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Carrier-carrier scattering and optical dephasing in highly excited semiconductors
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A quantitative analysis of carrier-carrier scattering and optical dephasing in semiconductors is

presented and results are given for quasiequilibrium situations and for the relaxation of a kinetic hole in

a quasithermal carrier distribution. The calculations involve direct numerical integration of the

Boltzmann equation for carrier-carrier scattering in the Born approximation. The screening of the

Coulomb interaction is treated consistently in the fully dynamical random-phase approximation. Carrier
relaxation rates are extracted from the Boltzmann-equation solution and a quantitative test of the
relaxation-time approximation for situations near thermal quasiequilibrium is performed. The paramet-

ric dependence of carrier-collision rates and dephasing on plasma density, temperature, and electron and

hole masses is discussed and analyzed in terms of phase-space blocking and screening.

I. INTRODUCTION

Carrier-carrier (cc ) scattering in highly excited semi-
conductors is often the dominant relaxation mechanism
which drives the system toward a quasiequilibrium state.
Of particular interest are situations where (i) an initial
nonequilibrium carrier distribution evolves into a
quasiequilibrium state and (ii) a nonequilibrium condition
exists in a steady state.

A generic example for the first situation is an optically
pumped semiconductor, where electron-hole pairs are
generated by short-pulse interband excitation. ' This
kind of experiment in intrinsic, p- or n-type doped semi-
conductors makes it possible to investigate scattering in a
neutral electron-hole plasma, or in a hole or electron
plasma, respectively. Optical femtosecond pump and
probe techniques allow time-resolved observation of the
relaxation processes by monitoring the spectral changes
caused by the temporal evolution of the carrier distribu-
tion function, which may lead to a spectral hole in the
continuum absorption or in the optical gain. '

The situation of a quasistationary nonequilibrium car-
rier distribution is realized, e.g., in a cw running semicon-
ductor laser, where electron-hole pairs are constantly
generated through injection pumping and removed most-
ly through stimulated emission. The frequency-selective
carrier removal tends to cause a kinetic hole in the
quasiequilibrium carrier distribution which would be
present without the running laser mode. The detailed
shape of the kinetic hole is determined by the interplay
between stimulated recombination and carrier-carrier
scattering.

Generally, other mechanisms besides carrier-carrier
scattering exist that contribute to the total relaxation.
Examples are LO-phonon and acoustic-phonon scatter-
ing, i.e., deforxnation-potential and piezoelectric scatter-
ing. ' However, carrier-carrier collisions provide the
dominant relaxation channel for situations with very high
carrier densities, ' or low temperatures and carrier exci-
tation below the LO-phonon threshold.

The theoretical basis of cc scattering and its conse-
quences, like energy-level broadening and screening of
the Coulomb potential, can be found in the many-body-
theory literature, e.g., Refs. 10 and 11, and we therefore
restrict our presentation to a brief summary of the essen-
tial equations in Sec. II of this paper. For our purposes it
is especially important to emphasize the relation of the
carrier scattering rates with the optical dephasing, i.e.,
the temporal decay of the interband polarization. The cc
dephasing turns out to be the average of the total electron
(e) and hole (h ) relaxation rates.

Although many publications deal with cc scattering
rates and time evolutions for distribution functions, '

electron-energy-loss rates, ' and electron-hole energy
transfer rates, ' it is still diScult to perform a direct nu-
merical integration of the Boltzmann equation where the
screening is treated on the same footing as the scattering
probabilities. We present in this paper a solution for the
scattering rates within the Born approximation including
the screening of the Coulomb potential in the full dynam-
ical random-phase approximation (RPA). In Sec. III we
evaluate the Boltzmann equation for the relaxation of a
kinetic hole in a high-density quasiequilibrium carrier
distribution. This situation is most relevant in semicon-
ductor lasers and amplifiers. From the full solution of
the Boltzmann equation we extract carrier relaxation
rates and investigate the applicability of the so-called
relaxation-time approximation (RTA).

