) addi-

tional strain-energy errors induced by freezing the top
two layers, omitting their strain energies, and using layer-
independent VFF parameters for layers below the top
two. The first of these is relatively small in this system,
as is indicated by the fact that the difference between
the VFF-predicted and the first-principles-predicted for-
mation energies of bulk CuPt-ordered GaInPq [which in-
cludes errors of both type (i) and type (ii)] is about 2
meV/atom. The second of these we estimate to be of
the order of 4 meV/atom, which represents both the
maximum error in the strain energy of the binary com-
pounds near equilibrium (relative to first-principles cal-
culations) and the difference between the VFF-calculated
and the first-principles-calculated energy differences be-
tween ideal and relaxed bulk CuPt-ordered GaInP2. The
third source of error can be tested by determining the ad-
ditional relaxation energy by VFF over what is found for
the same slabs in the pseudopotential calculations. These
energies can be relatively large (up to 140 meV/surface
atom), but their average (over surfaces) can affect only
the zeroth-order term in the cluster expansion that is fit
to the VFF energies, and is therefore irrelevant. The vari-
ation of these relaxation energies with surface is generally
less than 15 meV/surface atom (smaller for the cation-
terminated surfaces). Because the cluster-expansion pa-
rameters are fit to the complete set of VFF results,
they are effectively averaged out. Thus, the VFF er-
rors relevant to the cluster expansion coeKcients are lim-
ited to those in categories (i) and (ii) above (about 4
me V/atom).

C. Results of direct calculation of configurational
energies

We next describe the salient trends in these directly
calculated energies, thus identifying the important inter-
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TABLE II. Degeneracies Dp and average spin products II~(m) for interlayer figures {shown in Fig. 3) connecting 2D structures at layer m & 4
to 2D structures at layer m —4.

Pairs of 2D structures

Figure

Second pair
Third pair
Fourth pair

Interaction

CPA'/CPA'
CP A2/CP A2
CPBg /CPBy
CPB2/CP B2

1
0

-1

CPA'�/CP

CPBy/CPB

—1
0
1

CHg/CHg
CH, /CH&

rr&(m)

1
—1

1

CHy/CHg
PSg /PSg
PSg/PSg PSy/PS2

actions that need to be described by a configurational
Hamiltonian.

(a) The top cation surface shows a [110]-[110]
anisotropy (thus the energy of a CPA structure at the

top surface differs from that of a CPg) even without
reconstruction. This occurs because surface cations are
connected by anions immediately below only along the
[110]direction.

(b) This anisotropy is enhanced by surface reconstruc-
tion. Pseudopotential calculationszi zz for the energy of
cation-terminated Gas sino 5P surfaces with CP~, CPB,
CH, and PS 2D structures on (001) GaAs substrates (Ta-
ble II of Ref. '22) indicate that the 2x2 geometry of dimer-
ized, buckled and tilted dimers [shown in our Fig. 1(b)]
is preferred. Within that geometry, the CPBq structure
[see Table I and Fig. 1(a)], where two In atoms occupy
the upper dimer, is energetically favored by 84 meV over
the next-lowest-energy structure, namely, CH1.

(c) For anion-terminated surfaces, reconstruction of
the P atoms —with dimerization and buckling as shown
in Fig. 1(d)—also lowers the energy. zi However, the an-
ion surfaces are still metallic; it is possible that a 4 x 2
cell produces a lower-energy semiconducting surface.
Within the 2 x 2 cell, the CH and CP~ structures of the
first subsurface layer (m= 1) [see Table I and Fig. 1(c)]
have similar excess energies ( —30 meV/atom).

(d) For the more deeply buried subsurface layers2z

(m ) 2), the ground state is CP~ for m = 2 and CPB for
the m = 3 and m =4 layers.

(e) For m ( 4, the layer excess energy DE (Z ) of
the layer configuration Z = (oi, oz, . . . , os) is approx-
imately independent (within a few meV) of the configu-
rations of layers m'& m.

(f) On the other hand, for m)4, AE (Z ) depends
significantly on the configuration of layer m —4 when
two subvariants of the same pair (among the three pairs
(CP~i, CPg2}, (CPBi, CPB2), and (CHi, CH2)) occur
in these layers.

(g) For layers m) 4, the average (with respect to dif-
ferent structures at m —4) ground state is one of the
2D CH structures. The lower-energy stacking of this 2D
CH struct, ure with respect, to the two possible 2D CH
structures at m —4 is consistent with the 3D chalcopy-
rite structure, which is the (epitaxially constrained) bulk
ground state.

(h) On the other hand, the stacking of the two CP~ or
CPB variants has higher energy when it is consistent with
the 3D CuPt structure, except for m=4. In this case, if
the surface layer is in its CP~ ground state, the energeti-

cally favored configuration of the m =4 layer is consistent
with the correct stacking for the 3D CuPt structure.

D. The c1uster expansion

Having established the main features of the directly
calculated configuration dependence of b,Ed(Z), we now
construct a finite-cluster-expansion Hamiltonian 'H so
that 'R(a') captures all salient features [(a)—(h) in the
previous subsection (Sec. IV C)] of the directly calculated
AEd(Z) We div. ide the Hamiltonian into intralayer and
interlayer parts.

X. Intrulayer Hamiltonian

Like the total Hamiltonian of Eq. (2), the intralayer
Hamiltonian that describes the excess energy of the layer
configuration o m is expanded in a series of interactions
J~(m) associated with figures F at layer mni,

'8 (a ) = N ) DF JF(m) IIg(a ) .

Note that, while all layers are described by the same fig-
ures (F), the magnitude of the figure energy JF(m) de-

pends on the layer m at which the figure resides. In views
of the trends found in the directly calculated energies
(Sec. IV C), we design the terms in Eq. (5) as follows.

(i) The site-only figure of each sublattice v = n, P, y,
and b is associated with the on-site energy b,Ji (m). This
describes the preferential occupation of sublattice v in
each layer by Ga [if b Jf (m) ) 0] or In [if b Jf(m) ( 0].
These terms reflect the effects of local strains in a given
subsurface layer induced there by the top-surface recon-
struction and are responsible for features (b) and (d) of
Sec. IV C. Only three of the four on-site energies are inde-
pendent parameters: the on-site energies are constrained
by the sum rule P„b,Ji"(m) = 0. Therefore, they do not
lead to additional energy contributions in the z = 0 and
x = 1 limits.

(ii) The first-neighbor pairs along the [110] and [110]
directions are associated with interaction Jz (m) and

J2 (m), respectively, whereas the second-neighbor[110]

pairs (along [100] and [010]), with interaction Ii2(m).
These are shown in Fig. 2. These pair interactions de-
scribe corrections in the excess energy of each 2D layer
configuration beyond the description given by on-site en-
ergies only. ln particular, the pair interactions deter-
mine the preference for given 2D layer structures in layers
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where, by symmetry, the on-site energies vanish (specifi-
cally, for m =4n+ 1, with n a non-negative integer). The
intralayer pair interactions account for features (a), (c)
and (g) (2D CH order) of Sec. IV C.

