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Charge-carrier transport in the presence of a nonequilibrium population of edge states is studied both
theoretically and experimentally. The attention is focused on the temperature dependence of the inter-

edge-state (IES) electron scattering and on nonlinear effects of the edge-state transport, both in the
integer-quantum-Hall-effect regime. First, a theoretical analysis of the IES transition is developed,
which explicitly considers the Fermi distribution function of electrons in edge states and takes account
of both a long-range impurity scattering and the acoustical-phonon scattering. The analysis explains

well the observed temperature dependence of the IES equilibration length in high-mobility

GaAs/A1„Gal „As heterostructure devices when a smooth parabolic edge potential is assumed.

Second, analysis of nonlinear transport across a potential barrier predicts an inverted population of elec-

trons in edge states, which explains asymmetric energy dissipation around the barrier recently observed

by other authors. Furthermore, the analysis predicts a nonlinear two-terminal resistance of the potential
barrier, which provides a reasonable account for the experimentally observed resistance. Third, non-

linear effects are reported in which the edge states reorganize themselves in the presence of a nonequili-

brium population of electrons. This leads to a population-dependent IES equilibration length, which ac-
counts for an observed nonlinear Hall resistance which is asymmetric about I =0. The onset of the IES
spontaneous acoustic-phonon emission is observed when the amplitude of the unequal population be-

tween relevant edge states exceeds a threshold. Finally, experimental evidence is presented to show that
the maximum amplitude to which adjacent edge states can be unequally populated is limited to one-half

the value of the Landau-level-energy spacing A'e, .

I. INTRODUCTION

When a finite two-dimensional electron gas (2D EG) is
subjected to high magnetic fields, the confining potential
for the 2D EG causes Landau level energies to increase
near the boundary of the 2D EG to form edge states. '

Until recently, the edge states were not considered to
play substantial roles in determining the electrical trans-
port properties. This is chiefly because most theoretical
studies of edge states assumed an infinitely sharp
confining potential, which forces edge-state wave func-
tions of different Landau levels to overlap sig-
nificantly. ' If the edge states are strongly mixed to es-
tablish a local equilibrium distribution of electrons at the
boundaries, the presence of edge states would not explic-
itly affect any aspects of the transport phenomena.

Recently, however, a number of transport phenomena
have been reported in which edge states play crucial
roles. A report by Hirai et al. pointed out that the diag-
onal resistance in GaAs/Al„Ga, „As heterostructure
devices with a cross-gate structure largely deviates from
the values predicted from a picture of local conductivity
in the integer-quantum-Hall-efFects (IQHE regime). The
results apparently disagreed with the independent works
of Haug et al. and Washburn et al. , who studied sam-
ples of a similar arrangement but obtained results not in-
consistent with the picture of local conductivities. ' A

correct interpretation of the results of Ref. 4 has been
provided by Komiyama et al. and van Wees et al. s in-
dependently in experiments which demonstrated that the
resistance is determined by the degree of coupling be-
tween electron reservoirs of the electrical contacts and
edge states in a 2D EG. As has been pointed out theoret-
ically by Biittiker, ' electrons can be selectively injected
into different edge states and selectively detected by
disordered contacts. Disordered contacts can be either of
a contact with a cross gate, a quantum point contact, or
more generally, a contact with a finite contact resis-
tance. " The nonlocal nature of resistance arises when
the nonequilibrium population of edge states introduced
by a disordered contact reaches another disordered con-
tact serving as a voltage probe without equilibration. In
particular, Refs. 7 and 11 have pointed out that a long
distance in excess of 100 pm is necessary to equilibrate
the population between the edge states of different Lan-
dau levels in the IQHE regime. The long-range nature of
the nonequilibrium population between edge states has
since become a subject of a number of recent experi-
ments. ' Possible deviations of the Hall resistance in
the precision measurements of IQHE have been quantita-
tively analyzed in Ref. 16. Among all, Alphenaar et al.
have studied in detail the dependence of the inter-edge-
state (IES) equilibration length on different pairs of edge
states, on magnetic field strength, and on filling factors.
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The long-range nature of the nonequilibrium popula-
tion is further enhanced when the magnetic field departs
from the regions of quantized Hall plateaus, as has been
demonstrated by van Wees et al. and subsequently
studied by others. ' Especially, McEuen et al. as-
sumed the infinite equilibration length between the
highest occupied Landau level and the other edge states,
and proposed an ambitious model of the conductor which
describes the conduction in magnetic fields outside the
quantized Hall plateaus invoking solely the edge-state
transport. The treatment of the highest occupied Landau
level in this model has been criticized by van Son, de
Vries, and Klapwijk and Nii et al. , ' ' and the
McEuen model was modified to successfully explain
anomalous Shubnikov —de Haas oscillations and Hall-step
structures in high-mobility Hall-bar devices.

When extremely long IES equilibration length was
pointed out by Refs. 7 and 11, the concept of an ex-
tremely long IES equilibration length was hardly recon-
ciled with the earlier belief of researchers which was
strongly influenced by the conventional assumption of the
sharp edge potential. To explain the extremely weak IES
scattering, theories now propose to assume a slowly vary-
ing confining potential. This latter assumption appears
to have been widely accepted, at least, in the treatment of
2D EG in high-mobility devices. It may be almost
self-evident that the rate of IES scattering can be arbi-
trarily low if the relevant edge-state wave functions are
sufficiently separated from one another in a very weak
confining potential. In principle, however, there may be
no a priori reason to rule out other possibilities of ex-
plaining the weak IES scattering. To make certain that
this assumption is valid, it is therefore crucial to ask
whether the smooth potential is consistent with other in-
dependent experimental observations. For instance, the
present authors have reported that the experimentally ob-
served temperature dependence of the IES equilibration
length is consistent with a smooth potential. ' The
theoretical analysis of IES electron transition presented
in Ref. 19 explicitly considered the Fermi distribution
function of electrons in edge states. The analysis includ-
ed a short-range impurity scattering and the acoustical-
phonon scattering while taking the strength of an
electron-phonon interaction as an adjustable parameter. '

Alphenaar et al. , on the other hand, reported a different
temperature dependence which does not fit existing
theories based on a smooth potential.

The first half of the present work treats this problem.
In Sec. II, we improve the analysis presented in Ref. 19
by including a Gaussian-type long-range impurity
scattering and by starting from the known deformation
potential for the acoustical-phonon scattering. We de-
scribe the experimental arrangement in Sec. III ~ We re-
port, in Sec. IV, the temperature dependence of the IES
equilibration length in a regime of IQHE studied by using
high-mobility GaAs/Al Ga& As heterostructure de-
vices with a cross gate. From a comparison between the
theory and experiment in Sec. IV, we find that a slowly
varying confining potential does explain the observed T
dependence. Our analysis definitely shows that thermal
broadening of the electron distribution function is of de-

cisive ™portance in accounting for the T dependence,
which has not been explicitly considered in existing
theories.

Nonlinear transport effects are an important aspect in-
herent in the edge-state transport, ' ' ' for which little
has been clarified. To achieve a deeper understanding of
the edge-state transport in general, the last half of this
paper is devoted to a comprehensive description of non-
linear effects. In the theoretical part, the Landauer-
Buttiker approach will be, in several aspects, extended to
treat nonlinear transport. We will find that nonlinear
effects manifest themselves through a variety of different
mechanisms. In Sec. V A, we analyze nonlinear transport
across a potential barrier and predict an inverted popula-
tion of electrons to occur in an edge state when the elec-
trochemical potential across a barrier differs by more
than the Landau-level-energy spacing Ace, . The analysis
provides a reasonable account of an experimentally ob-
served two-terminal resistance. Quantitative treatments
of energy transport described in Sec. VB show that the
predicted population inversion explains asymmetric ener-

gy dissipation around the barrier, recently observed by
Klass et al. In Sec. V C, we will show that edge states
reorganize themselves when they are unequally popu-
lated, and this leads to a nonlinear four-terminal resis-
tance which is asymmetric about I=O. Another impor-
tant feature is the onset of spontaneous emission of
acoustical phonons, which is observed when the
difference in electrochemical potential between two edge
states reaches the phonon energy needed to cause the IES
transition. Finally, in Sec. V D, experimental evidence is
presented to show that the amplitude of nonequilibrium
population between adjacent edge states cannot exceed
one-half the value of A~, .

II. ANALYSIS
OF INTER-EDGE-STATE RELAXATION

A. General consideration

Throughout this work we deal with a regime of IQHE,
where backscattering of electrons from one boundary of a
sample to another boundary is neglected. Below we will
relate IES electron scattering to the relaxation length
over which the population of different edge states is
equilibrated. Consider two edge channels of i =0 and 1

for which electrochemical chemical potentials at a loca-
tion of y are slightly different' viz. , po=z~+Ap/2 and

p, =e' —bp/2, as shown in Fig. 1(a), where eF is the
Fermi level. A net electron transfer occurs from the i =0
edge channel to the i =1 edge channel due to IES scatter-
ing. Let the net electron Aux per unit length be Bn/0t.
Since the total current carried by the two edge channels
must be conserved despite the IES electron transfer, the
difference of electrochemical potential, hp, decreases
with they coordinate (along the edge channel) as

d(b p)/dy = —h Bn/Bt,

where we have noted that the current carried by the ith
edge channel changes by (2e/h)dp, when p, varies by
d p, , if the spin states are degenerated. ' ' ' When the
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A=(O, Bx,0) is used and to, =eB/m 'c is the cyclotron
angular frequency with m'=0. 067mo (mo is the free-
electron mass). The eigenstates

~i, k ) =g(z )P, k(x. —X; ) exp(iky )

are specified by the Landau level index i and the wave
number k along the y direction. The wave number k is
related to the center coordinate of the wave function X,
through

X, = —kla2, (4)

X

FIG. 1. (a) Change of the electrochemical potentials pp and

p& of two edge states due to IES electron transfer Bn/Bt. (b)

Spatial dispersion of i =0 and 1 edge states, and the IES separa-

tions, ~p&(e) and LXp&(e, ), for elastic impurity scattering and

for inelastic acoustical-phonon scattering. Two different pro-

cesses, (a) and (b), are possible for the inelastic scattering, but

only (a) is important.

I =rioUo=roi" i

where v, are the group velocities of the ith edge states at
the Fermi level. We will consider acoustical-phonon
scattering and impurity scattering for the IES transition.
We apply Mathiessen's rule assuming that each scattering
event is mutually independent:

where l„and l; refer to the lengths determined by
acoustical-phonon and impurity scattering processes, re-
spectively.

Let us consider the one-electron Hamiltonian

H=p„/2m'+m'co, (x —X„) /2+ U(x) (2)

to describe a 2D EG on the xy plane, which is confined
by the electrostatic potential U(x ) under a magnetic field
B applied along the z direction. Here, the Landau gauge

amplitude of nonequilibrium population hp=po —
p&, is

sufficiently small, the electron ffux dn /dt is generally pro-
portional to b,p. Hence, the equation above shows that
Ap decreases exponentially,

bp(y }=Ap(0)exp( —y/I ),
with increasing the y coordinate, where the equilibration
length,

1 = [b,p/(Bn /Bt ) ]Ih,
is a constant independent of hp. The IES relaxation
times for the i =0 and 1 edge channels are defined by the
relations

where ltt=(hc/eB)'~ is the magnetic length. In this

work, we will consider a slowly varying potential such
that dU/dx « fuu, /l~. It follows that the center coordi-
nate X; given above well approximates the center of grav-

ity of the wave function; viz. , X, = (i,k ~x ~i, k ). In the
process of IES scattering between ~i, k, ) and

~i +1,k, +, ), the crystal momentum has to be conserved,
so that the y component of the momentum

fiq =Pi(k, +,—k;}= fi~;;—, /le
must be transferred from a scatterer, where hX, , +,
=X, —X, +, is the spatial distance between the initial and
final edge states.