In Sec. III we also present a detailed discussion of the
dependence of the carrier relaxation rates on relevant ma-
terial parameters such as the electron and hole masses,
the plasma density, and the optical pump frequency. The
effective masses of holes and electrons in semiconductors
and semiconductor quantum wells differ by factors of the
order of 1 to 10. Therefore, the phase-space effects (Pauli
blocking) are quantitatively quite different for electrons
and holes. For doped semiconductors this leads to
different scattering rates in n- or p-type materials. For a
two-component electron-hole (e-h ) plasma, the scatter-
ing rates depend on the e -h mass ratio. A short summary
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in Sec. IV concludes the paper. In the appendixes we
present some details of our numerical methods (Appendix
A) and of the relaxation rate approximation (Appendix
B). Furthermore, in Appendix B we also give some useful
analytical fitting formulas for the chemical potential and
the effective carrier temperature for quasiequilibrium
Fermi distributions.

II. OPTICAL DEPHASING
AND THE BOLTZMANN EQUATION

FOR CARRIER-CARRIER SCATTERING

Optical nonlinearities in highly excited semiconductors
can be modeled using a generalization of the semiclassical
optical Bloch equations for the polarization P(k, t ) of the
momentum state k and the distribution functions of elec-
trons and holes f (k, t), a=e, h. For the purposes
of this paper we restrict the discussion to the limit of
high plasma densities, allowing us to neglect the eh
Coulomb correlation. In this limit the semiconductor
Bloch equations are

i% —e, (k—) —X'„(k )
—ek(k )

—X„"(k)+i yo P(k )

= —Im[X'„(k)+X„"(k)] .
2

(2.5)

This time is governed by the fast cc intraband scattering,
not by the eh interband recombination as could be ex-
pected in analogy to atomic systems. The relaxation of
the distribution function toward a thermal quasiequilibri-
urn is described by the in and out scattering rates I;„and
r.„t. The dephasing rate of one-particle states is quite
generally related to the retarded self-energy via ""

E (k ) = c. (k )+ ReX„[k,E (k ) ]

=e (k}+ReX„(k},

where X„(k)=X„[k,e (k)]." Renormalization and
broadening of the state k are therefore approximately
given by the real and imaginary parts of X„(k), respec-
tively.

The dephasing rate yo in Eq. (2.1) comprises all pro-
cesses that contribute to the decay of the optical polariza-
tion in the limit of vanishing plasma density. The addi-
tional dephasing due to the carrier plasma can be de-
scribed by the dephasing time Tz defined as

=y,"E[1 f,(k) ——fh(k)] (2.1)
A'( I,„+I,„,) = —2 ImX„. (2.6}

and

d (k, ) d (k, )
iii =21 m[(p'"E)*P(k)]+iri

dt
(2.2)

+ex —+ex + +ex
in out ' (2.7)

As we discuss in Sec. III in more detail, it is possible to
define the total scattering rate I for plasmas close to
quasithermal equilibrium via

—I',„,[k„f]f (k, ) . (2.3)

Equations (2.1) and (2.2) describe the response of a two-
band semiconductor with optical dipole matrix element
p" to a classical external field E. In Eq. (2. 1) the renor-
malization of the unperturbed energy bands

s (k)=iri k /2m +E (0) (2.4)

(m„m& )0) due to cc scattering is described by the re-
tarded self-energy X„(k,co). For simplicity, we treat the
frequency dependence of the self-energy in a quasiparticle
approximation based on the fact that the quasiparticle
dispersion for electrons or holes follows from

where the carrier-carrier scattering term is given by the
Boltzmann equation

d (k, )
=r;„[k„f]l1 —f.(k, }]

CC

Introducing the longitudinal intraband relaxation time
T', by I =1/T', we have the usual relationship Ti =2T'„
here specialized for the case of cc scattering. A discus-
sion of more sophisticated dephasing theories (i.e.,
beyond the quasiparticle approximation) can be found,
e.g., in Ref. 6.