(iii) Finally, since the zero of energy was arbitrarily
chosen to correspond to phase separation [Eq. (3)],a con-
stant term Jo(m) is included to represent the excess en-
ergy per lattice site of a completely random x= 1/2 layer
[see Eq. (11) below].

The degeneracies DF and average spin products
II~(Z ) for the eight 2D layer structures Z are given in
Table I along with those for the z = 1/4 2 x 2 structures.
The intralayer cluster expansion becomes

[110]
2

[110]

J[110]' ...'
2

[110]

FIG. 2. Top view of intralayer figures used in the cluster

expansion for the surface and subsurface layers of Gap In P.
Only cations are shown,

N/4 N/4 N/4 N/4

&m(~m) = &Jo(») + &jp (m) ) &, + 6J& (m) ) o~ + 6j&~(m) ) crt p b J& (m) ) ol

+~~"'"(~)
l ) .~ «+ ) .«« l

+ J~" '"(m) () ~ «+ ) .r « l

u~l

+I%2(Ill) () ««+ ) «'«
fil] [jt]

(6)

where i, j, k, and I denote sites on sublattices ci~, P
qadi, and b, indicated in Fig. 1, ( ) and ( )' denote first-
neighbor pairs along the [110] and the [110] directions,
respectively, and [ ] denotes second-neighbor pairs.

The on-site energies constitute the main symmetry-
breaking effect of reconstruction introduced here. We
neglect other smaller symmetry-breaking effects: for in-
stance, an m= 1 first-neighbor cation pair along the [110]
direction is described by the same interaction J& (1) re-
gardless of whether the pair is located under a dimer row
or under a trough between dimer rows [see Fig. 1(d)].
However, at the reconstructed surface, atoms along the
[110] direction are assumed to interact [with intensity

J2 (0)] only when they belong to the same dimer [see
Fig. 1{b)]. Similarly, surface second-neighbor interac-
tions I&q(0) act only on pairs of atoms that belong to
the same dimer row. For 2 x 2 layer structures, this
amounts to changing (for m=0) j& (m) ~ J&[ {0)/'2
and I&2(m) ~ Ii~(0)/2 in Eq. (6).

ers (m and m —2) are given by Jz and L2, and those
between second-neighbor cation layers (m and m —4),
by K2, Lq and M2.

The m/m —2 interlayer terms are

IH~ ~ 2 = J2 0'&0'& + L2 CT&Ok + J4 CT, CT& CTyO~,

('i) (ik)' [g~aIj

where (ij) denotes first-neighbor pairs and (ik) third-

2. Interlayer Hamiltonian

To understand features (e) and (f) (Sec. IV C) of the di-
rectly calculated energies, consider a more complete clus-
ter expansion of a three-dimensional epitaxial pseudobi-
nary alloy, grown on a (001) substrate, with the interac-
tions indicated in Fig. 3. The constraint of Axed lattice
constants in planes parallel to the substrate results in
an anisotropy of otherwise equivalent interactions, e.g. ,

I~2 g Iiz. Interactions between first-neighbor cation lay-

FIG. 3. Intralayer (J2, Kz) and interlayer cation-cation
interactions between first-neighbor (J~, Lq) and second-
neighbor (K2, L2, M2) layers in an epitaxial 3D pseudobinary
alloy. The solid circles denote common atoms and the shaded
circles denote mixed atoms.
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AcE =) (7f +'M z+'M, g), (9)

where the intralayer term '8 is given by Eq. (6) and the
interlayer terms by Eqs. (7) and (8).

E. Fitting the cluster expansion
to directly calculated energies

The interaction parameters are determined by fitting
the cluster expansion of Eqs. (6)—(8) to the set of directly
calculated energies (AEd(Z) }.

neighbor pairs in which one of the sites belongs to layer
rn and the other to layer m —2, and [ij kl] denotes first-
neighbor tetrahedra in which two sites belong to layer m
and the other two to layer m —2. The m/m —4 interlayer
terms are

'H~~ ~=I&z) o;o;+L2 ) o;ot+Mz )
(~i)

(8)
where (ij} denotes second-neighbor pairs, {ik}' third-
neighbor pairs, and (il}"fourth-neighbor pairs in which
one of the sites belongs to layer m and the other to layer
m —4.

The pair coefficients II~(Z) associated with 'R

are zero for structures Z generated by the two-
dimensional CPg, CPB, CH, and PS structures. [Al-

though the four-site IIF(Z) coefficient is nonzero for
some of the (Z}, the fits show that contributions from

J4 are insignificant. ] This is just what is expected on the
basis of symmetry: [110]-and [110]-oriented pairs of sites
in a 2 x 2 cell in layer rn —2 are symmetrically located
with respect to the sites in layer m, thus precluding topo-
logical pair interactions that distinguish between config-
urations of a given composition in layer rn —2. This
explains the near independence of these layer energies
with respect to the next-layer configurationss [item (e)
of Sec. IV C]. On the other hand, for 'R~ ~ 4, some pair
II~(Z) coefficients for the 2 x 2, z = 1/2, structures hap-
pen to be nonzero. These coefBcients are given in the
top part of Table II. This implies that the energy of
mth layer configuration depends on the configuration of
layer m —4. Here it is also easy to see that such interac-
tions are permitted by symmetry. Note (Table II) that
the IIF(Z) coefficients are nonzero for exactly the same
pairs of structures at layers rn and rn —4 for which there
is a significant correlation between VFF layer excess en-
ergies, as discussed in item (f) of Sec. IV C.

The total configurational Hamiltonian of a Gai In P
slab with n cation layers is expressed as

1. Eit of top s-urface IIamiltonian

We extract surface interaction parameters from results
obtained for a cation-terminated Gas sino sP monolayer
on a GaAs substrate. The first line of Table III dis-
plays results obtained by mapping the cluster expansion
for the top surface to pseudopotential calculations for
the unreconstructed surface. Here, no geometrical pref-
erence exists for the occupation of each site by Ga or In.
This occupation is then decided only by the topological
interactions at the surface. This implies that each pair
among (CP&i, CPS&}, (CPBi, CPBz}, and (CHi, CHg}
is made up of degenerate subvariants. As a result, the on-

site energies (b,Jf(0)} are zero and Jz (0), Jz (0),
and I~z(0) are obtained by solving a 3 x 3 system of linear
equations [Eq. (5)].

The second line of Table III shows results for the recon
structed cation-terminated top surface. The topological
degrees of freedom are now described by the Hamiltonian
'80 obtained from Eq. (6) (with m =0) including interac-
tions only between atoms that belong to the same dimer
row. Available to us are six excess energies (AEq(Z)}
calculated by the LDA pseudopotential method (CPgi,
CP~z, CPtri, CPtrz, CHi, and CHz, of Table I) and six
interaction parameters [three of the jb,Jf(0)} in addi-

tion to J~ (0), Jz (0), and I&2(0)]. This leads to a
well-determined 6 x 6 system of linear equations [Eq. (5)],
which is then solved for the interactions JF(0).

