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Optic-phonon-limited transport and anomalous carrier cooling in quantum-wire structures
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We present an analytical derivation of the distribution function of a one-dimensional electron gas at
high temperature. The quenching of carrier-carrier scattering and the predominance of polar-optic-
phonon scattering make the system nonergodic and provide a "jagged" profile to the distribution which

results in carrier cooling below the thermal energy. In GaAs quantum wires, this anomalous effect,
which is characterized by extremely high carrier mobility, is predicted to occur above TL =150 K.
These conclusions are in excellent agreement with results of Monte Carlo simulations.

I. INTRODUCTION

In the past few years, the physics of reduced dimen-
sionality systems has experienced a rapid development,
mainly stimulated by the considerable advance in fine-line

lithography and crystal-growth techniques. ' Quasi-
one-dimensional (1D) systems, or quantum wires, have
recently been investigated for the transport properties as-
sociated with universal conductance fluctuations and
quantum interference phenomena. At high temperature,
however, strong phonon scattering prohibits long-range
coherence arising from the wave nature of the electrons,
and carrier motion can be described in terms of particle
dynamics. In this context the transport properties of 1D
systems are essentially different from 2D and 3D sys-
tems. Among other factors, the reduction of momen-
tum space to a single dimension (even with multiple
transverse modes), has profound consequences on carrier
statistics because it limits the number of available final

scattering states. Significant mobility enhancement has
been predicted for both low- (Ref. 10) and high-
temperature 1D transport. " Detailed Monte Carlo
simulation of hot 1D carrier transport at room tempera-
ture shows significant deviations from the Maxwellian
distribution at intermediate electric fields (F-100 Vjcm)
(Ref. 12). Pronounced structures at multiples of the
longitudinal-optic (LO) polar-optic-phonon (POP) energy
E =nfito are predicted in the distribution function (DF)
which exhibits a "jagged" profile once POP absorption is
appreciable, i.e., above T= 100 K. ' It has been shown in
previous works that this singular behavior is enhanced in
the case of resonances between the POP energy and the
1D subband separation, ' and induced population inver-
sion between adjacent off-resonance subbands. ' Al-
though these effects have only been established by numer-
ical simulations, the existence of non-Maxwellian jagged
DF compatible with the Boltzmann equation has not yet
been demonstrated. In this paper, we derive an analytical
solution of the Boltzmann equation which is consistent
with Monte Carlo simulation. More than providing a
confirmation of earlier numerical results, our analysis
reexamines the popular concept of Maxwell distribution'

and the ergodicity of 1D systems in the presence of POP
scattering. In particular, we show that the 1D carrier
mobility can exceed its bulk value by almost an order of
magnitude at room temperature, and the electron system
undergoes a cooling below the thermal energy.

and

P,,(k„,r) = e' '"g, (y)(b, (z), (2)

where k and L are the wave vector and the wire length
in the longitudinal direction and g, (y) and (() (z) are the
transverse wave functions which correspond to the quan-
tized energy levels E; and E, respectively. N is the max-
imum number of levels considered in a particular
confinement situation. The remaining term in Eq. (1) is
the kinetic energy of the particle resulting from the free-
electron component of the overall electronic wave func-
tion [Eq. (2)]. The advantage of dealing with elementary
configuration is the decoupling of the electronic y and z
wave functions, which facilitates the computation of the
scattering rates.

In modulation-doped GaAs structures, ionized-
impurity (II) scattering is insignificant at high tempera-
ture, and acoustic-phonon (AP) scattering (r,', =10'
s ') becomes inefficient compared to POP scattering
( rpop ~ 10' s '

) once electric fields F significantly
exceeds 10 V/cm. ' In addition, carrier-carrier scatter-
ing vanishes for intrasubband binary processes. From the
1D conservation laws, one obtains

II. ELECTRONIC PROPERTIES
AND SCATTERING RATES

In this analysis we assume that simple confinement
configurations in quantum wires arise from elementary
GaAs-Al Ga, As potential wells which are decoupled
along the two transverse y and z directions. Electrons are
free to move along the x direction with energies and wave
functions given by

Ak,
E&(k„)= +E;+E with i j =1, . . . , N

2m
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(3a)
tion into wave-vector-conserving 5 functions and obtain