In order to describe a laser, one has to treat the light
field self-consistently with the material polarization. The
relationship of the decay of the photon correlation func-
tion with the dephasing processes presented here can be
found, e.g., in Refs. 27 and 28. Additionally, in the laser
case the equations for f must be supplemented by contri-
butions describing injection pumping and spontaneous
emission.

The carrier-carrier scattering rates within the Born ap-
proxirnation are derived and qualitatively discussed in

many publications (see, e.g., Ref. 11). Therefore, we just
summarize the basic results:

and

r;.[I i f]= g 2III'[I,—I &, E, (k, ) —E, (k, )]l'f, (k, )[1 f (k, )]f (k, )—
a, k2, k3, k4

&k, +k, k +k ~[&,(ki ) E, (ki)+E (k3) —E (k4)] (2.8)

:.Ik f]= g 21 II'[I,—k, , (k, )—,(k, )]l'[1—f, (k )]f (k )[1 f (k)]-
a, k&, k3, k4

k]+k3 k&+k4 [ e 1 e( 2 ) &~(k3 ) e~(k4 )] (2.9)
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where 8' denotes the screened Coulomb potential. The
corresponding hole scattering rates are obtained from
Eqs. (2.8) and (2.9) by substituting h for the index e. We
always assume the distribution functions to be isotropic,
i.e., to depend only ~k~.

The screened Coulomb potential is given as

W(q, co) = = V(q)e '(q, a)),V(q )

1 —V(q)P(q, co)

containing the unscreened potential

2

V( )
417e

q

(2.10)

(2.11)

which includes the background dielectric constant of the
unexcited material eo via e =eo/eo (eo is the free elec-
tron charge) and V is the crystal volume. Within the
Born approximation for the scattering rates the dynami-
cal screening due to the charge carriers is determined by
the RPA intraband polarization function

averaging the heavy-hole mass mhh=0. 37mo and the
light hole mass m&h=0. 08mo so that the density of
states of the averaged hole band yields the average of the
density of states of the two hole bands, i e.,
m' '= —'(m' '+m' '}mh 2 hh 1h

We study the situation where the distribution function
has been distorted at small k values, as would happen due
to an optical pump beam with a central frequency in the
gain region of an inverted semiconductor. Figures 1(a)
and 1(b) show the relaxation of such a "kinetic hole" in
the electron and hole distribution functions. The kinetic
hole in both distributions vanishes very rapidly, on the
time scale of 50—100 fs. The corresponding dephasing
time T2 =2/(I'+ I ")=50 fs.

To study the validity of the relaxation-time approxima-
tion (RTA) discussed in Appendix B, Eq. (B2), we extract

1.0

f (k) f (lq+kl)

We want to point out that within the Born approxima-
tion the quasiequilibrium scattering rates take the famil-
iar form ( ~ lmW) only if one uses the full RPA screen-
ing function.

The effects of phase-space filling due to Fermi statistics
and the screening of the Coulomb potential generally
prevent the scattering rates from increasing monotonical-
ly with the density of the plasma. These effects are not
mutually independent since, as shown by Eq. (2.12), the
screening itself is affected by phase-space filling. In the
classical limit, when the distribution functions are small
in comparison to unity, the density dependence of the
scattering rates is dominated by screening. Therefore, at
low densities an increase of the carrier density makes
more particles available for scattering but the matrix ele-
ment for each scattering event is reduced. At higher den-
sities the situation is more complicated due to phase-
space filling which depends strongly on the masses of the
two plasma components.