It is an important feature of the IES scattering in a
slowly varying edge potential that the necessary momen-
turn transfer fiq is relatively large because the distance

~, ;+& is much larger than lz. It follows that scattering

by a long-range potential is significantly sup-
pressed. ' ' For a scatterer with a given force range,
therefore, the transition probability is a decreasing func-
tion of ~, , +,. This, in turn, implies that the probability
of a long-range scattering increases with the energy, c., of
the relevant electron because ~, , +, is generally a de-

creasing function of c.. In addition, the overlapping in-

tegral between the edge-state wave functions exponential-

ly decreases with increasing ~, , +&. The probability of
the IES transition is, again, strongly suppressed as

~;;+& increases due to this additional mechanism, as
stressed by Martin and Feng. Hence, at elevated tern-

peratures, electrons thermally excited in a higher c range
of the edge states primarily contribute to the IES transi-
tion. To analyze the temperature dependence, it is thus
essential to take explicitly into account the distribution
function of electrons. Generally, the energy-dependent
rate of the IES transition described above causes a none-
quilibrium electron distribution within respective edge
states. We assume, however, that the intra-edge-state
scattering is efficient enough to establish the equilibrium
Fermi distribution within the respective edge states;
namely, we assume that

f,.(e)=1/[1+ exp(e —p;)/kT]

for each edge channel.
To be specific, we will study three different types of

confining potentials. The first one, which will be de-
scribed in detail in this paper, is one of parabolic type, of
the form
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—,'m*coox for x &0
U(x)= '

0 for x (0. (6)

~p)(s)=Xp(E) —X, (E) . (9)

We will use the notation r(e) ~ &p( )s/l s and
rp=&Xp~(eF)/ls later. In the condition ~p&&N the
wave functions p, k(x —X; ) in Eq. (3) are harmonic-
oscillator functions centered at x =(~, /~ )2X,. =X, ,
which are of the same character as those of the ideal bulk
Landau levels.

The second type of confinement studied is a constant-
slope potential, U(x)=Cx (x )0) and U(x)=0 (x &0).
This yields approximate eigenenergies of
e;(X; ) =(i+—,

' )fico, +CX„,for which IES separation is en-

ergy independent. With this type of dispersion, and ac-
cording to an analysis similar to that described below,
l

p
is temperature independent and l„ is only weakly

temperature dependent due to the T dependence of the
occupation number of phonons. The experimentally ob-
served large temperature dependence of 1 (Fig. 4) cannot
be explained with any choice of C: namely, a calculation
shows that an unrealistically large deformation potential
(by more than one order of magnitude larger than the
known value for GaAs) has to be assumed to explain the
data. This definitely indicates that the actual dispersion
of edge states is of such a character that the spacing ~0,
decreases with e, as in the case of Eq. (7). Thirdly, to ex-
amine a case where EXo, decreases with E. more rapidly
than in the case of parabolic confinement, we have stud-
ied a hyperbolic-type potential described by
U(x ) = —C/x (x &0) with approximate eigenenergies of
e;(X; ) = (i +—,

' )A'co, —C /X;. Calculations based on an

analysis similar to that described below showed
significant temperature dependence of I, but the overall fit
of the theoretical curve of l vs T to the experimental one
was not as excellent as that obtained from the parabolic-
type dispersion. So, the energy dispersion as given by Eq.
(7) is the most realistic one among the three types stud-
ied, and we will describe only the case of the parabolic-
type dispersion below.

B. Acoustical-phonon scattering

The 20 EG in GaAs/Al„Ga, As heterostructures
interacts with acoustical phonons through a short-range

In the limit of a smooth confinement, coo((cu„ the
eigenenergies with a center coordinate of X; & 0 are near-
ly equal to those in the complete parabolic potential,
which are given by

e;( X;)=(i +,')fico+—(co,/co) (m*/2)copX;

with co =co, +~o. This is, in fact, a good approximation
in our case, where cop/cp, =0.178 or co=1.016', will be
derived from the analysis of our experimental results.
The parameter coo is related to the IES spacing at
c.= c.z =2%co through

&Xp, (ep)=(v'3 —I)(co/a), )
~ (co, /a)p)ls,

where

=(%Ed /4pVc, ls )s„(n„+,' ,' )5k k—+—q

for Iq I
&(n/2)' (I/1~) and Iq, l

&(3m/16)(1/a) with
a =35 A, and

Mfp I
=0 otherwise, (10)

where + signs refer to
respectively, Ed =9.3
electrons in GaAs,
GaAs, c, =5.2X 10
locity in GaAs, ' and
Here,

emission and absorption processes,
eV is the deformation potential of
p=5. 3 g/cm is the density of

cm/s is the longitudinal sound ve-

V Lz &y Lz is the crystal volume.

s„(E)=r„exp[ (r„/2)]—
with r„(s)=~p', /ls a factor of the overlapping in-

tegral of the edge-state wave functions, which agrees with
the Martin-Feng expression and represents the suppres-
sion of the scattering probability. We explicitly treat the
energy-dependent IES separation represented by

bXp; (E)=Xp(e) —X, (E, +E„) (12)

as shown in Fig. 1(b). Here, the phonon energy c.„=Pic,q
is approximated by Rc,q~

=A'c, ~p', (E)/ls since

q »q, q, as noted in the Appendix. The quantities c.„
and AX&& are determined by the simultaneous equations

sp(Xp)=e, E,(X, )=a+ E„,
and

E„(s)=Ac, ~p, /le,

(13)

where s„(X„)are given by Eq. (7). In Eq. (10), n„ is the
phonon occupation number

n„=[exp(e„/kT) —1]

deformation potential as well as a long-range piezoelec-
tric potential. The parameters determining strengths of
these interactions have been obtained for GaAs from the
temperature dependence of the electron mobility as
well as from independent experiments unrelated to
charge transport. In our analysis, we neglect the
piezoelectric interaction because of its long-range nature,
and will only consider the deformation potential scatter-
ing, to which bulk longitudinal phonons in GaAs are
relevant.

Existing theories of the IES acoustical-phonon scatter-
ing do not provide convenient expressions for studying
the c. dependence of the scattering rate in given edge
states. ' The probability of an inter-Landau-level tran-
sition due to an unscreened deformation potential scatter-
ing has been studied by Toombs et al. for ideal bulk Lan-
dau states. Since the edge-state wave functions are of
the identical character to those of the bulk Landau levels,
we can start from the results of Ref. 45. As shown in the
Appendix, the squared matrix elements for the IES tran-
sition 0, kp )~ 1,k, ) due to emission or absorption of a
phonon of wave vector q=(q„,q, q, ) are approximated
as

IM)p '=I& 1,kIH..lo, k, &l'
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which is an increasing function of the electron energy c.

through c„(c)=A'c, hXO; /ls.
Let us consider those scattering processes in which the

0~1 transitions arise from phonon absorption and the
1~0 transitions arise from phonon emission, as shown
by the arrow (a ) in Fig. 1(b). Here,

hX(~), (c)=Xo(c) X—, (a+ c„)
and c&=c.+c„. The electron flux from the i=0 edge
channel to the i =1 edge channel due to phonon absorp-
tion is given by

Bn,o/Bt = g f dc(2m. /R)lM), l

fico/2

Xfo(c)[1—f, (c+c„)]

f(c)=1/[1+ exp(c —a~)/kT]

and the —and + signs refer to the i =0 and 1 edge
states, respectively. Noting also the relation

n„(c)=[1—f(c)]f(c+c„)/[f(c)—f(c+c„)],
we find

=(3&2mEd )/(64pc, alz~ )(hp/kT)

X 8 1 6+6 Do 8 D& 6+6

Xs„(c)n„(c)dc .

Equation (1) then gives the inverse equilibration length

l,,'(T}=l,,o(kT) ' JF„(a)C„(c)S„(c)n„(a)dc,
XDo(a }D,(c+a„)L

where D;(c}=(1/~)l~c;/~k I
'=(I/l,'~)l~c;/»;l

are the densities of states when spin states are degenerat-
ed. Using Eq. (10) and noting that the number of avail-
able phonon modes with lq„l ~ (m/2)'~ (1/lz) and

lq, l

& (3n./16)(1/a ) is

4[L,L, /(2n. )2](n./2)'~ (1/ls )(3m /16)(1/a ),

where

F„(c)=f(c)[1—f(c+a„)],
C„(c)=[Do(c}D)(a+a„)]/[Do(cp)D|(cp)],

S„(c}=s„(c)/s„(aF ),
and

(16)

we rewrite Bn &0/Bt to

Bn,o/Bt =(3v 2mEd )/(64p. c,altt )

X 0 E 1
& 8+8~~

%to/2

XDo(a }D,(a+a„)s„(a)n„(c)dc .

l,,o = [(3&2mhEd ) /(64pc, alz ) ]

X
s+& ( cF )Do( cp )D ] ( cp )

The IES equilibration length l„(T) can thus be evaluated
by using only one parameter mo.

XDO(a)s„(c)[n„(c)+1]dc. (15)

Another type of process is shown by the arrow (b ) in Fig.
l(b), in which at=a —c„,and the 0~1 and 1 —+0 transi-
tions arise from phonon emission and phonon absorption,
respectively. The relevant spatial separations LY0,
=Xo(c)—X,(c—c„) in these processes, however, are
substantially larger than those in the former processes
(a). Consequently, the transition is suppressed much
more significantly and the contribution from these
scattering processes is actually negligible.

The net electron flux, Bn/Bt=Bn, o/Bt —Bno, /Bt, is
given by Eqs. (14) and (15). When we consider the case of
small hp, where

lhpl «kT,

The electron flux due to the 1~0 transitions via phonon
emission is, after a similar procedure, given by

Bno, /Bt =(3~2nEd )/(64pc, altt )

X ] E+c~~ 1 0 E D] 6+6~~
Aco/2

C. Impurity scattering

The mobility of a 2D EG in high-mobility
modulation-doped GaAs/Al„Ga, „As heterostructures
is known to be determined by remote impurity scattering
due to positively charged donors in the Al„Ga, „As lay-
er separated from the 2D EG by a spacer layer, and by
background impurity scattering due to residual impuri-
ties in the spacer layer and in the pure GaAs layer.
The scattering potentials are supposed to be of a long-
force range in both cases. In general, additional random
potentials may be introduced at the boundaries of a 2D
EG during fabrication procedure. The additional scatter-
ing potentials may also have a long-force range when the
2D EG channel is patterned by wet etching because the
2D EG is strongly depleted from the etched side face.

For the IES elastic scattering, those scattering poten-
tials with relatively small force ranges may be selectively
important. However we are unable to identify which ori-
gin among the above candidates is most effective. Hence,
we simply assume a Gaussian form for the random poten-
tial,

f;(c) are approximated by V,.(r) ~ exp —[(r—r; )/A ] (17)

f;(c)=f(c)+-f(c)[1—f(c)](hp/2kT),
where

by taking the force range A as an adjustable parameter.
Martin and Feng consider only the short-range potential
(A =0). The long-range potential is considered by Ot-
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suki and Ono and Badalian, Levinson, and Maslov,
but the derived expressions are not convenient for explic-
itly including the electron Fermi distribution function
into the calculation. In our model we note that the prob-
ability for the long-range impurity scattering is
suppressed due to the necessary momentum transfer
given by Eq. (5). The factor of the suppression is given
b 39

(ski,

100 ~~100 ~ 50 == 0== 100
ym Jism p m pm JJpl

s„(e)=exp[ (rr—„) /4], (18)
(a)

where r(E)=b,X&, (s)/ls is the IES separation given by
Eq. (9) and r„=A /l~ is the normalized force range. In
addition, the probability is suppressed by the factor

s(e ) = r exp[ —(r /2) ] (19)

due to the overlapping integral of the edge-state wave
functions. We thus expect that the inverse equilibration
length due to the elastic impurity scattering can be writ-
ten in the form

l; '(T)=1; '(0)(kT) 'f F(e)C(e)S(E)S„(E)dE,
'Aco/2

(b)

C

t )J.
A

I
I
I
I

OB

QR

'lf.'Pi'

lj tl

M(y

il fi

&R

(20)

according to a consideration similar to the case of pho-
non scattering, where 3; (0) is the equilibration length at
zero temperature,

F(e)=f(s)[1—f(e)],
C(E)=[Do(e)D](e)]/[Do(eF)D](EF)],

S(E)=s(e)/s(eF),

and

S„(E)=s„(E)/s„(sF).

For evaluating Eq. (20), we take l; (0), A, and coo as pa-
rameters.