It is clear from Table III that the most important dif-
ference between the energetics of the reconstructed and
the unreconstructed surfaces is described by the on-site
energies: they are present only in the reconstructed case.

S. Eit of subsurface layer JIamiltonians

Table IV shows the results of fitting the rn-dependent
intralayer Hamiltonians of Eq. (6) and (for layers m) 4)
the interlayer Hamiltonians of Eqs. (7) and (8) to the
directly calculated excess energies. The concentration of
each layer is x =0, 1/2, or 1. Since the top-surface geom-
etry of cation-terminated alloys is diferent from that of
anion-terminated alloys, and since these geometries exert
diA'erent energy preferences for atomic configurations at
deeper layers, we treat these two cases separately.

For cation-terminated alloys (even m in Table IV),
we used 1449 different stackings of two-dimensional PS,
CP~i, CP~z, CPtri, CPBz, CHi, and CHq structures in

layers rn = 0, 2, 4, 6 in a slab of four Gao 5Ino 5P layers
on a GaAs substrate. The Hamiltonian of Eqs. (6)—(8),
with 27 interaction energies, was then fitted by singu-
lar value decomposition to the 1449 available directly

TABLE III. Intralayer interaction energies (in meV) for the cation-terminated top surface of
Gas sino q P/GaAs (001) (see Fig. 2). Results are obtained from fits to pseudopotential calculations
of unreconstructed and reconstructed surfaces.

Geometry

Unreconstructed
Reconstructed

Jp

1.8
2 0 3

0
—76

0
—100

0
90

0
86

J[110]
2

—6.2
—5.5

J[110]
2

5.2
7.2

K2
—0.4

2 %2
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TABLE IV. Iutralayer interaction energies in layer m, and iuterlayer (m/m —2 and m/m —4) interaction energies (all in

meV) for Gao qIno g P/GaAs. Results for even m are for cation-terminated alloys while those for odd m are for anion-terminated
alloys. J& represents interactions between two sites on layer m and two sites on layer m —4. The standard deviation is 2.5
meV for even m and 1.2 meV for odd m. In both cases, 27 independent parameters were fitted to 1449 directly calculated
configurational energies. The corresponding epitaxial bulk parameters are also shown for comparison.

Layer

Intr alayer
m/m

AJ, J[110]
2

J[zzoj
2

m/m —2

Jg

Interlayer
m/m -4

I2
—76.0
—51.6

23.4
—2.3

—100.0
51.6
35.2
2.3

90.0
—51.6
—27.6

2.3

86.0
51.6

—30.9
2.3

5e5
—11.3

2.7
2.4

7.2
—0.4

3.2
2, 8

—2.2
-4.6
—2.6
—2.4

—0.1
0.1
0.0

0.8
—6.6

—0.7
—1.2

0.5
2.8

0.0
104.9

0.0
—12.0

0.0
104.9

0.0
—12.0

0.0
—104.9

0.0
12.0

0.0
—104.9

0.0
12.0

5.2
3.1
2.9
2.4

11~ 2

2 ' 8
3.2
2.8

1.9
3.2

—2.4
—2.3

—0.1
0.1
0.0

—1.9
—5.0

—0.7
—0.9

1.2
2.1

bulk 0.0 0.0 0.0 0.0 3.0 3.0 -2.6 0.0 44 —0.9 2.0

calculated configurational energies b, E~(Z), leading to
a standard deviation of 2.5 meV. The geometry of the
LDA-relaxed surfaces showed some breaking of the ver-
tical mirror symmetry that would be expected at each
dimer. This caused some splitting of the two CP~ sub-
variants at rn = 2, for example. Since the symmetry
breaking was small, and thought to be spurious (appar-
ently being caused by residual interaction between the
surfaces used in the pseudopotential calculations), it was
removed from the surface geometries used in the VFF
calculations from which the subsurface configurational
Hamiltonian was obtained.

For the first subsurface layer (m = 1) of an anion-
terminated alloy, we neglected effects of the small tilting
of P dimers and assumed no on-site energies. Pseudopo-
tential results for the excess energy of CP&, CP&, and
CH structures of a Gap slllp 5P monolayer on a GaAs

substrate are then used to obtain the values of J2 (1),[11pl

Jz (1) and Ii2(1) displayed in Table IV.
For deeper layers of anion-terminated alloys (odd m

in Table IV), we used 1449 similar combinations in lay-
ers rn = 1, 3, 5, 7 of an anion-terminated slab with four
Ga0 5In0 pP layers. We assumed the dimerized but un-
buckled surface geometry. The fit of 27 interaction pa-
rameters to 1449 energies resulted in a standard devi-
ation of only 1.2 meV. In order to better simulate the
environment of the cation layer in the rn =7 subsurface
layer of a thicker Gap slnp 5P film, the top (As) layer
of the substrate was changed to P. We have also fitted
our Hamiltonian to directly calculated energies of anion-
terminated slabs without the extra P layer: the results
are similar (within 0.2 meV) to those shown in Table IV,

except that Jzl (7) = 3.1 and J2 (7) = —3.2 meV.
Without the extra P layer, the last-layer (m=7) cations
are connected by P atoms above (along the [110] direc-
tion) and by As (of the GaAs substrate) below (along the
[110] direction). The difference in size between Ga and
As induces different J2(7) contributions to the relaxation
energy in the two directions. With the additional P layer,

this anisotropy is nearly removed.
The results obtained from the surface and subsurface

fits are then compared to those obtained by fitting epi-
taxially constrained bulk VFF calculations. We used an
anisotropic cluster expansion, where similar interaction
parameters that represent difFerent directions with re-
spect to the substrate can assume different values (see
Fig. 3). In Table IV "bulk" represents a six-parameter
fit, including J2 + 2L2 ——0.41 meV and the parame-

t, ers J~ = J&
——J2, I~~, I&&, L&, and M& shown[110] [110] . I I I

on the last line of Table IV. The six structures used
were CuPt, CuAu [100], CuAu [001], chalcopyrite [201],
and the (GaP)2(InP)2 [001] and [110]superlattices. Note
that the intralayer parameters for rn & 2 and the inter-
layer parameters between m=3 and m=7 approach the
bulk results.