III. RESULTS AND DISCUSSION

We solve the Boltzmann equation (2.3) together with
Eqs. (2.8)—(2.12) numerically using the techniques de-
scribed in Appendix A. As a relevant material for our
studies we choose bulk GaAs, where so = 12.3 and the ex-
citon binding energy is E„=4.2 meV, which corresponds

0
to a Bohr radius of az =140 A within a two-band model.
Since we are using the two-band model we approximate
the heavy- and light-hole bands, which are degenerate at
k =0, by one effective band. The choice of the averaged
hole mass is not unambiguous. Therefore, we investigate
the inhuence of the average hole mass or, more precisely,
the inhuence of the mass ratio mI, /m, for a fixed reduced
mass (1/m, + 1/mz ) '. As model parameters we choose
m, =0.067mo and m& =0.247mo (mo being the free-
electron mass), corresponding to a mass ratio
mz/m, =3.68. This value for mI, is obtained simply by

z0
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FIG. 1. Relaxation of initially disturbed Fermi distribution
functions for density n =3X 10' cm and temperature T=300
K obtained by numerically solving the Boltzmann equation us-
ing the dynamically screened Coulomb potential in the RPA.
Shown are the distribution functions of electrons (a) and holes
(b) as functions of the carrier momentum in units of az '. The
initial (t=0) distribution functions are shown as dotted lines.
Consecutive times are t=21 fs (short-dashed line), t=75 fs
(long-dashed line), and t = 147 fs (dash-dotted line), and the final
time t =796 fs (solid line).
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less structure and all scattering rates are slightly in-
creased in comparison to Fig. 5. We attribute this to the
reduction of screening, which overcompensates the effect
of a reduced number of scattering partners.

The fact that Figs. 5 and 6 both show larger scattering
rates if the single-component plasma consists of heavy
particles (h plasma) compared to a light-particle plasma
(e plasma) is not in contradiction to Ref. 21, where it has
been found that for n-type doped systems at zero temper-
ature and for k =0 the scattering rate decreases with in-
creasing mass. In that case, the phase-space restriction is
the dominant contribution and our results yield similar
behavior for k =0 and T =0. For a cold (10 K) eh plas-
ma we show in Fig. 7 the inAuence of the mass ratio on
the scattering rates. At low temperatures and small k
values the heavier particles relax at a much reduced rate
compared to the lighter particles. However, we cannot
confirm the room-temperature results of Ref. 2, where
strongly increased scattering rates in the case of n-type
doped as opposed to p-type doped quantum wells have
been reported.

12
LJJ
I—
&C
Q

8
E3

0
0

WAVE NUMBER kae
10

IV. SUMMARY AND CONCLUSIONS

FIG. 7. Equilibrium scattering rates for T=10 K and eh

plasma density n =3X10"cm '. The different curves are for
mass ratios of mI, /m, =3.68 (solid line), mz/m„=1. 0 (short-
dashed line), and mz /m, = 10 (long-dashed line).
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In summary, we present a quantitative analysis of
scattering and dephasing rates for electron, hole, and
electron-hole plasmas in semiconductors. Scattering
rates and dynamical screening are treated on an equa1
footing. We study carrier relaxation for situations in and
near quasithermal equilibrium. The dependence of the
scattering and dephasing rates on electron and hole
masses, plasma density, and lattice temperature is dis-
cussed.

The relaxation-time approximation is introduced and
its region of validity is analyzed. Even though the RTA
results show good qualitative agreement with the full re-
sults, ihey do not reproduce the reshaping of the kinetic
hole, especially during the later stages of the relaxation
process. Hence, we conclude that the RTA can be used
for a simple description of the relaxation of kinetic holes
in a high-density plasma, as long as the detailed shape of
the kinetic hole is not significant for the processes investi-
gated. We wish to point out, however, that our results do
not imply that the RTA is valid for arbitrary initial car-
rier distributions. Indeed, for optical excitation of car-
riers high into the interband absorption region of the
semiconductor, we expect quite significant deviations.
This scenario will be describe in a forthcoming publica-
tion .

The results presented in this paper will be used in a
variety of ongoing and future studies. As a relevant ex-
ample we mention Ref. 28, where the inAuence of carrier
dephasing on spectral hole burning and gain saturation in
short-cavity semiconductor lasers is investigated.