III. EXPERIMENTAL CONFIGURATION

The experiments are made on modulation-doped
Alo 3Gao 7As/GaAs heterostructure Hall-bar devices
with a 1-pm-long aluminum front cross gate as shown in
Fig. 2(a), which are similar to those used in previous
work. ' The 2D EG density is n, =3.4X10" cm with
a 4.2-K mobility of about l. 3 X 10 cm /V s. The hetero-
structure consists of a 1-pm-thick undoped GaAs layer, a

0
200-A-thick undoped A1Q3GaQ7As spacer layer, a 900-
0
A-thick Si-doped AlQ 3GaQ 7As layer, and a top cap layer
of 100-A-thick Si-doped GaAs. The 2D EG is photolitho-
graphically patterned by a deep chemical etching of the
mesa structure (2000 A deep from the top surface of the
GaAs cap layer), into a 30-pm-wide standard Hall bridge.
The distance between the gated 2D EG region and the
adjacent side voltage probes along the 2D EG boundary
is 55 pm. The electrical contacts are prepared with a
conventional alloying technique but display relatively
large contact resistances (0.6-8 kQ at 8 =3.7 T), '

probably because the alloying temperature was not op-
timum. These disordered contacts enable us to study

FIG. 2. (a) Schematic of the Hall-bar sample with a 1-pm-
long cross gate. (b) Transmission and reAection of electrons at
the potential barrier underneath the gate and at a disordered
voltage probe.

I=(2e/h )TG(pL pR ), — (21)

where TG = TQg+ T~G is the total transmission probabili-

ty with T.G=T.QG+T &t- ~ The edge channels at the
upper right corner of the gated 2D EG region are un-

equally occupied to have the chemical potentials of
p'G T /pl. +( 1 T'Ig )pg'

nonequilibrium population of edge states quantitatively.
Throughout the present studies, the current is passed be-
tween contacts 1 and 2 in magnetic fields pointing out of
the page of Fig. 2, unless otherwise mentioned.

The complete analysis of a four-terminal resistance
with arbitrary pairs of voltage probes from contact 3 to
contact 8 in the present configuration is described in Ref.
12 by using the Landauer-Buttiker approach. ' Here we
briefly describe the essence of the present measurements
to interpret the temperature dependence shown in Sec.
IV. We consider a two-channel case where opposite spin
states are degenerated in each channel. The electron
current I is passed through the sample from the left-hand
side to the right-hand side in Fig. 2(b). Suppose that the
edge channels incident on the gated region from the left-
and from the right-hand sides are, respectively, in equilib-
rium states characterized by the electrochemical poten-
tials pL and pz. Here, we will be concerned with the
linear transport regime, where pL

—pz is suSciently
small so that dependence on the electron energy of the
transmission probabilities introduced below is negligible.
Letting T;~G be the probabilities for electrons incident on
the potential barrier beneath the gate along the jth edge
channel from the left to be transmitted in the ith edge
channel to the right, the total current passed through the
barrier is given by
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p,.G =(1+y)(h /4e )I+pz, (22)

where k signs are for the i =0 and 1 edge channels, and

y ( TOG T1G )/TG (23}

characterizes the selective scattering of different edge
channels by the potential barrier. Parameter y varies in
the range 0 y ~1 according to a gate bias condition.
Note that the unequal population

QJ

2 ———
i.65K

: 3./, }'.

3,6

R„

= 3.7T
2nA

kpG =ppG p]G =y(h /2e )I (24)

reverses its sign when the polarity of current I is re-
versed. Note also that a similar unequal population is in-
troduced at the lower left corner of the gated 2D EG re-
gion. The sign of ApG at this diagonally opposite corner
is opposite for a given polarity of current.

The degree of unequal occupation of edge states de-
creases as the edge current travels along a sample bound-
ary due to IES scattering. Suppose ApG is reduced to
bpv=pbpG (O~p~ 1) at the entrance of the voltage
probe. When hpG is sufficiently small, P can be written
as p= exp( L/1), b—y using an equilibration length / as
shown in the last section, where L =55 pm is the
sample-boundary length between the gated region and the
voltage probe. The electrochemical potentials of the ith
edge channel at the voltage probe are

p;v=(1+yP)(h /4e )I+pa . (25}

The electrochemical potential p, of the electron reservoir
in the voltage probe is given by p, =(Tpvppv
+Tivpiv)/Tv «

p, =(1+yPa)(h/4e)I+pz . (26)

Here T;z and Tv = Toy+ T~ v are the probabilities
relevant to the voltage probe contact, and

a=(Tpv Tiv)/Tv (27)

characterizes the selective detection of edge channels by
the voltage probe. Parameter a can take a contact-
specific value in the range ~a~ ~1. The Hall voltage
VH =(p, —pa ) /e deviates from the quantized value
(h/4e )Iby

AVH=yPa(h/4e )I . (28)

The Hall resistance thus deviates from the quantized
value by b RH =yPa( h /4e ).

IV. TEMPERATURE DEPENDENCE

A. Experimental results and comparison with theory

The solid lines in Fig. 3 display the dependence of the
Hall resistance R3 4 V3 4/I = (p, —pz )l(eI ) on the
gate bias voltage VG at different temperatures T. ' The
voltage difference between contacts 3 and 4 is studied
with a lock-in amplifier while an ac current (10 Hz } of a
2-nA amplitude is transmitted. The dashed line shows
the four-terminal resistance R3 6 at T= 1.65 K, which is,
physically, the two-terminal gate resistance

J
—.6 —.4

I

—.2

R3 6= V3 6/I =(pL —pa )l(eI )

=(1/TG)(h/2e ) .

The magnetic field strength (8=3.7 T) corresponds to
the center of the Hall plateau of the Landau-level filling
factor v of 4 in the ungated region of the 2D EG. With
decreasing the gate bias voltage VG with respect to the
2D EG, a potential barrier is formed underneath the
gate, and y changes from 0 (TOG=T, G=1) to 1

( TOG
= 1, T,G =0). As a consequence, the Hall resistance

deviates from the quantized value, h /4e, to yield a shift-
ed plateau with decreasing VG. The current I=2n A is so
small that hpG=(h/2e)I=0. 026 meV is far smaller
than kT even at the lowest temperature studied. Hence,
noting Eq. (28) with P= exp( L/1 ), we can—express the
deviation of the Hall resistance at the shifted plateau as
b,R~=a[ exp( L ll)](h/4e —) At the. lowest ternpera-
ture, the deviation at the plateau amounts to 0.83 h /4e .
This is direct proof that the equilibration length l is
larger than 295 pm at T=1.65 K because a cannot be
larger than unity. (Also, 0.83 & a is derived. }

At a fixed gate bias voltage of VG = —0.35 V, ERH de-
creases with increasing temperature up to 12.6 K. This
implies that either the equilibration length of edge states,
l, or the selectivity of the voltage probe, a, decreases with
increasing temperature. To distinguish theses two, we
have carried out similar measurements using other volt-
age probes including other devices. Although the abso-
lute amplitude of hRH largely depended on particular
voltage probes as reported in Ref. 15, the temperature
dependence of hRH was found to be independent of the
probes. Also, we have confirmed that the contact resis-
tance, ' R, =[(2/Tv) —1]h/4e, of the voltage probes
does not change appreciably with T in the temperature
range studied. These two facts indicate that a of each
voltage probe is T independent. Hence, the inverse
equilibration length can be deduced from the observed

vG ( volt )

FIG. 3. The Ha11 resistance R3 4 V3 4/I vs gate bias voltage
at difFerent temperatures, together with R3 6= V3 6/I at T=1.6
K.
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FIG. 4. The inverse equilibration length between the i =0
and 1 edge states. The solid line 1/I= 1/I„+1/I; „and the
dotted line 1/I„ indicate theoretical values [Eqs. (16) and (20)]
with coo=1.69X10' /s, 3 =157 A (rz =1.21), and I; &(0)=500
pm. The dash-dotted line in the inset shows theoretical values
of 1/I; p.

b RH( T) at VG = —0.35 V by using the relation

1/I =(1/L ) I
—ln[bRH/(h /4e )]+ lna), (29)

which is derived from the expression of ERH. Actually,
parameter y of the gate slightly decreases from y=l
with increasing T, supposedly because T,G becomes finite
at elevated temperatures. Although not described here,
we have determined y(T) from a T dependence of the
two-terminal resistance R36 and corrected the data to
derive I/1. The result is plotted as a function of T with
solid dots in Fig. 4. Error bars of the data points reQect
the arbitrariness in a; viz. , 0.83 ~ a ~ 1. The equilibration
length, which is larger than about 300 pm at the lowest
temperature, is reduced to about 20 pm at 12.6 K.

The data of 1/I can be compared to theoretical values
1/I =1/I; +1/l„calculated with Eqs. (16) and (20).
As shown by a solid line in Fig. 4, the calculation well
reproduces the experimental data when parameter values
1; z(0)=500 pm, 2 =157 A, and coo=1.69X 10' /s are
used. The dotted line indicates the fractional contribu-
tion from the acoustical-phonon scattering and shows
that the major contribution arises from impurity scatter-
ing. Under the restriction of 1; „(0))300 pm, arbitrari-
ness in the choice of parameter values is practically not
large. The small ratio of coo to ~, (coo/tu, =0.174) vali-
dates the approximations we have made in the theoretical
analysis of Sec. II. The energy separation
Are=Pi'(r/co, +coo=1.0164'to, between the two Landau
levels at the edge, given in Eq. (7), is very close to trice, .
The IES separation is derived to be ro =4.2 through Eq.
(8). The group velocities of electrons in the i =0 and 1

edge channels, u,
=A' 'itis, k/tik~, , are uo=3. 7X10

cm/s and u i =2. 1 X 10 cm/s. The inverse of the IES re-
laxation time, 1/wui=u, /I, is indicated by the scale on
the right-hand side of Fig. 4. Important parameters
characterizing the edge states are summarized in Table I.

The observed long IES equilibration length at low tem-
peratures is completely consistent with the here deter-
mined large separation ro between edge states. For exam-

ple, the suppression factors of the scattering are
s„(sF)=1.0X10, s(EF)=2.6X10, and

s„(sF) = 1.6 X 10 . Considering the low-magnetic-field
mean free path t of electrons (estimated to be 10 pm) to-
gether with these suppression factors, the observed size of
l is not surprisingly large. It is difficult, however, to re-
late l to l because (a) the screening effect of impurity po-
tentials may largely differ in the presence of a quantizing
magnetic field and (b) additional unknown random poten-
tials may be present at the boundaries of the 2D EG.

Figures 5 and 6 elucidate the origin of the T depen-
dence in l; „and l„. Figure 5 displays characteristic
quantities relevant to impurity scattering as a function of
electron energy c.. The transition probability due to im-
purities increases rapidly with increasing electron energy
c, because both S(E) and S„(s)drastically increase with s
due to the decrease of IES separation r(e) as shown in

Fig. 5(a). On the other hand, the reduction with s in the
combined density of states, C(c, ), is relatively slow.
Hence, the broadening of the Fermi distribution function
F(E) with increasing T as shown in Fig. 5(b) causes a

TABLE I. Characteristic parameters of the edge states and of the IES scattering, determined by the

analysis. Here, coo, I; ~(0), and r~ = A /I& are given, respectively, by Eqs. (6), (20), and (17). The nor-

malized IES separation r o~ (Die) Fl~/, the group velocities of edge states u;=A' '~Bz;„/Bki, , and

the phonon energy c,„(c.F ) relevant to an IES transition given by Eq. (13) are derived from mo. Parame-

ters used for the analysis are the effective mass of electrons m*=0.067mo, the deformation potential

Ed =9.3 eV (Ref. 44), the density p=5. 3 g/cm' of GaAs (Ref. 43), and the longitudinal sound velocity

c, =5.2X 10 cm/s of GaAs (Ref. 43). The magnetic length is I& =&bc/eB =130 A and the cyclotron

angular frequency is co, =9.7 X 10' /s in the magnetic field of B=3.7 T.

coo (s ')

1.69 X 10"
I]; (0)(LMm)

1.21

rp

4.2

vo (cm/s)

3.7X 10

v& (cm/s)

2. 1X10

c.„(cF) (meV)

0.95
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FIG. 5. Dependence on electron energy of characteristic
quantities in the elastic impurity scattering.

significant increase with T of the integrand FCSS„ in Eq.
(20) as shown in Fig. 5(c). Note that the T dependence of
l; z does not vanish at T=O. When T is sufficiently low,
the only relevant thing is a small energy interval around
c=cz in which SS„can be approximated by a linear
term in c; viz. ,

This leads to a linear T dependence of I/1;
&

in the limit
of low T as shown in the inset of Fig. 4. Figure 6 eluci-
dates similar data for the acoustical-phonon scattering.
The overlapping integral S„(s) increases rapidly with s
due to the decrease in r„(E}as shown in Fig. 6(a). In ad-
dition, the phonon occupation number, n„(s), increases
with E as shown in Fig. 6(b). The occupation number n„
increases with increasing T. These, together with the
broadening of the Fermi distribution function [Fig. 6(c)]
with increasing T, lead to the growth of the integrand
F C„S„n„in Eq. (16), as shown in Fig. 6(d). In con-
trast to the impurity scattering, the contribution from
phonon scattering vanishes in the limit of low T because
n „vanishes.