V. RESULTS OF THE T=O CLUSTER
EXPANSION

A. Configurational energies as a function
of layer depth

Using Eq. (6) and the obtained intralayer interactions
(Table IV), we plot in Fig. 4 the intralayer excess en-

ergy of the lower-energy subvariant of each pair (CPAi,
CP~~), (CPBi, CPB2), and (CHi, CH2) for layers
rn = 0, 1, . . . , 7. The energies displayed for each layer
rn correspond to averages over different stacking combi-
nations of the 2D structures of the other layers (g m).
For comparison, we show the epitaxial bulk results, ob-
tained by isolating the intralayer interactions in the epi-
taxial bulk fit. To illustrate the effect of interlayer in-

teractions between second-neighbor cation layers we also
plot the full epitaxial bulk results obtained from direct
VFF calculations of (i) two superlattices with a common
CP two-dimensional structure (CuPt and Y2, which is

the (GaP)2(InP)2 superlattice along [110]) and (ii) two

superlattices with a common CH two-dimensional struc-
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Average excess enthalpies of layer structures
I

O
CPA0

20 CH
O

—40

2 -so-
—80-

CPB—100

CP

e~~ CA
Y2—CH

~ Random

0 1 2 3 4 5 6 7 2D 3D
Layer m Epi bulk

FIG. 4. The excess layer enthalpy (iu meV/cation) at
T = 0 of several 2D structures and the 2D random alloy in

Gao. &lnp. &P as function of the layer depth m. The zero of
energy corresponds to phase separation at each layer. All

energy values are averaged over different structures of other
layers g m. Epitaxial bulk results using intralayer parameters
only ("2D") are also given, in comparison to the directly cal-
culated epitaxial bulk structures ("3D").Here Y2 represents
the (GaP)q(lnP)2 superlattice along [110]and CA represents
the CuAu-I structure along [100].

B. Predictions for atomic swaps
and other compositions

The validity of the intralayer Hamiltonian of Eq. (6)
can be further tested by its ability to predict the ex-
cess energies of new layer structures not used in the Pt.
Pseudopotential calculations of different atomic configu-
rations in the surface are excessively computer intensive,
but VFF calculations for subsurface-layer structures can
be readily performed. We choose to test the ability of the
model to predict the VFF energies of configurations at
the third subsurface layer, the first to exhibit CP~ order.
In the following, we compare CE and VFF calculations on
(1) z= 1/2 defect structures obtained by swapping first-
or second-neighbor pairs of atoms in the third subsurface
layer of the original structures used to fit the intralayer
Hamiltonian and (2) z g 1/2 third-subsurface-layer struc-
tures.

ture (CuAu [100] and chalcopyrite [201]). The energy of
the random configuration is obtained from the value of
Jo in a 3D Hamiltonian analogous to Eq. (2).

Note in the bulk results in Fig. 4 that interlayer in-

teractions stabilize the chalcopyrite structure but raise
the energy of the CuPt structure. This is in agreement
with the eH'ect of interlayer interactions obtained from
the cluster expansion [Eq. (8) and Tables II and IV] and
also in agreement with the features of the VFF calcula-
tions described in items (f)—(h) of Sec. IV C. A compar-
ison of different stackings of the two-dimensional CPg
structures shows that the interlayer terms in the cluster

expansion [Eq. (8)] favor the Y2 structure over the three-
dimensional CuPttr structure. It is important to realize,
however, that the opposite signs of m = 0 and m = 4 on-
site energies (Table IV) more than outweigh the effect
of the interlayer terms and stabilize the correct CuPt~
stacking between rn = 0 and m =4.

f. Atomic swaps

TABLE V. Predictions of the cluster expansion (CE) for
the excess energies b,EE:D (in meV) of 2 x 2 defect cells D in
the host structures E=CPgy and CH, for layers m=0, 3, and
4. We used the lower-energy subvariants of the indicated host
structures (namely, CP&2 and CH& for m=0, CP» and CH&
or CHq for m=3, and CP~q and CH2 for m=4). The notation
CP~t and CH' for the defect cells refers to the higher energy
subvariants for each m. "Intra" and "inter" at m = 0 refer
to defects inside a dimer row and between neighboring dimer
rows, respectively. The predictions for m=3 are compared to
the directly calculated valence-force-field (VFF) results.

Host Defect m = 0 (CE)
Z D Intra Inter

m=3
CE VFF

m=4(CE)

CP~ CPA(
CPA2
CHg
CH2
CP~I

395 386
451 442
365 365
405 405
744 770

378
378
354
354
758

370
370
339
339
743

100
83
83
53

177

CH CPA(
CPA2
CPai
CP~g
CH'

68 46
124 102
397 397

—307 —307
116 90

86 52
86 52

—332 —371
508 487
125 52

101
84

—27
207
139

All intralayer first-neighbor and second-neighbor
atomic swaps lead to a 2 x 2 defect cell 0 in one of
the original 2 x 2-periodic structures Z. We describe the
host structure Z by the spin variables (o„]in each of its
four sublattices (vj: Z= {o,np, o&, 0q). The defect is
similarly described by the spin variables that define its
four atoms: D = (d, dp, dz, d& ). Through an analysis of
the defect-cell geometry of layers m & 1, we obtain the
intralayer cluster expansion of the defect-cell excess en-

ergy (with respect to the original structure) in terms of
the interaction energies of Eq. (6) and of the eight spin
variables (0'~, 0p, o'~, ay, d~, dp, d~, dg ]. Using the model
of 2 x oo chains for the reconstructed surface, different
expressions are obtained for interchain and intrachain de-
fect cells at m=o.

Table V shows the predictions for defect energies
AE~.D as obtained by the cluster expansion compared
with VFF results for swaps at the rn = 3 layer. The
VFF results have been obtained for two layers of cation-
terminated Gao sino sP with an additional phosphorus
layer on top of the GaAs substrate. These results corre-
spond to averages of m = 8 defect energies for different
rn = 1 layer structures (PS, CP&, CPtr, and CH). The
cluster expansion predicts values of AE~ D that are be-
tween 2 and 18 meV/(defect atom) higher than the VFF
results, indicating that additional relaxations occur that
partially relieve the strain at the defect-cell interface.

We also show in Table V the predictions of the clus-
ter expansion for defect energies at m =4 and for inter-
chain and intra-chain defect energies at m=0. The first
five rows of Table V show that the CPtrq structure ex-
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hibits a remarkable resilience toward all first-neighbor
and second-neighbor swaps at m= 3. These swaps move
a pair of Ga and In atoms to positions that require large
local strain energies. In the description of the cluster ex-
pansion, such swaps require large on-site energies. We
make a similar prediction of remarkable stability of the
CP&2 layer structure at the top surface (m = 0) of a
cation-terminated slab and, to a lesser extent, at the
m = 4 layer. The fact that Ga/In swaps raise significantly
the energy of the m = 0 (surface) and m = 3 (subsur
face) CP~ cation layers of Gap sIno sP (hence such swaps
should not occur spontaneously) should be contrasted
with the results for the bulk: Laks and Zunger showed
significant energy lowering for some swaps in the interior
of the CuPt structure of Gao sIno sP. On the other hand,
the CH2 layer structure is stable in the interior of the epi-
taxially constrained Ga05In05P alloy, but is unstable
at m=3 (Table V) against a nearest-neighbor swap that
creates a CPtii cell (and at m = 0 against a swap that cre-
ates a CP/iz cell). If atomic mobility is large enough at
m = 3, short-range swaps can therefore convert the CH2
structure into the CPB& structure, which is stabilized by
surface dimerization.