FIG. 6. Equilibrium scattering rates corresponding to Fig. 4.
The different curves are for a double-component plasma of elec-
trons (a) and holes (b) each having a density of 1.5X10' cm
(solid line), 3X10" cm ' (short-dashed line), for a single-
component plasma of electrons at a density of n =3 X 10' cm
(medium-dashed line), and for a single-component plasma of
holes at a density of n =3 X 10' cm (long-dashed line).
T=300 K for all curves. (c) The corresponding Fermi distribu-
tion functions for the electron-hole plasma are the solid curves,
and those of the single-component electron and hole plasmas
are short-dashed curves.
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APPENDIX A

The numerical solution of the Boltzmann equation (2.3)
follows essentially the method of Ref. 13 for isotropic sys-
tems. After summing over k4 and replacing k2 by k2+k&,

the polar angle between k3 and k2 is integrated with the
help of the energy-conserving 5-function. The two az-
imuth angles are integrated trivially and only the polar
angle between lri and k2 (the cosine of which we denote
by z ) remains to be integrated numerically in addition to
the moduli of k2 and k3. In excitonic units (i.e., the
momentum is given in units of the inverse Bohr radius,
energies are given in F.„, and masses are given in units of
the excitonic reduced mass m„), we have

df, (ki ) f' dz f dk2k2 f dk3(k3+8)2iW(k22k2kiz/m, +k2/m, )i
(2n )' 2 —i o

' '
o

X {[I—f, (ki)]f, [+k2+ki+2kik2z ]

&&[I—f (k)+&)]f [Qk'2+(k, +8) —2 mba ]—(f~l —f)j,
(A 1)

with
2k, k2z

A =E,(k2)+E (k2)+
me

and

The k and z integrals are performed by Gaussian quadra-
ture. The time integration is done using a fourth-order
Runge-Kutta method with an adaptive step size. The
conservation of carrier density and kinetic-energy density
is monitored. For the results shown, both quantities vary
less than 2'. We have verified that the Fermi functions

are stable even if the time integration is continued. Since
with a finite number of k points the numerically obtained
time derivatives never reach an exact zero, the stability of
the Fermi function can in principle break down if too few
k and z points are taken. Equation (A 1) shows that for a
finite k range the numerically more stable solution with
time derivative zero is f=const. Upon carrier conserva-
tion this solution is only possible with a finite integration
volume. In the case of the exact Boltzmann equation this
solution corresponds to f~0.

The angle-integrated RPA polarization needed to
evaluate the dynamically screened Coulomb potential W
is given as

Q[co+e (q) —2qk/m ] +5 Q[ro —s (q)+2qk/m, ]-+5
ReP (q, co)= dk kf (k)ln

4ir q o +[co+a (q)+2qk/m ] +5 Q[ro e(q) —2—qk/m ] +5
(A2)

and

(A3)

where we took the limit 5~0 in the imaginary part. The
real part of P still contains 6 as a parameter. We have
verified, however, that for our choice of 5=0.05co

&
the

exact value of 5 does not affect the result for W. In the
limit k2~0 a small nonzero 5 can prevent W from
reaching the z-independent static limit of 8~/~. We
therefore force the potential to retain this limit by using a
switch-off function

with W =8~/(q +a ) being the statically screened po-
tential. For the calculations discussed in Sec. III we have
optimized the parameters to be a =5.0 and b =0.04 for
the electron scattering rates and 6=0.12 for the hole
scattering rates, respectively.

APPENDIX B

a
s(q)= q'+ d'

where d = t/b~, and the numerical potential

i
~num(2 gi ~i2+(1 g)i PrOi2

(A4)

(A5)

The relaxation-time approximation (RTA) is the model
of an exponential decay of a deviation 5f:f f from a- —
quasiequilibrium distribution

1
P[a (ki —p ]

e +1
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i.e., the Boltzmann equation reads

df, (k) = —I'[k,f ][f,(k) —f, (k)],
CC

(82)

where the relaxation rate I should be evaluated at the
value ko around which the relaxation will be studied.