We should note that the short-range impurity potential
(A =0) is not capable of explaining the observed T
dependence. On the assumption of A =0, the tempera-
ture dependence of l; ~

is less significant because S~ is
fixed to unity. Although a good fit between the experi-
ment and the calculation was obtained with A =0 by as-
suming l„o=3680 pm, ' the assumed value of l„o corre-
sponds to an electron-acoustical-phonon interaction
(Ed=45 eV} much stronger than the known interaction
(Ed=9.3 eV). The force range of A —160 A derived in
the present analysis may be reasonable if remote impuri-
ties separated from the 2D EG by the spacer layer thick-
ness (200 A) dominate the elastic scattering.

B. Discussion

(c)

u .40

.2-

u 10
LL

2

0

P 3O-

20

10—

0 I

—1.0 —.5

.-2K

12K

p . 5

(f. —E.F) /&~
1.0 1.5

Berggren, Roos, and van Houten derived
coo=2. 3X10' /s by analyzing Shubunikov —de Haas os-
cillations in a narrow GaAs/Al„Gat „As mesa structure
under the assumption of a parabolic confining potential
—,'m*coo x . The mesa structure is similar to ours with a
spacer layer thickness of 180 A. To compare with our re-
sult, we should note that the effective width of the 2D EG
channel in the Berggren, Roos, and van Houten work
( W-1400 A) is far smaller than the width of our sample
( W=30 pm). In such a narrow sample, the influence of a
confining potential on one boundary of the sample will
reach the other boundary to have an effect to strengthen
the effective confinement. In the case when a confining
potential at a boundary of a wide sample is described by a
half-parabola with coo, the confining potential in a narrow
sample will be enhanced to coo= V'2coo because, most sim-

ply considered, the potential is the superposition of
respective potentials originating at the opposite boun-
daries:

U(x ) =—,'m *coo[(x—Xb ) +(x +Xb )2]

'm*(&2' ) (x +X —)

FIG. 6. Energy dependence of characteristic quantities in the
inelastic acoustical-phonon scattering, where e is the electron
energy in the i =0 edge channel.

where the bottoms of the respective potentials x =+Xb
are located outside the 2D EG channel. Thus, our value
coo=1.69X10' /s for a wide sample very closely corre-
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sponds to coo=2. 3 X 10 /s in narrow samples.
Alphenaar et al. reported that the inverse equilibra-

tion length 1/I linearly increases with temperature T in
the low-T range of 0.5&T&4.2 K. Our theoretical
model does not predict the T linear dependence except in
a still lower T range below 0.5 K. It is important to note
that the experiments of Alphenaar et al. apply I=50 nA
for the amplitude of current, which corresponds to
ApG =0.7 meV that is much larger than kT=0.04 meV
at T=0.5 K. The "effective equilibration length" ob-
served in such a condition (b,p))kT) is not the equili-
bration length considered in Sec. II. %hen 5p «kT, the
energy interval primarily relevant to the IES electron
transition is about kT around sF as shown in Fig. 7(a)
and the T-dependent energy interval causes the T depen-
dence of I as discussed in Sec. II and in the above. If
Ap &)kT, however, the relevant energy interval is nearly
fixed to +bp/2 around eF, being substantially indepen-
dent of T as schematically shown in Fig. 7(b). Since the
phonon scattering is not significant in the low-T range, it
follows that our model generally predicts that the
effective I should be substantially independent of T when
Ap»kT. This apparently contradicts the result of the
experiments of Alphenaar et al. , and leads us to suggest
the following. First, the evaluation of s„(s) and s(E)
given by Eqs. (18) and (19) with the parameter values
given in Table I shows that the rate of IES impurity
scattering at s =EF +b p/2 is by several orders of magni-
tude larger than the one at s=sF —hp/2 when bp=0. 7
meV. Thus, IES equilibration occurs by a factor of
several orders faster in the higher-c range. This c.-

dependant IES transition does not affect our prediction
above if, as we have postulated in Sec. II, the intra-edge-
state scattering is so efficient as to establish local equilib-
rium in respective edge states. This assumption, howev-
er, may not be self-evident at low T. Recent experiments
on Coulomb-blockade oscillations ' strongly suggest
that the phase-coherence length, l&, of electrons in edge
channels is extremely long in a regime of IQHE at low
T. %'e speculate that inelastic electron-electron scatter-
ing is the major origin for both I& and the intra-edge-state
equilibration length l;„„, at low T, and expect that
I/1;„„,reduces to zero at T=O. Hence, it is possible that

l;„„,&l at low T. In the condition of Ap))kT and

I;„„,) l, a lower-energy range c.-cF—Ap/2 of edge
states will be left unequilibrated for a longer distance,

roughly given by I;„„,. Hence, we suggest that the
"effective equilibration length" I,& experimentally ob-
served in such a condition is substantially determined by
the intra ed-ge st-ate equilibration (l,s-l;„„,). We thus
suggest to interpret the observation of Alphenaar et al.
as a consequence of the relation 1/I;„„,~ T.

Let us examine another assumption of our model. Our
model postulated that the edge potential U(x) remains
unaltered when T increases. This is an approximation
not rigorously guaranteed. Electrons and holes are
thermally excited above and below cF as T increases.
These thermally excited electrons and holes polarize each
edge state as shown in Fig. 8 and modify the edge poten-
tial U(x ) as well as the edge states E, k(x ), as will be dis-
cussed in detail for a somewhat different situation in Sec.
V C. Such a rearrangement of edge states is more
significant for the i =1 edge state than for the i =0 edge
state because the density of states is larger in the i =1
edge state. Hence, the IES separation, b,Xo, (s), for
c. & c~ slightly increases with increasing T as schematical-
ly shown on the top of Fig. 8. This effect is expected to
weaken the T dependence of 1/1. Quantitatively, howev-
er, our preliminary estimation can show that this effect
does not significantly affect the presently derived results
in the T range studied.

The spin-up and spin-down bands with a same
Landau-level index are strongly mixed at the edge states
in a 2D EG of GaAs/As Ga& As heterostructures, as
has been shown experimentally' ' and assumed in this
work. The strong spin-flip IES scattering (if++i 1) sug-
gests an important role of the spin-orbit interaction. '

van Son, Wang, and Klapuijk have recently discovered
strikingly different features in Si-MOSFET s (metal-
oxide-semiconductor field-effect transistor), where the
equilibration length between the edge states of different
Landau indexes with a same spin polarization, I, & ~, +, ~&,

is relatively small while that for the opposite spin states
with a same Landau index, l,.&;&, is much larger. This
cannot be explained in terms of the IES separation be-
cause hL;

& ~;+, ~ &
&&X;t;~. Probably, a short I, & ~;+, ~ &

is
a consequence of a strong short-range impurity scattering
in Si-MOSFET's. The longer I;&,&, on the other hand,

X= Xi X= Xp

FIG. 7. Schematic representations of the electron distribu-
tion functions in the case of (a) hp ((kT and in the case of (b)
Ap )&kT.

FIG. 8. Expected polarization of edge states and a resultant
rearrangement of edge states at elevated temperatures.
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suggests that, in spite of the significant overlapping of the
edge-state wave functions, the spin-flip transition is near-
ly forbidden because of a very weak spin-orbit interaction
for the inversion layer electrons in Si-MOSEFT's. '

Therefore, the temperature dependence of the nonequili-
brium population in this material should be described in
a way other than the present approach.

V. NONLINEAR EFFECTS

Nonlinear properties of the related transport phenome-
na have been stressed already in Ref. 4. This remarkable
nonlinearity turned out to be an inherent aspect of the
edge-state transport. ' A distinct characteristic of
the nonlinearity here is its occurrence at a very low
current level, say, I & 1 pA. Another important feature is
that the nonlinear behavior does not scale with the width
8'of the sample, but is described by the absolute magni-
tude of current. On the other hand, IQHE is known to
be destroyed with large currents in standard Hall-bar de-
vices. A characteristic of this breakdown, observed
at many groups on samples with different scales, is that
the critical currents scale linearly with 8'. For instance,
the critical current density for the v=4 Hall plateau
(B=3—4 T) is about 6 mA/cm. This phenomenon can be
explained in terms of an abrupt increase in the electron
effective temperature. This breakdown phenomenon
is observed to occur also in the present devices at a
current of about 20 pA (7 mAlcm), which is far larger
than the current levels of the nonlinear effects discussed
below. The phenomenon is almost independent of the
gate bias condition. We should note, therefore, that the
effects discussed are the phenomena physically unrelated
to the well-known breakdown. Molenkamp et al. studied
nonlinear effects in a narrower sample with 8'=4 pm. '

Special care must be taken in these experiments because
nonlinear effects of the two different categories coexist at
similar current levels.

Below we will deal with the case where
hp-fico, ))kT. The experiments will be restricted to
low temperatures, where IES phonon scattering can be
neglected in the case of linear transport. Therefore, we
will consider below only the absolute zero temperature
for simplicity.

completely filled, we only need to consider transmission
or reflection of right-going electrons incident on the bar-
rier with the energies pL ~ c. ~pz. If the electrostatic po-
tential U(x,y) is slowly varying, a quasiclassical con-
sideration is possible; an electron in the ith Landau level
with energy c. is propagated along the equipotential con-
tour determined by e = (i +—,

' )A'co, + U(x, y ). Let us

represent by U, the potential at the saddle point of the
barrier. Since the equipotential contours with
U(x,y ) & U, extend to the other side of the barrier while
those with U(x,y) & U, are reflected at the barrier, the
probability for an electron of energy c, in the ith edge
channel to be transmitted across the barrier has the
simplified energy dependence given by

1 for c) c.;,

where

UI UR

U&u,

(a) LL

)U&U,
L R +)JR

hL

PR

E; = (i +—,
' )%co, + U,

is the threshold energy for the ith edge channel. Actual-
ly, T;(e) smoothly varies from one to zero due to the tun-
neling transition at the saddle point, but the
simplification above will suffice for the present discussion

A. Energy-dependent transmission
at a potential barrier

i=n

«ww~~rww~wwww~ww '4f wwwwwwww~rwr~~nvx

WAKAAXAXAAAXAAA

I I~RCh

Preceding sections implicitly assumed that the
transmission probabilities T;G are independent of electron
energy 8 because the relevant energy interval is small. In
the case of hp-fuu„we have to explicitly consider the
energy dependence of T,G. Imagine that a potential bar-
rier is jointed to ideal leads connecting to electron reser-
voirs on the left- and on the right-hand sides. Let the
electrochemical potentials be pl and pz, respectively.
(We assume pz & p,z. ) We consider the situation where
N Landau levels (i =0, 1,. . . ,N —1) are occupied in the
ideal leads. Figure 9(a) schematically shows a landscape
of a simplified potential barrier with equipotential con-
tours. Since all the states with the energies below pz are

(b)

FICx. 9. (a) Equipotential contours of a simplified potential
barrier. (b) Transmission and reAection of electrons in the
i =n —1, i =n, and i = n + 1 Landau levels in a nonlinear re-
gime. The situation corresponds to case (i) in Fig. 10(b). The
shadings indicate the regions occupied by electrons. A popula-
tion inversion forms in the i =n edge state at the UR boundary.
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and

pa +~n —
& (30)

pL. &&n ~ (31)

as illustrated in Fig. 10(a). It follows that all the elec-
trons having the energies pz c. ~ pL in the edge chan-
nels of O~i &n —1 are transmitted, while those in the

UL LL UR LR

because the energy range over which perfect transmission
changes to perfect reflection is far smaller than %co, .
The landscape of the potential barrier in actual experi-
ments may be complicated. Nevertheless, T;(e) for any
potential barrier should have threshed energies c;
differing by Ace, for adjacent Landau levels, so long as the
potential barrier is smoothly varying. Therefore, we can
always find the saddle-point potential U, that gives the
threshold energy through the relation e; = (i + ,' )fico, —
+ U, .