5[E'„(k' ) —E„(k„)+fico]
PI+P2=PI+Pe ~ (3b)

where pl, p2 and p', ,p2 are the 1D electron momenta, re-
spectively, before and after interaction. It can be seen
that carriers simply exchange energies and momenta dur-
ing collisions. For indistinguishable particles, this pro-
cess is irrelevant. ' Consequently, intrasubband thermal-
ization is suppressed. Therefore, electron-POP interac-
tion is the only mechanism for carrier-energy dissipation
and momentum randomization. The general form of the
electron-phonon Hamiltonian reads'

H, „=g Cq(aqe' "—aqte 'q"), (4)
q

where a and a are the phonon creation and annihila-
tion operators and Cq determines the electron-phonon
coupling strength given by'

2m 2 1
Cq= —i e %co

Vol e„

1/2

Here Vol is the wire volume and e„and eo are the optical
and static dielectric constants, respectively. co (=36
meV) is the POP frequency. The I/q dependence of Cq
implies that collisions involving small exchanges of
momentum are the most favorable for the POP interac-
tion. Although recent work has demonstrated the impor-
tance of treating confined phonon modes in highly quan-
tized systems, only bulk modes are treated here. This is
a good approximation as long as well widths are not nar-
rower than 50 A.

In the semiclassical limit, the expression, for the 1D
transition probability S„(k„,k„') derived from Fermi s

golden rule, reads

[5(k„'—K„*.)+5(k„'+E+„.)], (8)
AE

with

z (E, E, +—flu)+k„
$2

1/2

and

E =E;+E. , (10a)

Rk
E,(k„)=E +

2m
(lob)

g IM„„(k„,k„';q)l',
AK„„.

(12)

and depends on the absolute value of q =k„—k' since
Cq is proportional to 1/lql. In particular, if we consider

and similarly for E,.(k„').
If we call backward (forward) scattering events which

do (not) reverse the carrier momentum, the first term on
the right-hand side (RHS) of Eq. (8) corresponds to for-
ward (f) [backward (5)] scattering if k„ is positive (nega-
tive). The second term corresponds to backward (5) [for-
ward (f)] for the same condition (Fig. 1}. The transition
probability becomes

S„,(k„—k„')=I,+„(lk„—k,'l)[5(k„' —K„+, )

+5(k,'+E „+„)],
with

S„,(k„,k,')= g lM„„(k„,k„';q) 2

ql

X5[E,'(k' ) E(k„)+A'cu]—,

with

M„„(k„,k„';q) =(Nq+ —,'+—,
')'~ C 5„qq,k k„+q„

X f dye,*'(y)g, (y)e

X f dzP,"(z}P,(z).e

(6)

(7)

Emission

The indices i, i', j, and j' refer to the quantum numbers
of the transverse wave functions which together deter-
mine the subband indices v and v'. M (k„,k„';q)
represents the electron-phonon matrix elements for a
transition from an initial k„,v state to the final k', v' state
mediated by a phonon with wave vector q. This matrix
element is summed up over all transverse components q~
to provide the 1D transition probability. The + sign in
the prefactor of Eq. (7), and the energy-conserving 5
function [Eq. (6)], account for emission (+) and absorp-
tion ( —) of phonons between subbands with indices
v'(i',j ') and v(i, j). We can transform the energy 5 func-

Absorption

g' = —K
X VQ X

I I

"X &'X=K'

FIG. 1. Schematics representing the four fundamental POP
scattering processes in 1D systems POP emission and POP ab-
sorption with both forward and backward processes from an in-
itial k„state to a final k„' state.
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only the lowest subband and neglect intersubband transi-
tions v= v' =(l, I),

~+ k2 2m'
X (14)

Here, the subscripts a and e stand for phonon absorption
and emission, respectively. The total scattering rate from
an initial state with energy E (k„) is given by

A,„[E(k„)]=g S„„(k„,k„') . (15)

S„(k„—k„' }=S(, ,) ( ~
k„—k„'

~
}

= I(+,) ( I
k„—k,' I }

X [5(k„' K—+ )+5(k'+K )], (13)

with
' 1/2

The summation over the final states k„',v' takes into ac-
count all possible forward (f) and backward (b) intersub-
band transitions along with those occurring within the
same subband v.