Equation (82) is an approximation to the linearized
version of the original Boltzmann equation (2.3). The
rigorously linearized Boltzmann equation of course con-
tains also nondiagonal terms in k, which result from the
functional derivative of the scattering rates with respect
to 6f. Nevertheless, one could then perform a matrix di-
agonalization and extract the dominant scattering rates.
However, as we show in Sec. III, for the conditions ana-
lyzed in this paper a diagonal relaxation rate approxima-
tion seems quite appropriate.

The condition that I has to be k independent is a
consequence of carrier conservation. If I were k depen-

dent in the momentum region where 5fWO, the
carrier conservation, which requires 0= (d Idt )+6f
=+I (f f—

) and simultaneously g(f —f )=0, could
be violated,

For an efficient evaluation of the relaxation rates need-
ed for the RTA, one can use the identity

f (E —A'co)[1 —f (E)]=g(—fico)[f (E)—f (c.—enrico)],

(83)

where g is the Bose distribution

g(fico) = 1

Using this identity, the definition of the RPA polariza-
tion (2.12) and the relation W~ ImP= ImW, one can
rewrite the relaxation rates (2.8) and (2.9) in the following
familiar form:

and

I,„,[k„f ]=—2+Imi W[k2 —k„E (ki) —e (k, )]jg[e (k2) —e (k, )][1—f (ki)]
k2

(85)

I;„[ki,f ]=—2g Im[ W[k& —ki, E (ki) —e (ki }]][ I+g[c, (k&) —c. (ki )]Jf (k&) .
k2

(86)

For practical applications of the RTA, Eq. (82), one
needs in addition to I' and I " also the chemical potential
iu of the carriers and the carrier temperature kii T= I lp,
which uniquely determine the Fermi functions f, and fh.
To obtain these parameters, we use the fact that cc
scattering conserves the particle densities of electrons and
holes,

n =2+f (k), (87)

as well as the total kinetic energy

(E) = g (E ) =2+ s (k)f (k) .
a, k

These conditions determine ice and P and ensure that the
carrier distributions relax toward the correct Fermi func-
tions. If additional effects, such as the pump injection or
spontaneous emission in a laser, are relevant, the outlined
procedure still optimizes the RTA, even if the actual dis-
tribution function never totally agrees with the Fermi
functions. Although one could just put Fermi functions
into Eqs. (87) and (88) and solve for p and T, we would
like to present a numerically more practical way.

First we invert Eq. (87) to PiM for arbitrary P. To do
that, we use the analytical approximation for the chemi-
cal potential discussed in Ref. 25, Chap. 6, where refer-
ences to the original work are also given. According to
Eq. (6.37}in Ref. 25, Eq. (87) can be approximated by

Pp = lnv +K, ln(Kzv +1)+K3v

K3 0. 133 376 0. The parameter v is defined by
' 3/2

v =4n
2m~

(810)

This approximation can be used in the regime—cc (piLc (30. In the regime where pip )30, the solu-
tion can be matched with the well-known Sommerfeld
solution for low temperatures, given by

' 2/3 — —2/3
3v &ir ~& 3v &ir

4 12 4

Equations (89) and (811)cover the whole range excellent-
ly for Eq. (87).

To treat Eq. (88) the same way, we use the identity

n, nh

(812)

2/3
3 3v &ir

pe„;„=gn
a

—2/3
3v &m.

Inserting now Eq. (89) or Eq. (Bl1) into Eq. (812) and in-

tegrating with suitable boundary conditions we obtain

Ei
Pe&,„-—', g n 1+Ki — 1n(1+K&v )+—,'K3v

a 2 Q

(813)

for high temperatures and

where K i
=4.896 685 1, K2 =0.44964 57, and (814)
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for low temperatures, respectively. Our analysis shows
that Eqs. (B12) and (B13) are excellent approximations
for Eq. (B8) over the whole parameter range. These
equations form a single nonlinear equation for the vari-

able P for given n and E„;„,which is easy to solve numer-
ically because the right-hand side is a monotone, smooth
function. Once P is know, Eq. (B9) or Eq. (Bl 1) is used to
obtain the chemical potentials.
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