For a given potential barrier, we can find such an in-
teger n (n &N 1) for—which ez &E„&eF+iiico„where
eF =(pL +p„)/2 is the Fermi energy. If the difference in
the electrochemical potential hp=pL —p~ is smaller
than Ace„ it is possible to satisfy both of the relations

edge channels of n i are completely reflected. In this
case, the system is in a regime of linear transport because
the total transmitted current is given by I =n (2e lh )hp
with the unchanged two-terminal resistance R =hp/eI
=( I/n )(h l2e ). The fashion of the electron population
in the i=n and n —1 edge channels at different boun-
daries are schematically shown in Fig. 10(a), where UL,
LL, UR, and LR refer to the upper left, lower left, upper
right, and lower right boundaries of the potential barrier
shown in Fig. 9(a).

It is impossible to simultaneously satisfy both of the in-
equality relations (30) and (31) if b,p&Ace, . We have
three possible cases: (i) e„, pii & s„&pL, , (ii)

pii &c„,&pL &e„, and (iii) pit &E„.i &E„&pL as
shown in Fig. 10(b). In case (i), the fraction of those elec-
trons with the energies c.„c&pL in the i =n edge chan-
nel become transmitted to the right-hand side of the bar-
rier, while those with pz &c&a„remain reflected. The
electrons in the i ~ n —1 edge channels remain totally
transmitted and the electrons in the n + 1 &i edge chan-
nels remain perfectly reflected. Here and below, we re-
strict our consideration to a range of hp &2%co, for sim-

plicity. A top view of the transmission and the reflection
is schematically shown for the i =n —1, n, and n + 1 edge
channels, respectively, in Fig. 9(b). The shadings indicate
the regions occupied by electrons. The total transmitted
current thereby increases by (2e/h )(pL —8„)to give

I= ( 2e /h ) [ ( n + 1 )p, L
—n p&

—( n +—,
' )fico, —U, ] . (32)

' -n-1

n i
' ~ -n-1-.'

I ~ -n-

II I) II il
1 I ~

I r

By noting the restriction imposed on the values of U, and
by substituting pL ii with eF+bp/2, we find that the
values of the current are bounded by the interval
(2e/h)[(n+ 1)hp fico, ] & I &—(2e/h

)(neap+

fico, ). If
intra-edge-channel scattering is neglected in the barrier
region, an inverted population is formed in the i =n edge
channel at the UR boundary of the barrier region. In case
(ii), the fraction of the electrons in the i =n —1 edge
channel, which are of energies c c„„are reflected to
cause an inverted population in the i =n —1 edge chan-
nel, again, at the UR boundary of the barrier region as
shown in Fig. 10(b), case (ii). The total transmitted
current is given by

I=(2e/h )[npL (n —1)p„(n——
—,
' )Ac—o, —U, ],

the values of which are bounded by the interval

(2e/h )[(n+1)bp 2fico, ] &I n(2e—/h)hp .

n-1

FIG. 10. Marked on the left-hand side are the threshold en-
ergies c„and c.„& for the transmission of electrons in the i =n
and n —1 Landau levels, together with pL and p&. The draw-
ings indicate the electron population in the i =n and n —1 edge
states at different boundaries of the potential barrier speci6ed in
Fig. 9(a). (a) A linear regime; c„,&p„&pL &c„. (b) Non-
linear regimes pL

—pl & %co„where c„& pz & c.„&pL in case
(i), pg &c„ I &pL ~„ in case (ii), and p~ ~.—I c. pL. in
case (iii).

In case (iii), inverted population is caused both in the
i = n —1 and n edge channels at the UR boundary of the
barrier region as shown in Fig. 10(b), case (iii), with the
total transmitted current

I=(2e/h )[(n+1)pL —(n —1)pii 2nhco, 2U—, ] . —

The values of the current are in the range

n(2e/h )bp &I & (2e lh )[(n + 1)hp fico, ] . —

The saddle-point potential U, determines which one of
the above three cases is realized. The current I increases
superlinearly with increasing b,p in cases (i) and (iii),
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while it increases sublinearly with b,p in case (ii). We
should note that, in any case, (1) inverted population is

expected at the UR boundary of the barrier region, and

(2) the difFerence of the currents carried by the i =n —1

and n edge channels (at the LL and UR boundaries) no
longer increases linearly with Ap but is limited to
b,I= (2e /h )Ace„. viz. , the effective amplitude of the none-

quilibrium population introduced in the two edge chan-
nels does not exceed %co, as pointed out in Ref. 7. We

stress that the above-mentioned features are independent
of details of the potential barrier if it is slowly varying. A
similar type of population inversion was inferred earlier
in a theoretical work of Jain and Kivelson.

Let us turn to our experimental arrangement. We have

to predict U, for a given hp. As repeatedly emphasized

by Landauer and also noted by Buttiker, a profile of
the electrostatic potential around a single (ionized) im-

purity changes with increasing the incident fiux of charge
carriers on the impurity. In our experiments, a sheet
charge induced on the gate electrode by the gate bias
voltage is an isolated remote "ionized impurity" for our
2D EG. As shown below, the potential barrier caused by
this "ionized impurity" greatly changes with increasing
current although the charge and the mechanical location
of the "ionized impurity" remains the same. Let us start
from such a condition that N Landau levels are complete-

ly occupied in the ungated regions while only n Landau
levels (n ~N 1) are co—mpletely occupied in the gated
region when the current is infinitesimal In a.clean sam-

ple, this condition (N, n ) at I=0 is realized by the Fermi
energy of cF =Nfico, and by the electrostatic potential of

U(x,y) =0 in the ungated 2D EG regions

and

U(x,y ) =(N n)fico, in th—e gated 2D EG region

except in the boundary regions, as schematically shown
in Fig. 11(a) for the case of (N, n ) = (2, 1). At the sample
boundaries, U(x,y ) increases to confine the 2D EG, and
it varies smoothly at the boundary region between the
gated and ungated regions. We will assume also that the
current-induced change in U(x, y ) is spatially smooth.

We need guiding principles to predict how U(x, y)
varies with Ap or I. Remember that we increase I while
keeping the gate bias voltage VG unchanged with respect
to a current contact 1 or 2 in Fig. 2(a). The eff'ective gate
bias voltage with respect to the 2D EG underneath the
gate thus changes because U(x,y) varies. However, the
magnitude of the change is limited to the voltage
difference between the two current contacts hp/e. Since
we mill study a range of relatively small currents such
that b,p/e &12 mV, the effective change is negligibly
small compared to the applied VG, which is typically a
few hundreds of mV. Therefore, the electron density
beneath the gate is nearly kept unchanged even in the
presence of current. It is clear that the electron density
in the ungated 2D EG regions should also be kept un-
changed. Hence, we have the following guiding princi-
ple.

(a) In the presence of current, U(x, y) adjusts itself so

/

I \ i &

lp--.
)&

+ ~ ~ wjPu&/&W&«&' /w//////////«//» //////

)=0

//IFac"' r/i / ///r///r/gs

(b) 0&~)J 4%~/2
/p////// / &/// &/ &/ & /0'
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FIG. 11. The drawing on the top shows the current-induced
change of the electrochemical potential in the i =0 and 1 edge
channels when the current is small in the condition of
(N, n ) =(2, 1). (a)-(c) indicate the profiles of the electrostatic
potential U(x,y ) and of Landau energy levels
c;=(i+ ~)%co, +U(x,y) along edges a-b and c-d, for three

different stages of hp smaller than %co, . The system is in a
linear transport regime for any stages. Heavy lines for Landau
levels indicate the occupation with electrons.

that n bulk Landau states (0 &i & n —1) remain complete
ly filled in the 2D EG region beneath the gate and N bulk
Landau states (0 i &N 1) remain compl—etely ftlled in
the ungated 2D EG regions.

The term "electron density" or the "bulk states" in the
gated region is of physical meaning because the dimen-
sion of our cross gate (1 pm X 30 pm) is much larger than
the magnetic length and is also probably larger than the
screening length of the 2D EG. The requirement (a) has
the priority over another requirement (b) introduced
below.

When we increase current I=n (2e /h )b p in a
suSciently small range, the electrochemical potentials of
edge channels will change from cz by the amounts
+hp/2 as shown on the top of Fig. 11. As the second
guiding principle, we assume the following.

(b) Local change in the electrostatic potential EU(x, y )

equals the local change in the electrochemical potential.
So long as (b) does not contradict (a), this is a reason-

able assumption because the capacitance of edge states
between different boundaries is extremely sma11 and the
chemical part in the electrochemical potential is negligi-
bly small in the present configuration. So, the electrostat-
ic potential increases by hp/2 at boundaries a and e
(solid lines on the top of Fig. 11), and decreases by b,p/2
at boundaries d and f (dashed lines). Here, we focus our
attention on the "boundaries of the bulk region, "
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I= (2e /h )[(n + 1)hp —%co, ] . (33)

The other cases, (ii) and (iii), in Fig. 10(b) would be met
when the gate bias condition is such that the i=n —1

bulk Landau level in the region underneath the gate is
partially unoccupied. We will not discuss these situations
below.

Before comparing Eq. (33) with experiments, let us ex-
amine the landscape of U(x,y) to confirm that the re-
quirement (a) can be fulfilled throughout the sample. The
profiles of U(x, y ) and of Landau levels on cross sections

a, b, c,d, e, and f, at which U, = U& = U, = Ud =0 and
U, = U/=(N —n )fico, when I=0. Since we assume that
U(x, y ) smoothly varies, and since the distance between
the boundaries of the bulk region defined above and the
locations of the relevant edge channels are extremely
small compared to the typical size of the sample, we ex-
pect that the electrostatic potentials change to
U, d =+6p/2 and U, I=(N n—)%co,+6p/2 as shown in
Fig. 11(b), where + and —signs refer to edge a, e and
d,f, respectively. The saddle-point potential correspond-
ing to the barrier height, U, =U„ thus increases from
(N n)Rc—o, to (N —n )A'm, +Ay/2. At boundaries b and
c (dotted lines), where the electrochemical potential
changes differently for differing edge channels, Ub,
change by the value averaged over the edge channels;
namely, U&

= —U, =[(n/N) (1/2)—]by. We should
note that the potential barrier is flat in the direction
across the sample (x direction) while the electrostatic po-
tential in the ungated region has a slope.

The threshold energies, e, =(i+ ,')fico, + U—„ increase
while pz =NAco, —Ap/2 decreases with increasing Ap.
Neither of the inequalities (30) and (31) is destroyed until
bp=Aco, /2 is reached, at which pii equals E„,. If the
barrier height would continue to increase as U,
=(N n)fico, +bp—/2 with further increasing hp, in-

equality (30) would be violated so that a gated bulk re-
gion in the vicinity of boundary e is unoccupied by
i =n —1 electrons. Since this implies a buildup of posi-
tive charges there, the electrostatic potential should drop
to such an extent that the gated region is just fully occu-
pied by the i =n —1 electrons. This means that the bar-
rier high adjusts itself so that c.„& equals pz, or
U, = U, =(N —n+ ,')fico, bp/2. —This is require—d by (a)

given above. The profile of the electrostatic potential is
shown in Fig. 11(c). The system is still in a linear trans-
port regime.