III. BOLTZMANN EQUATION

In the following, we will assume that we deal with a
nondegenerate electron gas interacting with POP's only.
In order to simplify the analysis, we consider the extreme
quantum limit, i.e., where only the lowest subband is oc-
cupied, and neglect intersubband transitions which would
considerably complicate our derivation without introduc-
ing new physical effects. Such a situation arises in ex-
tremely confined 1D systems as in field-effect transistor
quantum wires realized with a V-groove structure, with
moderate longitudinal electric fields (I' &500 V/cm} to
prevent electron excitation to the upper subbands.

In steady-state and spatially homogeneous systems, the
Boltzmann equation takes the following form:

f*(k„)= —f*(k„)g [Sf(k„—k„')+S,(k„—k„')+Sf(k„—k„')+S,(k„—k„')]
X

+ g [S,(k„' —k„)f (k„')+S,(k„' —k„)f+(k„')+S,(k„' —k)f (k„')+S,(k„' —k)f +(k„')], (16)

where f (k„) is the distribution function for momentum i)'ik„=k&2mE and the superscripts identify the f- and b

scattering processes. The first sum on the RHS of Eq. (16) corresponds to outscattering events involving all POP ci, e, f,
and b processes. The second sum corresponds to all POP inscattering events. Because of the energy conservation (5
function in the S terms} the summation over k„' is reduced to only one term, i.e.,

Lf*(k„)= — [I,(k„+K+ )+I,"(k„+K+)+I, (k„+K )+I,(k„+K )]f*(k„)
2

L
+ [I,(K +k„)f (K )+I,(K +k„)f+(K )+I, (K+Wk„)f*(K+)+I,(K+kk„)f+(K+)],2'

(17}

where L„ is the wire length.
From Eqs. (13) and (14) [since I ( ~k„—k„'

~ ) only depends on the absolute value of the difference between the two wave

vectors] we notice that

L„ If(k„+K +
) L„ If(K + +k„)

2' Nq 2'' 1 +Nq 7 +
(18a)

L„ I,"(k„+K+) 2~ I, (K++k„)
2K Nq L 1 +Nq

b 7

7+
(18b)

where the + sign is for k„positive or negative, respectively. We obtain similar expressions with K that we call 1/v

and 1/r, respectively. By changing variables and setting E =fPk„ /2m, Eq. (17}reads

2E
m

1/2

dE
f+(E)= q q fg( ( )

f (E +fico) f + (E +fico)
q b

7 — 7+ 7 +

f+(E —i)ico) f + (E fico)— (19)
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where the bare POP rate (i.e., without the phonon occu-
pation numbers 1+N and N ) can be written as

1/2 (20)

' 1/2
1 Vol 1 m

qJ b(E) (2qr)2 $2 2fico

X fd„(~(fk„~IC*J;q,) f', (21)

where Vol is the wire volume. From the total scattering
rate, we have also the relation

1 1 + 1
b

(22)

with

1 1 1

f b 7

oa 0+
(23)

The square root accounts for the profile of the 1D density
of states and 1/rf'0 is a form factor containing the 3D
phonon matrix element
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FIG. 2. Total POP scattering rate for the confinement condi-
tions described in the text. The influence of upper subbands are
omitted solid lines. Total emission (1/~, ) and absorption (1/~, )

rates, respectively; dot lines denote forward (f) processes;
dashed lines denote backward (b) processes. Inset shows nor-
malized matrix element 1/v0 for electron-POP interaction
summed over the transverse POP wave vectors. Upper curve
represents forward scattering; lower curve represents backward
scattering; dots denote expression (1/2) [1—v'E /(E +%co) ] used
in Eq. (37).

which yield the useful relation

1 1

Ho+(E) roo' (E+fico)
(24) Nq

dE W+ (E)
f+(E)= T f+(E)k(1+N )

In Fig. 2, we show the total POP scattering rate for ab-
sorption and emission with f and b contributions for the
ground subband of a quantum wire formed at the hetero-
junction of a V-groove structure' with a quantum well of
135-A well width and a triangular confining potential
with F= 120 kV/cm. "