2. z g i/s structures

All compounds included in the fit correspond to layer
compositions z = 1/2 or to layer phase separation. We
analyze next the predictions of CE in comparison with

the VFF results for 2 x 2 structures at compositions z =
1/4 and z = 3/4. The cluster-expansion predictions can
be readily obtained from Eq. (6) and Table I. As in
Table I, we denote by s„the z = 1/4 structure obtained
by occupying the v sublattice by In and the others by Ga,
and we denote by s„the z = 3/4 structure complementary
to s, .

Table VI(a) shows the CE and VFF results for the ex-
cess energy of these structures for m =3. The VFF results
correspond to averages of these rn = 3 two-dimensional
structures with difkrent m = 1 two-dimensional struc-
tures (PS, CPg, CPB, and CH) immediately above, and
a phosphorus layer and the GaAs substrate (at m = 5)
immediately below. These energies are predicted by the
CE with an error of (8 meV/cation.

Table VI(b) presents results for the excess energies of
stackings of z = 1/4 and z = 3/4 structures at m= 3 and
rn = 5, respectively, and for the complementary stack-
ings of z = 3/4 and z = 1/4 structures. Again, the VFF
results correspond to averages over diferent m = 1 two-
dimensional structures immediately above, and a phos-
phorus layer and the GaAs substrate (at m = 7) imme-
diately below. As in stackings of z = 1/2 layers, the
interlayer terms of Eq. (7) do not contribute to the ex-
cess energy with respect to a concentration-weighed av-

erage of phase-separated layers. The CE errors are (6
meV/cation for the (m=3)/(m=5) stackings.

VI. THERMODYNAMICS OF THE TOP
SURFACE

m=3
(a)

CE VFF

Sg
sa
sg

RI)4

53.1
—51.8
—53.2

53.1
0.5

50 ~ 1
—50.4
—56.4

61.0

(m = 3)/(m = 5)

su sv
sq sv

sv

Ri/4/R3/4

(b)
CE

51.7
—53.2
—53.2

51.7
0.1

VFF

48.6
—48.4
—56.4

57.0

TABLE VI. Comparison of the predictions of the CE with
directly calculated VFF results for (a) the excess energies (in
meV/cation) of x =1/4 {s„)and x =3/4 {s ) 2D structures
at m=3 (first three columns) and (b) the excess energies of
the structures of (a) superposed with structures of comple-
mentary composition (x =3/4 and 1/4) at m =5 (last three
columns). Structure s„(s„)corresponds to In (Ga) in sublat-
tice v and Ga (In) in the other three sublattices. For m=3,
the pairs {s,sp) and {s~,sg) are each made up of degenerate
structures. For m = 5, all four {s„)structures are degener-
ate in the cluster expansion. The random configuration vrith

x=1/4 is denoted by Ri/4 (degenerate with Rs/4).

Having established a mapping between a large set
of directly calculated energies and a cluster expansion
(Sec. IV E) and having tested its convergence and com-
pleteness at T = 0 (Sec. V B), we can now obtain
the finite-temperature thermodynamics of the configu-
rational Hamiltonian.

The thermodynamics of the unreconstructed and the
2 x 2 reconstructed surfaces, with the interaction param-
eters of Table III, is obtained by minimizing the free en-
«gy Fo = 'Ro —TSo with respect to the average spin
products II~(cr). For the unreconstructed surface we
use the model of an anisotropic square lattice (equiv-
alent to the rectangular lattice), while for the recon-
structed surface we use the model of 2 x oo independent
rows. The square approximation of the cluster-variation
method (CVM) (Ref. 61) was used to get the thermo-
dynamics in both cases. This statistical treatment is
described in the Appendix. The CVM approximation
correctly takes into account the correlations inside the
basic cluster (i.e. , a square) and treats additional corre-
lations in an approximate form that is exact only for one-
dimensional chains or quasi-1D rows of width not larger
than the size of the basic cluster. When the CVM square
approximat, ion is applied to the ferromagnetic isotropic
Ising square lattice, a critical temperature that is 6.9%
above Onsager's exact solution is obtained.

Previous studies of alloy surface thermodynamics
with a fixed geometry showed the following trends when
bulk interactions are assumed at the surface of systems
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A. Thermodynamics of the unreconstructed
cation-terminated top surface

Minimization of the Hamiltonian of Eq. (6) produces
the T = 0 ground-state energy as a function of com-
position z (Fig. 5). For the unreconstructed cation-
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Composition x in Gay-&In&P

FIG. 5. T = 0 ground-state structures for reconstructed
2D Gaz In P at layer m below the surface. The ground-
state structures are denoted by solid circles, indicating break
points of broken lines. Open circles indicate lowest-energy
single-phase structures at x = l/4 and 3/4 that are unstable
with respect to phase separation. For comparison we show the
energy of the random configuration (dotted lines) as functions
of ln composition s. The dashed line in (a) (m=o) gives the
ground state of the unreconstructed surface.

that display a first-order transition: (i) the surface often
starts to disorder at temperatures below the bulk transi-
tion temperature, ss but (ii) frustrated systems (e.g. , the
fcc lattice with antiferromagnetic interactions) can show
a higher critical temperature at surfaces [like the (001)]
where interactions are not frustrated. 4s Since interactions
that lead to a chalcopyrite ground state are antiferromag-
netic (and therefore frustrated) for first neighbors, the
(001) (nonfrustrated) Gap gIng sP surface is expected to
exhibit chalcopyrite ordering if the bulk interactions are
valid at the surface. The observation of CuPt~ ordering,
instead, suggests that bu}k interactions are inappropriate
to the description of the surface. Indeed our calculations
show that, even without reconstruction, surface interac-
tion energies are different from the bulk (compare the last
line of Table IV with the first line of Table III) and that
reconstruction modifies further these interactions (Table
III).

terminated top surface [dashed line in Fig. 5(a)], we find
that the CP~ structure is the ground state at z = 1/2.
Phase separation occurs between pure GaP and CPgy

Gap 5Inp sP in the interval 0 & z & 1/2 and between CPgy
Gap 5Inp sP and InP in the interval 1/2 & z & 1. To see
if the energy differences between different surface struc-
tures are suFicient to preserve any type of order at typical
growth temperatures, we calculated the order parameter
g~, defined as

1
ggy —

& C~ + Cp —
C&

—Cy

as a function of temperature. Figure 6(a) displays the
CVM results for the temperature dependence of rl~
(dashed line) and of the In occupation probabilities c„
of the four sublattices v = n, P, y, and b in the unrecon-
structed cation-terminated surface. Note that g~ ——1 at
T=0 and g~ = 0 after the system undergoes a phase tran-
sition to the disordered phase. We find a transition tem-
perature T, = 146 K [Fig. 6(a)]. It is clear that at growth
temperatures (typically 900 K) no traces of long-range
CP~ ordering are to be expected in an unreconstructed
surface.