With increasing b,p beyond fico, /2, the threshold ener-
gies c.; now decrease because U, decreases, while

bpL =NA'co, +by/2 increases. The system enters the
nonlinear regime when Ap exceeds Ace, to make pL
larger than c,„. Even in this case, pz =c.„&or

U, = ( N n+ —,
' )—iiico, —b,p/2

must be satisfied so that condition (a) is fulfilled. Hence,
a nonlinear regime of case (i) with pii =E„,in Fig. 10(b)
is introduced in our experiments when Ap exceeds A'co, .
Substituting in Eq. (32) the value of U, in the above and

pl z =NAco, +p/2, we obtain

0- i=0

[a)

[b)

&n

&R

r//II/+ '-r/~~/gr
P7~-~&
pzjisAi

&n PR

FIG. 12. Schematic representations of the electrostatic po-
tential and Landau levels when Ap)Ac@, in the condition of
(N, n)=(2, 1). (a) The profiles on the cross sections a-c, a-b,
c-d, and b-d. The heavy lines indicate the occupation of Lan-
dau levels with electrons. (b) The landscape of the i = 1 Landau
level with the shaded area indicating the region occupied by
electrons, on the left. The top view is on the right.

a —c and b —d are schematically shown for the case of
(N, n ) =(2, 1) on the left and on the right of Fig. 12(a).
The drawing in the middle of Fig. 12(a) shows similar
profiles along boundaries a —b and c —d. The heavy lines
for Landau levels indicate the occupation by electrons.
The landscape of the i =n Landau level and the flow of
currents are schematically shown in Fig. 12(b). In this
nonlinear regime, U, and Ud are, similarly to the linear
regime, given by +hp/2, but U, changes to
U, =fico, /N [(n—+1)/N ,']by——because of the change
of the electrochemical potential of the i =n edge channel
from pL to c.„at boundary c. The electrostatic potential
U& would be U&*= —U, if all the edge channels were
equilibrated. However, if U& = U&*, the highest Landau
level (i =N —1) cannot be filled in a region of U&* by the
electrons elastically reflected by the barrier because
pii =NA'co, —b,p/2 is smaller than the energy of the top-
most i =N 1Lan—dau level Ez, =(N —

—,
' )A'co, + U&*

when b,p) iiico, . Hence, from (a), U& adjusts itself so that
the i =N —1 Landau level is just completely filled by the
reflected electrons in the bulk region; namely, we have
Ui, =(fico, —bp)/2 from pit =c~,(Ui, ). Although not
drawn in Fig. 12, equilibration among edge channels is
expected to develop as they depart from the potential
barrier. Thus, U& is expected to increase up to U&* at a
suScient distance from the barrier, as will be denoted as
point b3 in Fig. 14. Hence, a "pocket" is expected in the
landscape of U(x, y) in the vicinity of the UR corner of
the barrier. Note that the electrons in the i =N —1 Lan-
dau level in such a remote region where U(x, y ) = U&' are
not supplied by the reflection of i =N —1 electrons at the
barrier but are supplied Uia IES scattering by those elec-
trons transmitted across the barrier along the i & n edge
channels. The consideration in the last half of this para-
graph closely relates to a problem addressed by van Son
and Klapwijk about an electron-injecting current con-
tact. '

Equation (33) can be directly examined by experiments.
Figure 13 shows the current I as a function of
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AIM =pL
—

p& for the three sets of conditions
(N, n ) =(3,1), (3,2), and (2, 1). In the experiments, the dc
current I is passed from contact 2 to contact 1 and the
voltage diff'erence V36 = V3

—
V6 =b JM /e between contacts

3 and 6 is measured. This four-terminal resistance is,
effectively, a two-terminal resistance of the potential bar-
rier. We have studied opposite polarities of the current
and found that the curve of I vs Ap is perfectly sym-
metric about I=0. This assures our expectation that the
change in the gate bias condition with increasing I is
negligible. For each set of (N, n ), the current I increases
linearly with EIM=eV36 following the expected relation
I = n(2e/h )by until a critical b p is reached to cause su-

perlinear increase in I. The critical hp depends on the
magnetic field (or N) but not on n, and agrees with iiico, as
is marked by the arrow in each figure. The agreement of
the experimental curve with Eq. (33) in the range
bp, )fico, is excellent for (N, n)=(3, 1). For the cases of
(N, n )=(3,2) and (2, 1), Eq. (33) explains the superlinear
increase of I in the range Ap &A'co„but the quantitative
agreement is not very excellent. When we derived Eq.
(33), we have assumed that the potential U, at boundary e

of the gated 2D EG region equals the potential in the
neighboring bulk region underneath the gate. In a nar-
row boundary region along edge e, however, the potential
U, can be pulled up to a slightly higher level than that of
the gated bulk region. Hence, the saddle-point potential
U, = U, can be slightly higher than the assumed value;
viz. , U, )(N n+ ,'—)fico, bp/—2 and, hence, s—„,)pz.
Thus, it is possible that the system falls into case (iii).
The observed values of the current for (N, n )=(3,2) and
(2, 1) are bounded by Eq. (33) and I=n(2e/h )bp, which
is expected for case (ii). It is difficult, however, to
theoretically derive accurate values of U, .

We completely ignored random potentials in the sam-

ple throughout this subsection. Random potentials of a
force range shorter than l~ and of a force range longer
than l~ should be considered separately. It is possible to
disregard the short-range random potential if we note
that it works to broaden each Landau level. The very
sharp cyclotron-resonance absorption lines, experimen-
tally observed in high-mobility GaAs/Al„Ga, „As
heterojunctions, indicate that the broadening of Landau
levels due to the short-range potential is far smaller than
fico, . The long-range potentials, on the other hand, modi-
fy the equipotential contours along which quasiclassical
electron trajectories are developed. What matters in our
arguments above is not the absolute landscape of U(x, y)
but its change with increasing current. We therefore sup-
pose that the presence of random potentials does not
cause essential errors in our picture.

1.5—
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(N, n) =(2, 1)

1.0

ed with the inverted population is expected to be released
at the edge in the vicinity of the UR corner of the gated
2D EG region. Klass et al. have recently observed im-

ages of energy dissipation in a GaAs/Al Ga& As het-
erostructure device with a cross gate by using the

B. Inverted population and energy transport

The most interesting feature of the nonlinear transport
described in the last subsection is the formation of invert-
ed population. When the gated area is large in size, the
inverted population would relax to some extent through
intra-edge-channel scattering at the sample boundary un-
derneath the gate. In any case the excess energy associat-

(c)
2 4 6 8 10 12

eV = ap (meV )
1

FIG. 13. The current I=I2, vs voltage V36 in the condi-
tions of (N, n )= (3, 1), (3,2), and (2,1). The dashed line
(
———) indicates the linear relation I=n(2e/h)hp and the

dash-dotted line ( —~ —.—.) indicates Eq. (33) for each figure.
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N —1 pL
Pb=(2/h) g f (e pit)f dE, —

p

(34)

where f;(E) is the distribution function of the ith edge

bi bz b3

I I

fountain-pressure effect of superfluid helium. The size
of the gate and the distance between the gate and con-
tacts are typically 100—500 pm. They observed, in the
condition of (N, n )=(3,2), four dominant regions of en-
ergy dissipation as marked by the circles in Fig. 14(a).
They indeed discovered that the energy dissipation is
larger at the corner of the gated region where we expect
inverted population to take place. They also found that
still larger energy is dissipated at the edges of current
contacts. To obtain a deeper understanding, let us quan-
titatively analyze the energy dissipation. The current of
15 pA is applied in the experiment of Klass et al. , which
corresponds to Ap-15fico, according to Eq. (33). Al-
though our picture was apparently based on the assump-
tion of hp (2%co„our results also apply without
modification to the range of b,p) 2Aco, under the condi-
tions of the experiment of Kla P et al. where N n= —1:
Our picture would have to be modified when treating a
case of N —n ~2, where inverted population forms as
well in the edge channels of i ~ n + 1 when hp )2Aco, .

Similar to the charge carrier transport, energy trans-
port by carriers can be formulated by a Biittiker-type ap-
proach when charge e is replaced with the energy c —cF
of the electron. Two of us have earlier derived a general
formula for the energy transport, ' which we will use
here. On the right-hand side of the gated region of the
sample shown in Fig. 14(a), the net energy fiux Pb is car-
ried along the edge channels by the fraction of those elec-
trons on side b which are of the energies pR c. ~ pL. It
is explicitly written as

channel. To evaluate Pi„ let us take case (ii) in Fig. 10(b)
with c„,=pR as an example. At point b1, just at the
UR corner of the gated region, where the population is
inverted in the i =n edge channel, f„(e)=1 for
s„s pi and f„(e ) =0 for p~ s e„as schematically
shown on the left-hand side, in Fig. 14(b). Although not
considered in Fig. 12, the inverted population will relax
through intra-edge-state scattering, and energy is thereby
dissipated, probably via acoustical-phono n emission.
This process may be rapid because the wave functions
significantly overlap within a single edge channel. The
distribution function thereby changes to give f„(e)=1
for c. & c„*=pR +pL —c„at point b2 as shown in the mid-
dle of Fig. 14(b). If IES equilibration length is extremely
long as observed in the linear regime, this nonequilibrium
distribution will reach the contact on the right. As will
be discussed in the following subsections, however, our
experiments show that the effective equilibration length is
significantly reduced ( « 50 pm) in the nonlinear regime.
Hence, IES relaxation follows to achieve the equilibrium
population among all the edge channels to give f;(e)=1
for

E &pb = [(n+1)pL+(N n)p~ —e—„]/N

at point b3 as shown on the right-hand side of Fig. 14(b).
The energy fiux is, of course, diferent among the above
three stages whereas the transported charge current is the
same, being given by Eq. (33). Substituting in Eq. (34) the
distribution functions mentioned above together with

pL ~ =Nfico, +bp/2 and e„=(N+1)fico, bp/2, we im-—
mediately derive the respective energy fluxes,

P , s= [(n+ 1)(b,p) —(ih'co, ) ]/h,

P&i = [(n + I )( b p ) 2fico, bp+ (fico, ) —
]Ih,

and

P&3=[(n+1)bp fico, ] l(Nh )
—.

(a) C2

- —&n

I I
n-1 n n+1

I I

C1

I
E ~

n-& n n+1

b2 b3

&R The total energy dissipation at the upper right corner of
the gated region is

PUR —Pb) PI 3

The energy dissipated at the upper edge of the right con-
tact is PI,3. On the left-hand side to the gated region,
where the edge channels on side a are completely filled up
to the higher electrochemical potential pL, it is con-
venient to regard the energy flux to be carried by holes on
side c; namely,

N —1 pL
P, =(2/h ) g I (pL e)f; dE, —

p

(3s)

(c)

n+& n n-&

Cl C2

where f,"=1—f;(e) is the hole distribution function in
the ith edge channel. The population just at the LL
corner of the gated region, as shown by c 1 in Fig. 14(c),
will relax to the equilibrium one shown by c2, where

f, (E)=1 up to

FIG. 14. (a) Four dominant regions of energy dissipation,

shown by circles. (b) and (c) Populations in edge channels at
different locations.

E=P, =[(N —n —1)pL np„+s„—]/N .

Noting the symmetry between the electron and hole dis-
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tributions, we have P, 1=Pb2 and P,2=Pb3. Hence, the
energy dissipation at the lower left corner of the gated re-
gion is

PLL Pb2 Pb 3

The rate of energy dissipation in the contact on the left is
P.2

—Pb3-
The equations above show that P3b oPP«PLL if

Ap &&fico, . For instance, P» =645, P« =29, and
PtL=0. 7 in units of (%co, ) /h when (N, n )=(3,2) and
Ap=15Aco, . Our picture thus provides a satisfactory ac-
count for the observations by Klass et al. It is easy to
show that the total energy dissipation in the sample,
2Pb3+PLL+PUR, exactly balances with the electrical
power fed into the sample by an external circuit,
P=I(pL —pz)/e, where I is given by Eq. (33). In the
linear regime, the energy dissipation is symmetric around
the potential barrier; it is simple to show that P»
=Pb2=P, ~=n(bp) /h and P3b=P2, =(n/N)(hp) /b.

C. Rearrangement of edge states
and onset of acoustical-phonon emission

respective edge states by Qo and Q, . Let us assume for
simplicity that hx0=x0 —x0 equals hx, = —x', +x, .
Since the number of the states whose center coordinate
x= —1~k lies in the interval hk is generally given by
hk/m. when spin states are degenerated, the line charge
densities, Qo and Q, are of an equal amplitude,

Q =Qo = —Q „given by

Q =e hx /(~is ), (37)

where hx =hx0=hx1.
Generally, the assumed equality Exp Ax1 or

Qo= —
Q& is not exact. The sum of the electrochemical

potentials, @0+A„is determined by the total current car-
ried by the two edge channels, which is specified by an
additional experimental condition. Since hx0 and b,x1
adjust themselves so that both A@0, and @0+@1 meet
given experimental conditions, Ax0 and hx1 differ in gen-
eral. Approximately, the sum of the displacements
Ax 0+Ax1 determines ELM0, while the difference
hx0 —hx1 primarily determines p0+ p1.. A finite
difference between hx0 and hx1 leads to a net line charge

There is a series of nonlinear effects which do not
influence the two-terminal resistance of a barrier. Even
in the range Ap & fico„where the two-terminal resistance
is in the "linear transport regime, " those resistances
relevant to a voltage probe on the boundary where edge
states are unequally populated display nonlinear behavior
as was first reported in Ref. 7. We have briefly interpret-
ed the effects in Ref. 19. Here, we will discuss the phe-
nomena in detail.