IV. SOLUTION
OF THE BOLTZMANN EQUATION

Because of the discrete nature of optic phonons, POP
scattering redistributes carrier energy between the inter-
vals nfico &E & (n +1)fuo with n =0, 1,2, . . . , etc.
without causing intrainterUal randomization. Moreover,
as we emphasized in Sec. II, intercarrier scattering is ab-
sent in the single-subband process, so carriers cannot
thermalize. Thus, the system is not ergodic at equilibri-
um, since particles are unable to cover all points in phase
space. ' In these conditions the DF function has no a
priori specific profile reminiscent of the Maxwellian dis-
tribution, as would be expected from the linea~-response
theory, or the electron-temperature mod'=i. ' In the
first-energy interval 0&E ~%co, POP emission and in-
scattering absorption are prohibited, so Eq. (19) reads'

f*(E+fico) f+(E+fico)
Wf+ (E) W+ (E)

(25)

for O~E ~%co, and

1+Nq Nqf*(E)=+ ' + ' f*(E)k(1+N, )dE W E W+ E

f (E+fico) f+(E+fia))
Wf+ (E) W+ (E)

f+(E fico) f— (E f'ico)—
W (E) W (E)

for n fico & E & (n + 1)fico and n & 1, with
1/2

W~~ (E)=eF ro/~b(E) 21
1/2

(26)

(27)

which obeys the relation W+ (E —fico)=W (E) [see
Eq. (24)]. We can translate Eq. (26) into the energy inter-
val O~E ~%co, by the transformation E~E+nfico, and
obtain
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d 1+N N
*(E+nfico =+ + * E+ iii

(E+nhco) W+(E+nkco)

f—[E+(n +1)A'co] f + [E+(n +1)A'co]
Wf+ (E+nfico) W'+ (E+n %co)

+N f+[E+(n —1)fico] + f [E+(n —1)%co]
Wf (E+nRco) W (E+nhco)

(28)

f,"(E)=—,
'

[f+(E +n Aco ) +f (E +n fico ) ],
f,"(E)= —,

' [f+(E + n Aco ) f ( E—+n A'co )],
and let us call

W„' = W '"(E+nhco)= W ' [E+(n —1)A'co)] .

We obtain the following equations:

(1+Nq )
f,"(E)= — f,"(E)

n

(29a)

(29b)

(30)

for n =0, 1,2, . . . , etc. The first term within the first set
of large parentheses and the two terms within the last set
of large parentheses on the RHS vanish for n =0.

Let us define the symmetric f, and antisymmetric f,
parts of the distribution function:

Nqf (E) (1+N )f + (E) (33)

We note, in passing, that this equation would be
satisfied by a Maxwellian and a linearly "displaced"
Maxwellian distribution. However, Eq. (33) with the sum
rule (32a) imposes f, to be constant on each interval so
that we obtain

f, (E)= (34)

By making use of Eqs. (32a) and (33) we can transform
Eq. (32b) and get

n

d Nq 0

dE & 1+Nn=0 q

by using Eqs. (22) and (27). Under moderate or lower
fields (F~ 500 Vjcm) the electron-phonon interaction is
still strong enough to establish a detailed balance between
energy intervals so that we can assume

f,"(E)
n+1

n+1

2J

+(1+Nq )
1 f n+1(E)

8'„+1

(31a)

or

f, (E)=—0
4JN co Nq

(1+N ) „o 1+Nq

n

(3&)

1

W„+,(E)

f,"(E)=— [(1+N )f,"(E) Nqf,
" '(E)]— where we used

[(1+N )f,"+ '(E) Nq f,"(E)], —
n+1

with

oo

1+N,

d cx)

g f,"(E)=0 or g f,"(E)=J =const,
dE„O ' „0

1 1

8'„+1 W„+1f bg f,"(E)=—g
n=0 n =0 n+1

X [N f,"(E)+(1+N )f,"+'(E)]

with f, '=f, '=0.
This yields the following (exact) sum rules:-

(32a)

fled
N = exp —1

N
x g 1+N

n

The solution f, (E) is then given by

4JN
f, (E)=f, (0)—

(1+N )

W„+,(E)
00

[Nq f,"(E)
8'„

+(1+N )f,"+'(E)],
(32b)

4JN E dE(0)—
(1+Nq ) o W, (E)

(36b)

where we dropped the high-order terms of the rapidly
convergent n series since



OPTIC-PHONON-LIMITED TRANSPORT AND ANOMALOUS. . . 11 027

1+N

'n
—n hap/kT

Ace

nL = g f dED(E+nfico)f, (E+nRco)
n ——0

' 1/2

Jf' '=1+N
q

1+7'd 1-
E /Ado

x
&g(g+1)

J
~ 1+2y ln 1+

V'2

1+Nq 2
1/2

—ln 1+ E +Rco
(37)

with

and

y =2Nqfico/(1+Nq )eFU, qo

U, =V2fico/m for 0 ~E ~ t)tco .