Recently, Matsumura, Kuwano, and Oki (MKO)
(Ref. 16) suggested a mechanism for spontaneous CuPt~
ordering of Gap 5Inp 5P alloys in terms of a layer-by-
layer stacking sequence of (unreconstructed) minimum-

energy layers. Application of our calculated interac-
tion parameters for the unreconstructed surface (Table
III) to the MKO model leads to the prediction that
the (GaP)i/(InP)i superlattice along [001] (the CuAu-
I structure) is the lowest-energy phase of the top sur-
face, while the (GaP)g/(InP)q superlattice along [110]
(which has the same 2D structure as the CuPt~ phase),
is the "ground-state-plane" phase, which is defined as
the lowest-energy phase of the first layer. However, since
T, ( 150 K) is much lower than growth temperatures

( 900 K), thermal disorder will lead to a vanishing or-
der parameter at growth temperatures, as illustrated in
Fig. 6(a). The MKO model is therefore unsuccessful in
explaining the spontaneous CP~ ordering of Gap slnp sP
when realistic interactions are used.

B. Thermodynamics of the reconstructed
cation-terminated top surface

For the reconstructed-surface thermodynamics, corre-
lations between the atomic occupations of different rows
of cation dimers are expected to be small, since cations
on different dimer rows are connected through at least
three intermediate atoms. We thus use the physical ap-
proximation of 2 x oo independent rows with a 2 x 2
geometric unit cell that contains sites of the four sublat-
tices np, pp, Tp and bp [see Fig. 1(a)]. For this physical
approximation, the ma/hematica/ minimum-free-energy
solution provided by the CVM square basic cluster (see
Appendix) is exact, since the rows are uncorrelated and
the system is quasi-one-dimensional. Besides, the order
parameter of each chain obtained in this 2 x oo model
corresponds to an equivalent two-dimensional order pa-
rameter, since the chains are assumed to be positioned
in phase in the geometry discussed in Sec. III B.
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Gv'oend-state structures
of the reconstructed top surface

The (T= 0) ground state was obtained by minimizing
the intralayer Hamiltonian of Eq. (6) with the changes

Jz (m) ~ J2 (0)/2 and Kz(m) ~I&z(0)/2, appropri-
ate for reconstructed surfaces (see Sec. IV D 1). The solid
line of Fig. 5(a) shows the predicted ground-state struc-
tures of the reconstructed cation-terminated Gai ~ln~P
top surface (m = 0). The excess energies of the ordered
structures sp (at z = 1/4), CPB (at z = 1/2) and s& (at
z =3/4) (defined in Table I) are indicated by circles. A
common-tangent construction shows that the sp struc-
ture is marginally s/able against phase separation into
pure GaP and CPg-like Gao 5Ino 5P, while the s~ struc-
ture is marginally unstable (or metastable) against phase
separation into pure InP and CPS-like Gao 5Ino gP. For
comparison, the dotted line of Fig. 5(a) depicts the en-
ergy of the random surface alloy as a function of compo-
sition. The latter quantity was obtained by replacing the
average spin products by their configurational averages
(o,) = 2z —1 (for all sublattices) and (o;o&) = (2z —1)z
(for all pairs). Since, by definition, the excess energy of
the phase-separated system is zero, the excess energy of
the random (R) configuration (of any layer m) becomes

DER(m) = Jp[1 —(2z —1) ] .

For the top surface, Jp(0) is only —2.3 meV (Table III)
and the random configuration is therefore very close to
phase separation for all x.

2. Thermal behavior
of the z = i/s top surface

Figure 6(b) shows the temperature dependence of the
concentration c„ofIn in the four different sublattices v of
the reconstructed surface at composition z = 1/2. Unlike
the unreconstructed case of Fig. 6(a), there is no phase
transition. The CPs order parameter g~ [Eq. (10)] is
seen to be significant even at growth temperatures (e.g. ,

gii 0.83 at T = 1000 K). This order parameter ap-

proaches zero only asymptotically as T ~ oo. To iden-
tify the interaction terms responsible for this behavior,
we compare in Fig. 6(b) the predictions of the model with
only on-site energies (dotted lines) to those obtained from
the full layer Hamiltonian (full lines). Only a small dif-
ference in the order parameter of the two approximations
is visible at T = 1000 K. Therefore, the stabilization of
CPB order at growth temperatures can be understood as
a pinning of the ordered structure by the on-site energies.
These reflect the preference of (the larger) In atoms to
occuPy the uPPer dimer [np-Pp in Figs. 1(a) and 1(b)]
and of (the smaller) Ga atoms to occupy the lower dimer
(pp-bp). Note, however [Fig. 6(b)] that within the upper
dimer there is a slight preference of In atoms to occupy
the lower site (Pp) over the upper site (np). This is a re-
sult of the competition between size and electronegativ-
ity differences. zi Comparison of Fig. 6(b) with Fig. 6(a)
shows that reconstruction leads to the thermodynamic
stabilization of a strongly ordered surface structure—
consistent with the observed 3D CuPts structure —at
preparation temperatures.

3. The top surface of the z= o.s alloy

Our model allows the prediction of the finite-
temperature behavior of z g 1/2 surfaces. Figure 7
shows the In occupation of the different sublattices for
a Gao 7Ino 3P surface. It indicates a complete In occupa-
tion of the Pp sublattice and a 20%%up In occupation of the
Ao sublattice at T = 0. Although these occupations are
consistent with phase separation into 80'%%uo sp (at z =1/4)
and 20% CPs2 (at z = 1/2), a random distribution with
the same 4:1 ratio of the two square-cluster configurations
that are the unit cells for these structures (see heading
of Table I) will have the same energy. (Since the other
square-cluster configurations are not present, this state
is partially ordered. ) This single-phase state is the sta-
blest at low nonzero temperatures. It corresponds to In
on all Pp sites, Ga on all pp and bp sites, and In and Ga
randomly occupying the no sites with concentrations 0.2
and 0.8, respectively.
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VII. THERMODYNAMICS OF SUBSURFACE
LAYERS

A. Calculation procedure

The temperature dependence of the occupation statis-
tics of each subsurface layer is described by our intra-
layer Hamiltonian [Eq. (6)] with the parameters given in
Table IV. We neglect interlayer interactions since correc-
tions due to interlayer interactions would be of the same
order of magnitude as those due to the introduction of in-

tralayer interactions with respect to a model with on-site
energies only [represented by dotted lines in Fig. 6(b)].
Such corrections would make the ground state at rn = 1

and m) 5 dependent on the configuration of the m —4
and m+4 layers, but would not change the state of order
at T 1000 K for m = 0, 2, 3, 4. For m = 1, neglecting
interlayer interactions is a good approximation for the
case of a thin (z = 1/2) Gao sinn s P film of less than four
layers, since [item (e) of Sec. IV C] the energy of z=1/2
ordered structures is nearly independent of the atomic
configuration of layers that are less than four layers (i.e.,

two cation layers) apart The intra. layer Hamiltonian is

Since

6Ji (0) —b.Ji~(0) (( 2 6J, (0) + b,J, (0)
—6Ji (0) —6J, (0) , (12)

the In occupations of the nu and the Po sublattices ap-
proach each other rapidly as the temperature increases,
and characterize relatively strong two-dimensional CP&
order at T 1000 K. The result is consistent with the
observation of CuPt~ ordering in these off-stoichiometry
alloys. The two-dimensional CP~ order parameter g~
is indicated by the dashed line in Fig. 7. Unlike the case
where z = 1/2, full CP~ order is not possible at z =0.3:
thus rf = 0.6 at T = 0 (as opposed to 1 for z = 1/2).
Similarly to the z = 1/2 case, g ~ 0 asymptotically as
T~oo.

solved in the CVM square approximation for each layer,
as discussed in the Appendix.