Let us take the two-channel case. A nonequilibrium
population is achieved by depleting electrons in one edge
channel and accumulating electrons in the other edge
channel. The depletion and the accumulation immediate-
ly lead to differing chemical potentials, hp, h and 5,'h of
the two edge states. In addition, positive and negative
line charges thereby piled up along the edge states modify
the original edge potential from U(x ) to U(x )+6U(x ),
which, in turn, changes the edge-state energy dispersion
to

(a)

0 —n

~ I tl
xp — X1

~X
I

3 R -"---.
e.5R

12 R

I=0
~

~ X

e,' k (x ) =E; I, (x )+b U(x ),
as schematically shown in Fig. 15(a). Letting x; and x
be the x coordinates at which e; k (x; ) =e~ and
e,'k(x )=p;, respectively, the electrochemical potentials

p; of the ith edge channels can be expressed as

p;=b,p,'q+EU(x }+E~,

(d) ~ T

l =1 Xl X1

%(uc
5

~I 01 ~I ch +6U01 (36}

where hp, h=hp, „—bp,'„and b, Uo, = b, U(xo ) —AU(x'& ).
The pileup charges consist of the electrons and holes lo-
cated, respectively, in the intervals of x0+x &x0 and
x1 ~x ~x1. We represent the line charge densities at the

where &pc„=c,; k(x ) —E~. The difference in the electro-
chemical potential hp01=p0 —

p1 between the edge chan-
nels is

FIG. 15. Rearrangement of edge states due to unequal edge-

channel population. (a) A schematic of the original edge states
c,; k and the modified edge states c.,'k. (b) A schematic of the

pileup charge distribution in the x coordinate. (c) Profiles of the
induced electrostatic potential EU(x), calculated according to
Eq. (38). (d) Modified edge states, e,' k

= i; k+ EU(x ), for
hp=hco, /5 (dashed lines) and for hp= —Ace, /5 (heavy solid

lines), where xo' —x &' =xo —x& =6.5R and the original disper-
sions of i; k (light solid lines) are given by Eq. (7) with

co, =9.7X10' /s and coo=1.69X10' / s. Open and solid dots
represent the occupation of the states with electrons.
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Q Qo +Q ] %0, which substantially determines pa+ p]
through the electrostatic potentials 6 U(x o ) and 5U(x ', ).
In a wide sample such as the one used in the present ex-
periments, it is certain that a difference Axo —Ax& neces-
sary to cause a relatively large change in po+p&, say, by
about Apo&, is much smaller that Axo 01 Ax} ~ Hence,
hxo and Ax, are nearly equal to each other in any experi-
mental condition, and the assumption Axo=hx, does
not lead to substantial errors in the following discussion.

The line charges have a spatial extent in the x coordi-
nate as well as in the z coordinate (normal to the plane of
2D EG). Let us assume that the charge distribution can
be approximated by a uniform distribution of the charge
densities +Q/(rrR ) within the two cylinders of radius R
centered at xo (xo+xo)/2 and x", =(x, +x', )/2. The
Poisson equation gives

b, U(x ) = ln
2E'~

X X}

X Xo

DUO, =(eg/e, )( —,'+ lnp), (39)

where p =(xo —x", )/R. Note that the separation be-
tween the line charges is larger and, hence, DUO, is larger
when the edge potential U(x ) is smoother.

The chemical potentials hp,'h in the respective edge
channels are given by the relations Q=+eD;(sF)bp,'h,

where D, (EF)=(1/~)IBs;k/BkI, ' are the densities of
states of the original edge states at c.=cF. From
Ap, h

=Ap, },
—Ap,'}„wehave

~pa =Q/[eD*(EF)] (40)

where D*(E)=1/[Do '(E)+D, '(s)] is the reduced den-
sity of states. The densities of edge states D;(EF) are
larger when the edge potential U(x ) is smoother. Hence,
contrary to DUO, , Ap, h is smaller in a smoother edge po-
tential. Noting the relation 4po, =4p,h+ AUD& with Eqs.
(39) and (40), we can rewrite Eqs. (37) and (39) to

and

m.l~ Apo,
Ax/l~ =

[D*(EF)) '+(e /e, )( —,'+ lnp)

(e /e, )( —,'+ lnp)b, po(
~UDGE

=
[D'(E~)] '+(e /e, )(l/2+ lnp)

(41)

(42)

for (xo +x", )/2 ~ x ~xo —R and xo +R ~x, and

X Xo X X}6 U(x ) = ( eg /2e, ) ——— + ln
2 2 R R

for Ix —xo'
I

& R

where e, =12.8E'o is the dielectric constant of GaAs and
Al„Ga~ „As. Here, b, U(x ) is antisymmetric about
x =(xo'+xI')/2. The relation

DUO, =SU(xo) —b U(x', )=b, U(xo') AU(x", —)
immediately yields

Let us estimate DUO& and hx by assuming the edge
states determined in Sec. IV (Table I). Let us first esti-
mate the effective radius R of the line charge distribution.
Since, as will be shown below, the displacement hx in the
experimental condition is far smaller than the spatial ex-
tent of the electron wave function l~, the real distribution
of the pileup charge p(x ) on the x coordinate is expected
to approximately reproduce the profile of the square am-
plitude of the wave functions; namely,

p(x )"IP|,k(x —x 1')I' —Ieo, k(x —xo')I'

as schematically shown in Fig. 15(b), where p;k(x) are
harmonic-oscillator functions in Eq. (3) with the spatial
extent of l&=130 A. A measure of the width of the
charge distribution in the z direction is approximated by

J 0 z
I g(z ) I

dz =3a = 105 A with the width parameter
a =35 A (the Appendix). Hence, we assume the effective
radius of the charge distribution to be

R =(3als/2)' =83 A=0. 64ls .

The approximate spacing between the cylinders is
x o x ] 1 Ols 6.5R. Substituting in Eq. (42) p =6.5,
e, =12.8eo, ls =130 A, and D(s)* with D;(s)
=(1/mls)IBs, k. /BxI ', we have b, U0, =0.97bpo, and

Ap, h=0. 03hpo, . Thus, the change in the electrostatic
potential dominates in our smooth edge potential. Simi-
larly, Eq. (41) derives bx/ls=bpo, /(88. 4 meV). Note
that, when Apo& is not very large, say hpo& &2%co, =13
meV, b,x is far smaller than ls and is negligibly small
compared to the IES spacing bXO&(E+)=rois, thus vali-
dating the assumptions made in the analysis above. We
can approximate both x, and x;" by x; in the following
drscussron.

The solid line in Fig. 15(c) depicts b, U(x ) as a function
of x, where AU(x ) is calculated according to Eq. (38) for
p=(xo —x, )/R =6.5. The profile of b, U(x) does not
crucially depend on the assumed value of R or p, as
shown by the dashed and dotted lines in Fig. 15(c). An
example of the calculated edge-state energy dispersion
jk(x)=E;k(x)+9U(x) for the case when hpo,
=A~, /5=1. 2 meV is shown by the dashed lines and is
compared with the original s;k(x) shown by the light
solid lines in Fig. 15(d). Open dots represent the occupa-
tion by electrons. When Apo, is negative, the sign of
b, U(x ) is inverted, and we have the energy dispersion
represented by heavy solid lines with solid dots indicating
the occupation by electrons.

Figure 15(d) indicates that the IES separation,
b,XO, (e)=Xo —X, with e, k(X,. ) =p, , for the elastic-
scattering process substantially decreases or increases de-
pending on the sign of b,po, =po

—p, . Figure 16(a) shows
the separation r'/ro as a function of electron energy for
the three cases of bp0, =0 and Apo} +i6co /5, where
r'=5

X&o( )sl/sand ro=AXO&(EF)/ls. The overlapping
integral of the wave function, S'(E)= (s)s/s(sF), where
s(c.)' is evaluated by replacing r with r' in Eq. (19),
changes drastically as shown in Fig. 16(b). The IES
scattering, therefore, should be remarkably promoted
when Apo, is positive, and significantly suppressed when
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Appi is negative. Therefore, any resistance shout be
affected by t is e ec i ah' ff t 'f t least one of the relevant volt-
ae robesis on esth sample boundary at which edgeg p '

d. ,'Note, however, that thestates are unequa11y occupied.
two-terminal resistance described'b d in Sec. VA,

j/' I, '
ffected since the total current is

unaffected by the IES scattering at one boundary o er of the

17(a) and 17(b),Th' ff t is demonstrated in Figs. .7,a, anise ec
=av /aIwhere the differential Hall resistances R~ „=

R ' and R '
as a function ofare shown, respectively, for R 3 4 a

dc bias current I for the case of (N, n )—n)=(2 1). We define
I as positive w en eh th electrochemical potential of con-
tact 1 is higher than that of contact 2. R ' „are o taine
by modulating wi aI ith a 10-nA amplitude. The resistances
display remarkable nonlinear behavior already in t e

& %co: The criticalrange of current where Ap=pl —pz
current I, =(2e/h)Aco„at which bp equals fico„ is

k d b solid arrows in the figures. The curves o 3 4
and R 5 6 are mutually antisymmetric auou
difference in the absolute amplitude between the two
resistances is unin eres in

'
t ting here because it arises rom

different sensitivities of contacts 4 andand 5 in selectivey
the i =0 and 1 edge channels (parameter a).

wever the n
of each voltage probe was confirmed to remain un-
changed over the I range studied by an additional experi-
ment w ic o servh' h bserved that the contact resistance' o each

be remains unchanged with increasingvoltage pro e rema'
Thus, noting the signs of happ& at the diagona y opp
corners of the gated region, we can interpret the observed
slop s in m, n1 th R ' vs I curves in a range aroun I=0 as a
definite proof of the edge-state rearrangernent considered

19here.
If the IES scattering completely vanished w'shed with increas-

ing ~I ~
in the negative b,pp, range, R 3 4 aild 5and R' should

FIG. 17. Differential Hall resistances, R 3 4 3 4 ]=8V /BI, and
R~6=BV56/BI& 2, against the dc bias current I—

& 2
'I=I in the

f (N n )=(2, 1). The current I is defined to be posi-
tive when the electrochemical potential of contact is ig e
than that of contact 2; hence, Ago& in the positive range of I is

Ipositive for R 3 4 and is negative or R 5 6.

h 1 R' =(1+a)(h /4e ). However,saturate to t e va ue
R ' „start decreasing rapidly with increasing I when
exceeds about . pt 0.1 A. This implies that a new mec a-

'
m of IES transition comes to work at happ&

- . menism o
This indicates the onset of spontaneous acacoustical-
phonon emission. Even at —,p=0 honon emission be-
comes possible when happ, reaches Ac, p p g ~ 1=Ac r /l =1.1

meV, where we note that the relevant IES separation here
is rp g lns ea 0 r„g.
marked b open arrows in Figs. 17(a) and, su17 b) substan-mar e y
tially agrees with the position at w icich R' start de-

19creasing.
Al h h the onset of phonon emission is expec et oug

well at the same value of App, in the positive pp, g,
its inhuence is not discerned in t e R '

vs I curves. This
is reasonable. %hen happ, approaches 1.1 meV in the
positive range, ethe IES relaxation due to impurity scatter-
ing has already been remarkably promoted because o e
decreasing p, . omCompared to the impurity scattering,
the rate of the 0—+1 transition due to phonon emission is
expected to be far smaller because the relevant IES sepa-
ration is nearly fixed to b,Xpi(s~ p=r l . Returning to
the case of happ& &0, the rate of the 1~0 phonon emis-
sion should be equally low. Nevertheless, this wea tran-
sition is practically the single mechanism for the possible
IES relaxation when happ& & 0.

The here described asymmetric nonlinear behavior has
also recently been observed by Miiller et al. In Si-
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MOSFET's, van Son, Wang, and Klapuijk reported an
asymmetric nonlinearity which is of the opposite sign.
Since the nonequilibrium population of electrons in Si-
MOSFET's is caused between the edge states of opposite
spins for which the relevant wave functions are
significantly overlapped as discussed in Sec. IVB, the
nonlinearity cannot be discussed within the framework of
our picture here.

D. Saturation of nonequilibrium distribution to %co, /2

The differential resistances R ' „ in Fig. 17 nearly
reduce to the quantized value A'/4e in a still higher
range of ~I

~

~ This implies that the deviation of the Hall
voltage from the quantized value, 6V „=V
—(h/4e )I, is saturated to a constant magnitude in the
higher-~I range as pointed out in Ref. 7. The saturation
is demonstrated by the direct measurements of 6V „as
shown in Fig. 18(a), where the Hall voltages V „are
measured as a function of dc current and the quantized
Hall voltage (h/4e )I is subtracted from V „. The
figure also includes the data of b, V6 ~( B) mea—sured in a
magnetic field of opposite polarity. In Figs. 18(a) and
18(b), the sign of the current is so chosen as to be identi-
cal to the sign of b po&. We can apply Eqs. (28), (25), and
(24) as well as to the regime of nonlinear transport when
allowing of possible dependence of a and P on I. Hence,
we write

where the current I is transformed into DING=(h/2e)I.
The results here indicate that the saturation in 5V „ is a
genuine property of edge states, independent of voltage
probes. The values of bpG in Fig. 18(c) are nominal in
the range ~bpG~ &fico, because ~hpG~ is expected to be
saturated to %co, . However, they are supposed to be
correct within the range ~b,pG~ &A'co„on which we will
focus our attention below.