Here g is the integration variable and we have approxi-
mated 1/ro in Eq. (21) by

(1/2&o)[1 &E/(E+firo—) ]

and 1/W„+, ((1/W, .
Here f, (0) is an integration constant which is deter-

mined by the condition f (trito)=0 because, in the low-

field limit, there is a net depletion of carriers with nega-
tiue momentum just below the POP emission threshold. '

In this momentum range, the depopulation due to carrier
deceleration is not balanced by a corresponding carrier
repopulation by POP scattering (Fig. 3). This situation is

unique to 1D systems because of the absence of both an-

gular randomization and carrier-carrier scattering, which
otherwise would result in a finite population for

p & —V2m fico.

Under this condition, f, becomes
1/2

m(1+N )
A +y8 (3&)

where D(E) is the 1D density of states, to determine J.
Here nI is the linear carrier concentration, and A and 8
are coefficients dependent on temperature but indepen-
dent of field and confinement.

'n
Nq

1+Nq „~o 1+Nq
'n

oo N

1+N

dg t ds

o &g+n 'g V's(s+1)

X
1/2

(39a)

(39b)

Figure 4 shows the profile of f, (E) for F=100 V/cm,
compared with the Monte Carlo simulation (POP scatter-
ing only) for the same confinement conditions as in Fig.
2. The agreement is very good except below E =%co,
where the dip in the solid curve is an artifact of the
Monte Carlo model which is caused by the quantum
broadening of the density of states included in the
scattering rates. The distribution function is character-
ized by "evenly spaced" peaked structures reminiscent of
the 1D density of states. This jagged profile in the carrier
distribution is naturally possible at high temperature
where POP absorption is significant to replicate the
peaked structures at multiples of the POP energy
E =nice. The particular shape of f, (E) shows that
despite the "detailed balance" condition (33) between en-
ergy intervals, the Maxwellian distribution is not the
solution of Eq. (16). In the limit I' =0, the distribution
function is given by

to fit the energy dependence of the backward-scattering
matrix element which is a rapidly decreasing function of
energy (Fig. 2 inset). We use Eq (33) to .obtain f, (E) at
high energy E )fi~ and the normalization condition

vr
fo(E)= nt-

2m co

X ln 1+
2

1/2

—ln 1+ E +Ado

1/2

emission
rate r/r

/ ~depletion
/

~ 1

/
emission

rate

(1c(0) E (k&0)

FIG. 3. Schematics of the 1D carrier dynamics in energy
space indicating the subthreshold carrier depletion in the nega-
tive momentum region. The double arrows represent the carrier
drift while the solid line represents the carrier scattering by
POP emission. The breakdown of the inversion symmetry

f ( t) =f (
—k) by the electric field is obvious.

as a result of Eqs. (37) and (38) in the zero-field limit (for
y~ao and J~O). The fact that the latter distribution
[Eq. (40)] is not a Maxwellian distribution is a manifesta-
tion of the nonergodicity of the 1D system that accom-
modates a solution different from the Maxwellian at equi-
librium. Actually, it is easily verified that the Maxwell-
Boltzmann distribution is also a solution of Eqs. (16)—(19)
for F=O, but this solution is not unique, since any func-
tion which satisfies the detailed balance [Eq. (33)] is also a
solution of Eqs. (12)—(19). In this respect it should be no-
ticed that our results have been obtained by neglecting all
scatterings events except POP scattering. As we men-
tioned earlier, this situation occurs in practical cases
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when F))10 V/cm and it is conceivable that at equilibri-
um (F=O) a Maxwellian distribution is established as a
result of the combined effects of POP, AP, and II scatter-
ing, which rules out the solution (40). At finite fields,
however, AP and II scattering become rapidly negligible,
and the distribution converges towards the actual profile
(Fig. 4). Thus, under the infiuence of an electric field, the
Maxwellian symmetry is more rapidly destroyed than in
2D or 3D systems where the electric field only "dis-
places" the equilibrium distribution without drastically
changing its nature. One can, therefore, regard the onset
of this effect as the manifestation of a pronounced organi-
zation of the system in the k (momentum) space under
the joint influence of the electric field and POP scatter-
ing, which drives the electron gas toward a more stable
configuration than that given by a Maxwellian profile.
This is particularly noticeable if one evaluates the aver-
age carrier energy given by