B. Ground-state structures of subsurface layers

Figures 5(b)—5(h) show the ground-state excess ener-
gies of layers m = 1, 2, . . . , 7. At z = 1/2, the ground state
is CPg for m=2, CPn for m=3 and 4, and CH for m) 5.
For comparison, we also show as dotted lines the energies
of the random alloys [Eq. (11)].Ground-state structures
(circles in Fig. 5) are found at z = 0,1/4, 1/2, 3/4, and
1. They correspond to some of the z = 1/4 and z = 1/2
structures of Table I and to the z =3/4 structures com-
plementary to z= 1/4. While the z = 1/2 ground state is

usually well separated from other structures (except for
m = 1, where the CH ground state is very close in energy
to the CPe structure) the z = 1/4 and z = 3/4 ground
states, in contrast, are considerably closer in energy to
phase separation into z=0 and z=1/2 and into z= 1/2
and z = 1, respectively.

C. Thermal behavior at z = 1/2

The temperature dependence of In sublattice occupa-
tions c„is shown in Figs. 8(a)—8(c) for layers m=2, 3, 4,
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respectively. At typical preparation temperatures (T
900 K), the CPB order parameter [Eq. (10)] is large at
m=3 and moderate at m=4. The m=2 layer is strongly
CPp ordered at these temperatures. The m=1 layer and
layers with m) 4 (not shown) are essentially disordered
at preparation temperatures.

VIII. EXTENT OF DIFFUSION AND ORDERING

The equilibrium ground state of an epitaxially-
constrained three-dimensional Gao sIno sP alloy is the
chalcopyrite structure. ss The observation of the CuPtB
structure shows that atomic mobilities are too low in the
bulk of epitaxially grown alloys to promote bulk thermal
equilibrium. The extent to which each layer equilibrium
configuration infIuences t, he final 3D atomic configuration
of the alloy depends on the rate of diffusion in different
layers. It is also clear that surface reconstruction and the
resulting on-site energies must play an important role in

any scenario that could lead to 3D CuPtB ordering. Our
results indicate that scenario (i) of Bernard, Froyen, and

Zunger is a likely explanation for spontaneous growth
of the observed CuPttr structure on flat substrates at
T 900 K. It consists of the following.

Suppose that the growing surface has cations exposed
for a sufticiently long time so that reconstruction and sur-

face CPg ordering occurs, but diffusion is not sufficient
to rearrange the state of order established at the surface
after it is covered by additional layers. When a second

layer is deposited, it will also order in the 2D CP~ struc-
ture, consistent with either the 3D CuPtB structure or
the (GaP)2(InP)2 superlattice along [110]. The third-
layer stacking is the decisive factor in locking-in the 3D
CuPtB structure. The m = 4 on-site energies provide
then an incentive for placing Ga at the top surface (m=0)
directly above In at the fourth subsurface layer (m =4),
as required for the correct stacking. Note that the m =4
on-site energies in fact can be changed by moving only
surface atoms, placing In atoms and their upper dimers
preferentially over the Ga rows of m=4. Thus m=4 on-
site energies can determine the stacking sequence. The
energy difference of 60 meV/surface atom that occurs
between the two stacking possibilities of a CP~ surface
structure must be multiplied by the average number of
atoms in a dimer chain before defects —mainly two neigh-
boring upper dimers or two neighboring lower dimers-
occur. This therefore stabilizes considerably the correct
3D CuPt~ structure.

An alternative scenario can be proposed where the ex-
tent of diffusion is such that the m = 3 layer achieves
its 2D CPB stable state. The mechanism for correct 3D
stacking is not clear in this case, since the results of our
cluster expansion indicate that the stacking of 2D CPB
structures at the m=3 and m=7 layers has lower energy
when it leads to the (GaP) ~/(InP)2 A = [110]superlattice
than when it leads to the 3D CuPtg structure.

IX. CONCLUSIONS

A cluster expansion whose interaction energies are fit-
ted to directly calculated energies of many configurations

of Gai In P/GaAs (001) leads to a useful description
of the energetics of these structures and to the predic-
tion of their thermodynamic behavior. The main results
of this study are as follows.

(a) A two-dimensional CuPttr order parameter—
consistent with the observed spontaneous ordering in
epitaxially grown Gai ~in~P —corresponds to the ther-
modynamically stable phase for layers m = 0, 3, and 4
at preparation temperatures. This occurs because the
ground-state CuPt~ structures at these layers are pinned
by reconstruction-induced local strains (on-site energies
in the cluster expansion). Therefore, no phase transition
occurs as the temperature increases. The order param-
eter decreases to zero only asymptotically as T ~ oo.
Thus, in spite of relatively small energy differences be-
tween ordered structures at I = 4, at T = 1000 K the
CuPt& (with the "correct" stacking sequence with re-
spect to the surface) order parameter is still 0.3 (com-
pared to 1 at T = 0). On-site energies at the surface
sustain a strong surface (m=0) CuPttr order parameter

( 0.8) at T=1000 I&. For unreconstructed surfaces, on
the other hand, where no on-site energies are present, the
order parameter will be zero above T, 150 K. We hence
predict that "poisoning" reconstruction during growth
will eliminate ordering.

(b) The observed Cu Pt B ordering of (nonstoichio-
metric) Gas 71no sP can also be explained as a surface
thermodynamically stable phase at preparation temper-
atures.