To confirm that the phenomena are independent of the
difference in the electrochemical potential between the
opposite boundaries of the sample, we have also studied
AV5 6 in different gate bias conditions as shown in Fig.
18(b). When the gate bias voltage VG increases from
—0.35 to —0.292 or —0.277 V, partial transmission of
electrons takes place in the i =1 edge channel so that
AV „decreases in the linear regime as indicated in Fig.
3. This implies that the parameter y [Eq. (23)] reduces
from unity. The values of y at VG = —0.292 and —0.277
V can be determined from the two-terminal gate resis-
tance R3s=(1/TG)(h/2e ) in the limit of low current
(Fig. 3) through the relation

B= 3.7T
T = 1.4K

VG =-.35 V

-1,0

b, V „=ah@&/(2e)=aPbpG/(2e), (43) 1.0
RENT (pA)

where b p v
=pa v

—p, ~ represents the unequal population
at the entrance of the voltage probe located on the
boundary where the nonequilibrium population is intro-
duced. The parameter a of each voltage probe has been
confirmed to be kept unchanged with increasing I as not-
ed in the last subsection. Thus, the saturation in hV „
should be attributed to the behavior of Ap~, which is
caused by an I dependence either of P or of b pG. Ac-
cording to our discussion in Sec. V A, Ap G is saturated to
A'co, to introduce an inverted population when

~I
~

& I, =0.5 pA. However, this does not explain the ob-
served saturation of 6 V „because the complete satura-
tion is established already in a range of ~I ~

& I, .
The size of 6V „ is dependent on the voltage probes,

where relevant probes are contacts 4,5, and 6 for AV3 4,
b, V, 6 and b, V65( B), respecti—vely. The linear relation
I=(2e lb )(pL —pz ) observed in Fig 13(c) assures that y
of the gate in Eqs. (25)—(28) remains unity in the range
~I~&I„and thus bI'G=poG —p, G=(h/2e)I. Let
Po= exp( L/I) be the extent of t—he IES equilibration in
the limit of low I. The multiple t'Oa can be derived from
the measurement of 6 V „=aP(h/4e )I at the limit of
small I. Since Po lies in the range 0.83&Po&1 at low
temperatures (Sec. IVA), and actually we can suppose
Po-—1 at the experimental temperature, we can deduce

hpz from the observed values of 6 V „ through the rela-
tion bp~=2e'V „/a=2e', V „/(aPO). All the
curves of the so-derived Ap~ vs I converge to form a sin-
gle line in the negative b,pG range as shown in Fig. 18(c),

(b)

r -35
VG = —.292 V;

—.277V;---

-1.0 —.5

14'5J aaagar ~ ~ ~ ~

-2

O)
)

. E
—.2-

V5,6

.5 10
CURRE NT (pA)

3-
Qr

hu)c

r

-8 -6
V)

8

5,6
----- &V (V(; = —.292V)

5,6-- —~V„(V, = .277V)

FIG. 18. (a) Deviations of Hall voltages from the quantized
value, hV „=V „—(h/4e )I, as a function of dc current
I=Il p in the condition of (N, n)=(2, 1). Different from Fig.
17, the sign of I is so chosen as to equal the sign of Apol for each
data. (b) The voltage 5V, 6 in gate bias conditions of 1 ~ n (2.
(c) The magnitude of the unequal edge-state population at the
entrance of the voltage probe, Apv=p« —p, v, vs the magni-

tude of the unequal population produced at the potential bar-
rier bPG JOG PlG
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y = [R 3 6/( h /4e ) ]—1

=2/Tg —1=(1—T,g )l(1+Tig ) .

The amplitude of the nonequilibrium population intro-
duced by the gate b,pg =y(h/2e)I is now smaller by a
factor y. From a consideration similar to Sec. VA, we
expect y to be kept unchanged with increasing I unless
b pg exceeds fico, =6.4 meV. The data in Fig. 18(b) show
that the position at which the saturation of EV6 5 takes
place shifts towards larger ~I ~

values with increasing Vg
while the saturated value of EV56 is kept unchanged.
When EV5 6 at the different VG's are displayed together
against bpg=y(h/2e)I, in Fig. 18(c), the curves com-
pletely overlap with one another and with the former
data in the negative Apa range. We stress that an adjust-
able parameter is not used to derive any of the data in
Fig. 18(c). This demonstrates that only the nonequilibri-
um population at one boundary of the sample is relevant.

Let us focus our attention first on the negative range of
b pg in Fig. 18(c), where we have expected in the last sub-
section only the spontaneous phonon emission to be pos-
sible for the IES relaxation in the rage ApG & —1.1 meV.
The effect of the phonon emission is so small that a resul-
tant structure is hardly discernible in the hpv vs hpG
curve. It is important that hp ~ is saturated to
dpi -—=3.2 meV = —fico, /2 already when hpg reaches
about —3.2 meV = fico, /2. —We conclude from this
that an unknown rnechanisrn of very strong IES relaxa-
tion becomes efFective when ~b,pg~ exceeds fico, /2. Let
us turn to the positive range of hpG, where hpz is sa-
turated as well but the saturated values are smaller, and
dependent on particular sample boundaries and/or volt-
age probes. In the last subsection, w showed that the IES
transition due to impurity scattering is much more
effective in this positive b pG range. We suppose that the
nonequilibrium population of edge states reduces rapidly
to 6p&0=%co, /2 due to the same unknown mechanism as
that for the positive hpG range, and then further equili-
brated through impurity scattering. The extent of the
impurity-mediated equilibration must be sample-
boundary dependent because the concentration of the im-
purities effective to the IES scattering may be largely
dependent on particular boundaries.

We have made similar measurements of 5V
= V „—[h l(2Ne )]I in the conditions of (N, n )=(3,2)
and (3,1} at B=2.47 T (f'tt0, =4.3 meV) and observed
that 6 V „are again completely saturated when I in-
creases so that hpg = [h /(2ne )]Iexceeds A'c0, /2.

We do not have a clear explanation for the saturation
mechanism. Would it be possible that our picture of the
potential barrier presented in Sec. V A is inadequate and
EJMG is saturated to %co, /2 already at I=I, /2? For this
assumption to be consistent with the observed linear in-
crease of I with hp in Fig. 13(c},however, the potential
barrier has to work in such a way as to partially reflect
the i =0 edge channel while partially transmitting the
i =1 edge channel. This appears to the present authors
to be very unlikely. It might be useful to give tentative
suggestion about possible mechanisms. The edge states

might become unstable due to pileup charges when the
edge-state rearrangement is so pronounced that the
dispersion becomes flat at the edges; Bc,'. k/Ox=0 at
x =x in Fig. 15(a). Secondly, a new type of edge-state
excitation might be possible, in which electrochemical
potentials p;(y, t ) of two edge channels oscillate in time
and space with opposite phase; namely

po EF—= —(p, —E~) ~ exp[i(qy+cot)] .

Such an "optical-mode"-type excitation differs from the
known "acoustic-mode" edge magnetoplasma excita-
tions, ' for which different edge states are assumed to
be in phase:

p0 eF pl eF" exp[i(qy+~t )1

The "optic-mode" edge magnetoplasrna excitations will
promote IES scattering at the location where b,po, takes
on the maximum (qy +cot =2n n}.

VI. CONCLUSION

The transport properties of a high-mobility 2D EG at
strong magnetic fields have been studied in the presence
of nonequilibrium population of electrons among edge
channels, by using GaAs/Al„Ga& „As heterostructure
devices with a cross gate. Temperature dependence and
current-magnitude dependence have both been investigat-
ed in detail.

The observed temperature dependence of IES equili-
bration length studied in the two-channel case is well ex-
plained by a quantitative analysis of the IES transition,
which explicitly considers a Fermi distribution function
in edge states and takes account of a long-range impurity
scattering and the acoustical deformation-potential
scattering. The observed temperature dependence is con-
sistent with a smooth parabolic confining potential
[U(x) (m'/2}toox for x)0 and U(x)=0 for x(0]
with t00= 1.7 X 10' /s, which is also in accord with earlier
experiments. The analysis also shows that the impurity
potential of a force range of about 160 A dominates the
IES electron transition in the T range studied (1.4—13 K).

Analysis of nonlinear transport across a potential bar-
rier in the quantum Hall regime predicts an inverted pop-
ulation in an edge channel when the electrochemical po-
tential differs by more than Ace, across the barrier. The
analysis provides a reasonable account of the experimen-
tally observed current dependence of the two-terminal
resistance of the barrier. The energy transport by charge
carriers has been quantitatively described to show that
the here predicted inverted population gives an account
for the asymmetric energy dissipation around the poten-
tial barrier.

Unequally populated edge states reorganize themselves
because the pileup charges along the edge channel
significantly modify the electrostatic potential. The rear-
rangement of edge states leads to a characteristic depen-
dence of the IES equilibration length on the current.
This gives rise to an asymmetric nonlinear behavior of
those resistances that are relevant to the boundary of a
sample at which edge channels are unequally occupied.
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This work observed this effect in a Hall resistance. The
onset of spontaneous phonon emission promotes the IES
equilibration when the amplitude of unequal occupation
between relevant edge channels exceeds the threshold
value kg=Ac, q =Ac, ~/l&, where ~ is the IES sepa-
ration. This effect is small in absolute magnitude, but
causes a distinct structure in a differential resistance.

It was experimentally found that the maximum ampli-
tude to which adjacent edge channels can be unequally
populated is limited to Ap=Aco, /2, which suggests the
onset of an unknown mechanism that emciently mixes
edge states when b,p, )%co, /2. The understanding of the
mechanism is left for future studies.
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n„=[ exp(A'c, q/kT) 1—]

is the phonon occupation number, + signs refer to emis-
sion and absorption processes, respectively, and

G(q, )=[1+(q,a) ]

J(q„,q )=(b /2) exp( b —/2)

with b =(q, +q )lit are obtained by assunung, for g(z)
in Eq. (3), the Fang-Howard wave function '

g(z) =(2a )
'~ z exp( —z/2a ),

with the width parameter

a = [12m 'e'(
—,",n, +n~, p, )/(e, fi') ]
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APPENDIX

Squared matrix elements for the inter-Landau-level
transition 0, ko ) ~ 1,k, ) due to emission or absorption
of an acoustical phonon of wave vector q=(q„q», q, ) in

the ideal system of bulk Landau levels are given by

I& l, k la..lo, k, &l'

=(AEdq/2pVc, )/( l, k, /e 'q'/O, ko) /, (Al)

where q =
~q~ and

/( l, k, fe ~')O, ko& /'

=G(q, )J(q„,q)5»te, t, (n„+—,
'+ —,') .

Here, 5 & & resents the momentum conservation,
~y' I 0

A measure of the "thickness" of the 2D EG in the z
direction is given by fo"z~(~ dz=3a. For our 2D EG,
a =35 A is obtained with the 2D EG density
n, =3.4 X 10"/cm, the depletion charge density

ne, i
= 5 X 10' /cm, and the dielectric constant

e, =12.8@0 of GaAs.
Since the wave functions P;i, (x —X;) for our edge

states are the harmonic-oscillator functions, the results
given above for bulk Landau levels can be used for the
edge states with a simplification given below. Noting
that G(q, ) and J(q„,q ) are, respectively, rapidly de-

creasing functions of q, and q, and that

f G(q, )dq, =3m /(Sa ) and

f exp[ —(q„lz ) /2]dq„= v'2trlltt,

we approximate the functions as G(q, ) = 1 for

~q, ~

& (3~/16)(1/a ) and G(q, ) =0 otherwise, and

J(q„q»)=[(q»ls) /2] exp[ (q lit ) —/2]

for ~q„~ &v n/2(1/lit) and J(q„,q )=0 otherwise. For
simplicity, we also replace q in Eq. (Al) with q», because

qy LRLYO', /l~ » 1 /l~ is much larger than those q, or q„
for which G and J are nonzero. With these approxima-
tions, Eq. (Al) is transformed to Eq. (10) in the text,
where qy &=r„.
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