(E ) = g f dE D (E+nero)(E+ nero)
nL „p 0

Xf,(E+nkro)=Piro, (41)
C+yD
A +y8

q
oo

1+Nq

'n

X f 'dgv'g+n f '

S
X 1—

s+1

1/2

(42b)

It is easily seen that above TI =150 K, (E) is smaller
than the thermal energy kTL /2 over an increasing range
of electric fields. The big dots are the results of a
Monte Carlo simulation which includes the influence of
AP scattering at TL =300 K. The agreement between the
two approaches is excellent except for F(50 V/cm
where the predominance of AP scattering contributes to
heating the system before the transition toward the
jagged profile characterized by a low average energy.
The figure also shows that the cooling from the thermal
energy increases with the temperature, which indicates

2 1 NqC=—
3 1 +Nq p 1 +Nq

'n

(n+1) (42a)

which is plotted in Fig. 5(a) as a function of electric fields
for different temperatures. Here C and D are
temperature-dependent coefficients.

/
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FIG. 4. Energy-distribution function of a single-band 1D
electron gas with a longitudinal field F=100 V/cm at T=300
K. The quantum-wire structure results from confinement in a

0
quantum well with width L~ =135 A and a triangular potential
in a field F, =120 kV/cm, which places the ground state at 140
meV above the conduction-band edge (Ref. 11). Solid line
denotes Monte Carlo simulation dots, which represent the ana-
lytic results of Eq. (37).
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FIG. 5. (a) Average carrier energy as a function of electric
fields for four temperatures. Dots denote Monte Carlo simula-
tion with AP and POP scattering at 300 K. Thin lines denote
thermal energy kT/2. (b) POP mobility for the same tempera-
tures.
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Xf, (E+nhro)=
7T

as well as the carrier mobility

(43)

the dominant influence of POP absorption. This
phenomenon is a high-temperature effect, which is there-
fore different from the decrease of the thermal (Maxwelli-
an) energy (E )rh discussed by previous authors ~q and
which occurs in 3D systems at low temperature as a re-
sult of POP emission processes only. We wish also to
point out that the decrease of (E ) below the thermal en-

ergy does not violate Joule heating since the energy
gained from the field is directly transferred to the lattice
without thermalizing the electron gas in the absence of
carrier-carrier collision.

The organization of the distribution into a jagged
profile is therefore an increasing function of temperature
which occurs under highly dissipative conditions. This
has important consequences for the transport properties
of 1D systems, as seen below. From Eqs. (37) and (38), it
is straightforward to calculate the 1D current

00

I =e g I dED(E+nfiro)U(E+nficg)
n=O

(p=8X10 cm /Vs). This high value results from the
fact that the distribution function only depends on the
backward-scattering rate (1/r ) [Eq. (36)], which is much
weaker than the f rate (Fig. 2 inset). In this transport
process controlled by strong POP emission and absorp-
tion, the 1D thermal energy is converted into a drift
motion of carriers which boosts the mobility. From Fig.
5(b), it can be seen that this effect also increases with tem-
perature, contrary to bulk or 2D transport.

In conclusion, we want to emphasize that the cooling
effect and the mobility enhancement are unique features
of 1D transport at high temperature which manifests the
absence of ergodicity in the electron system. Specifically,
phonon absorption is the important process which is re-
sponsible for the existence of jagged structures in the dis-
tribution and results in improved transport perfor-
mances. From a general standpoint, the structures in the
distribution function are relatively robust and persist in
multiband systems where the basic features of this effect
contribute to enhanced POP-assisted intersubband reso-
nances similar to the magneto-phonon effect, and set on
population inversion between subbands. ' '

(1+Nq )p=
8+Ay ' IN (44) ACKNOWLEDGMENTS

which is shown as a function of electric field in Fig. 5(b).
At high temperature the 1D mobility exceeds the bulk
value by a factor of 4 to 5 over a large range of electric
fields. For instance, for F= 100 V/cm at T= 300 K, Eq.
(44) yields p-3. 8 X 10 cm /V s (Monte Carlo simulation
yields @=3X 10 cm /V s with both POP and AP scatter-
ing") which is several times larger than the bulk value
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