(c) All Ga/In swaps between first- or second-neighbor
atoms in the same plane raise the energy of two-
dimensional z = 1/2 CuPt-like structures at the surface
and at cation layers on the third and fourth subsurface
(001) planes, although some of these swaps lower the en-

ergy in bulk CuPt-ordered structures.
(d) Ground-state structures as a function of compo-

sition are obtained for the surface and for several sub-
surface layers. For z = 1/2, the energies of several two-
dimensional structures as a function of the layer depth
illustrate the evolution of the ground state from CuPt-
like at the surface to chalcopyrite in the bulk.
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APPENDIX: THE STATISTICAL
AP PROXI MAT ION

The CVM square basic cluster was used to obtain the
thermodynamic properties of two models for Gai In~P
layers: (i) 2 x oo chains were used as a model for the dimer

chains at a reconstructed cation-terminated top surface
and (ii) the anisotropic square lattice was used as a model
for the unreconstructed surface and for subsurface layers
in alloys with a reconstructed top surface. In case (i),
the CVM square basic cluster provides an exact solution
to the statistical-mechanical problem.
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The CVM solution to a given lattice statistics prob-
lem consists of (i) expressing the excess energy 6E in
terms of occupation variables, i.e., probabilities of dif-
ferent configurations of the CVM basic cluster and its
subclusters, (ii) expressing the configurational entropy S
of the lattice as an approximate function of the occupa-
tion variables, and (iii) minimizing the excess free energy
AF = hE —. TS with respect to the occupation vari-
ables for fixed external parameters such as temperature
and concentration. Step (i) usually involves approxima-
tions inherent to the physical model employed, such as
restricting the range of interactions to the size of the
basic cluster. Step (ii) involves the fundamental mathe-
matical approximation of CVM, and can be performed in
a convenient way by the scheme proposed by Barker.
Statistical correlations within t, he basic cluster are de-
scribed fully, but longer-range correlations are incorpo-
rated in a manner that is precise only for 1D systems
(or quasi-1D systems such as our 2 x oo chains —whose
width is not larger than the basic cluster). Step (iii) can
be performed by a number of diA'erent numerical tech-
niques (see, e.g. , Ref. 55). !t may be useful to describe
the problem in terms of "correlation functions" (linear
combinations of the occupation variables) by means of
a "cluster algebra. " The alternative simple scheme de-
vised by Kikuchi transforms the minimization problem
into a system of coupled non-linear equations (on the oc-
cupation variables) that can be solved self-consistently.
This "natural iteration" approach is used below in the
two model systems analyzed here.

1. Exact solution to 2 x oo chains

S
B abed

4 ~ ~ab +
ab cd

(A3)

In the magnetic Ising problem, the parameter A2 corre-
sponds to the external magnet, ic field, which couples to
the magnetization per site p z, b, d(a+b+c+d)/4

Minimization of b.F in Eq. (A4) with respect to z,b,d

gives

/ '4Ag + (a+ b+c+ d) A2 l (o)
z»bed —exp

2k T8
»bed &

where

(A5)

where L(s) = z(ln z —1), and y bp and y~d denote occupa-
tion variables for the upper (aP) and lower (pb) dimers.
These are related to the square cluster occupation vari-
ables by simple sum rules. A combinatorial argument
similar to that used by Kikuchi for the 1D lattice shows
that the above expression gives the ezucf entropy per site
S/(NkB) =(ln G)/N of 2 x oo chains, where G is the total
number of possible arrangements of spins consistent with
a given set of occupation variables (z,b,d).

We add Lagrange multipliers Ay and A2 to the free en-

ergy to take into account constraints due to normaliza-
tion of the square cluster occupation variables and due to
a fixed In concentration z. The free energy then becomes

BF = &&E —TS —A&() z,&,s —
&)

AP Zgbcd 2Z 1 . A4

The excess energy per site of 2 x oo chains is expressed (0) / 2&abed ~ ap pb &/2
z.b.d = exP I(- k T 1(y.b y d)knT ) (A6)

&abed Zabcd b

a, b, c,d

(A1)

b,b, d ——
~ [4JP(0)a+ b, J~P(0)b

where a, b, c, and d denote spins +I (representing In and
Ga in Gaq In P), located on sublattices u, p, 7, and b,
respectively; z, bcd represents the excess energy per site of
configuration abed of the basic square cluster; and z,b, d

is the probability of occurrence of such a configuration.
The spin products of Eq. (6) can be easily expressed as
linear combinations of the (z,b,d).

Using our Hamiltonian of Eq. (6), we write the basic
cluster energies as

If parameters Aq and Az are known, Eqs. (A5) and (A6)
can be solved self-consistently by iteration until a desired
convergence criterion is satisfied. While Aq is simply re-
lated to a normalization factor for z,b,d, determination
of A2 requires the solution of a fourth-degree polynomial
in p = exp[A2/(kBT)], which results from applying the
constant-composition constraint to Eqs. (A5) and (A6).
This polynomial is solved for a positive p (and the result-
ing average of occupation variables checked to correspond
to the given composition) at every iteration of Eqs. (A5)
and (A6).

2. Approximate solution
to the anisotropic square lattice

+4J, (0)c+ AJ, (0)d]
For the anisotropic square lattice model, the excess

energy is given by Eq. (Al) with

+4 J2 (0)(ab+ cd) + -'J (0)(ac+ bd)

+2''2(0)(bc+ da) . (A2)

We obtain the configurational entropy using Barker's
scheme. This leads to

b»b, d
——4[4Jq (0)a+ b, J~ (0)b

+4J, (0)c+ A J, (0)d]

+I&q (0)(bc + da) . (A7)

+-,'J '(o)( b+ d)+ —,'J,"' '(0)(-+ bd)
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y. P + Z y,'„'
ab cd

ac

+) c(z', )+) c(zq)) . (A8)

Minimization of the free energy here leads to

4A& + (a+b+c+d)A2 lP)
zabcd —exp

41" T abt..d &

B

Note the differences between Eqs. (A2) and (A7) due
to the larger number of first-neighbor [100] and second-
neighbor bonds when 2 x oo chains are connected together
to form the square lattice.

The entropy expression for the square lattice in the
square cluster approximation is well known and is ex-
pressed in our notation as

S
NkB

abed

where

up pb op ps q &/2l (y. y.~y-yb~)
kBT ) (~o~p~~~s)'

(A10)

Equations (A9) and (A10) are solved by a procedure sim-
ilar to that used in Sec. 1 of this Appendix for the 2 x oo
chains.

It is worth commenting on the accuracy of this so-
lution to the intralayer Hamiltonian of Eq. (6). The
CVM approach leads to exact results if only on-site en-

ergies are used in Eq. (6), since no correlations between
squares are present in this case. (As a check, the on-site-
energies-only results have been obtained independently
by a Fermi-Dirac-like exact analysis and by the CVM
program. ) Therefore the errors in the CVM approxima-
tion affect only that part of the statistics that is due to
J2 and It'2 interactions, e.g. , the dtjference between the
on-site-energies-only and the full-fit curves in Fig. 6(b).
CVM thermodynamic functions, including order param-
eters and occupation variables, are usually very accurate
at temperatures sufficiently far from a critical tempera-
ture (say lT —T,

~

& 0.2T, ).s Since phase transitions do
not occur in the presence of large on-site energies, and
since only the difference between the curves for the two
fits is going to be affected by the CVM approximation,
the CVM errors in the full-fit curves are expected to be
very small.
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