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Wide-band-gap semiconductors typically can be doped either n type or p type, but not both. Compen-
sation by native point defects has often been invoked as the source of this difficulty. We examine the
wide-band-gap semiconductor ZnSe with first-principles total-energy calculations, using a mixed-basis
program for an accurate description of the material. Formation energies are calculated for all native
point defects in all relevant charge states; the effects of relaxation energies and vibrational entropies are
investigated. The results conclusively show that native-point-defect concentrations are too low to cause
compensation in stoichiornetric ZnSe. We further find that, for nonstoichiometric ZnSe, native point de-
fects compensate both n-type and p-type material; thus deviations from stoichiometry cannot explain
why ZnSe can be doped only one way.

I. INTRODUCTION

Wide band-gap semiconductors, such as ZnSe, ZnTe,
ZnS, and diamond, have potential technological applica-
tions, especially for optical devices involving green or
blue light. ' Despite decades of research, many prob-
lems remain, mostly related to doping difficulties; some
wide-band-gap materials can easily be made n type but
not p type; others can be made p type, but not n type.
The cause of this difficulty remains a puzzle. At least five
different explanations have been suggested, but there
is no firm evidence for any of them. One of the oldest
and most popular explanations is that the doping of
wide-band-gap semiconductors is compensated by native
point defects. ' According to this mechanism, the
wide band gap could promote the formation of compen-
sating native point defects because the formation energy
of the defect is offset by the energy gained when electrons
are transferred between the defect's electronic state in the
gap and the Fermi level. For example, p-type doping
may be compensated by defects that introduce electrons
in levels near the conduction band. When the electrons
drop from the level in the gap to the Fermi level (which is
near the valence-band edge), the net formation energy for
the compensating defect would be reduced by nearly the
width of the band gap. This mechanism would be univer-
sal: it is independent of the dopant and the growth
method used. The native-point-defect properties would
directly determine the behavior of the material. A wide-
band-gap semiconductor would tend to be n type if the

dominant native point defects introduce full states near
the conduction-band edge. It would be p type if the dom-
inant defects introduce empty electronic states near the
valence bands.

Our goal is to examine the native-point-defect rnecha-
nism using first-principles theoretical techniques based on
density-functional theory and ab initio pseudopotentials.
We will study native point defects in ZnSe, which is the
wide-band-gap semiconductor that has received the most
attention in the past decade. ZnSe can be grown n type,
but only limited progress has been made growing p-type
material. ' ' Theoretical tools have been very useful in
elucidating the properties of common semiconductors
such as Si and GaAs. ' ' Much less has been done for
ZnSe, or any of the other II-VI semiconductors. For
these materials, the plane-wave pseudopotential method,
the standard for semiconductor defect calculations, does
not work well. This is because the d electrons of the
group-II metals are too tightly bound to be represented
as valence electrons with a plane-wave basis set. In all
previous pseudopotential calculations for ZnSe, ' ' the
zinc 3d electrons were treated as core states. Using this
method, Jansen and Sankey' suggested that native-
point-defect compensation is the cause of doping
difficulties in ZnSe and ZnTe and on the same basis ex-
plained why ZnTe (which prefers to be p type) is different
from ZnSe (which prefers to be n type). Unfortunately,
the "d-in-the-core" pseudopotential approach is inaccu-
rate: it cannot predict the experimental bulk properties
of ZnSe, and is therefore highly suspect for defect cal-
culations.
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We solve the d-electron problem by using a mixed-basis
scheme, which adds to the plane-wave basis a set of
tight-binding functions that can represent the d electrons
as valence states. The mixed-basis scheme is implement-
ed in a program that is efficient enough for large-scale de-
fect calculations. Our defect calculations are the first for
a II-VI semiconductor that include a proper treatment of
the d electrons, and reach the level of accuracy previous-
ly attained for Si and GaAs. We calculate the formation
energies of all native point defects in ZnSe. Using these
formation energies we derive upper bounds for the defect
concentrations. The results show clearly that native de-
fect compensation in stoichiometric ZnSe is insignificant.
Additional support for this conclusion is provided by cal-
culations of native-point-defect concentrations in another
wide-band-gap semiconductor, namely diamond. Here
we derive the concentrations from published native-
point-defect energies. ' In nonstoichiometric ZnSe,
native-point-defect compensations mill occur, but will
compensate n-type as well as p-type material. Deviations
from stoichiometry, therefore, do not explain why it is
easy to make n-type but not p-type ZnSe. Our results
clearly indicate that native defects are not responsible for
self-compensation in ZnSe and thus impose no intrinsic
limitation on the ability to obtain both n-type and p-type
conduction.

This paper is organized as follows: In Sec. II we de-
scribe the details of our mixed basis scheme. By relying
on fast-Fourier-transform (FFT) routines and the convo-
lution theorem, total-energy calculations for a defect
(which require a cell with a large volume) can be per-
formed efficiently. A description of our test calculations
follows; these establish the credibility of our theoretical
methods. In Sec. III we describe our own total-energy
calculations for the native point defects, and a discussion
of the structure of each defect. Because ZnSe is a com-
pound semiconductor, the formation energy of a single
defect is not well defined. In Sec. IV we show how chem-
ical potentials can be related to stoichiometry, yielding an
unambiguous definition of formation energies in terms of
the calculated total energies. Defect concentrations can
then be obtained as a function of temperature,
stoichiometry, and the Fermi level of the crystal. We
then present our calculated native-point-defect concen-
trations (Sec. V), which show clearly that the native point
defects do not affect the doping of ZnSe. We also show
that the same is true of diamond. Having shown quanti-
tatively that native point defects are not responsible for
compensation, we present a qualitative analysis of wheth-
er native-point-defect concentrations increase with the
width of the band gap.

II. THE MIXED-BASIS METHOD

In this section we describe our implementation of the
mixed-basis method. Our formalism is based on density-
functional theory in the local-density approximation
(LDA), using ab initio pseudopotentials. In tradition-
al pseudopotential calculations with a plane-wave basis
set, the bulk of the computation consists of solving the ei-

genvalue problem for the Hamiltonian matrix. The

mixed-basis scheme produces a much smaller Hamiltoni-
an matrix by replacing many high-frequency plane waves
with a few tight-binding functions. The price paid for the
smaller Hamiltonian is that introducing tight-binding
functions complicates the matrix elements and the in-
tegration of the charge density. We handle the added
complications of the tight-binding functions by expand-
ing them over the reciprocal lattice. The tight-binding
functions P are written as

where G is a reciprocal-lattice vector. Functions of this
form automatically have the correct translational symme-
try (Bloch's theorem). There are two principal advan-
tages to the reciprocal-space expansion. One is that the
choice of tight-binding functions is not restricted to any
particular analytic form, such as Gaussians or Slater or-
bitals. This will allow us to use so-called pseudoatomic
wave functions as basis functions, as discussed below.
The second is that the reciprocal-space expansion is par-
ticularly well suited for treating the tight-binding func-
tions and the plane waves in a unified fashion. (Note that
the exponentials in the expansion for P are simple plane
waves. ) This simplifies the calculation of the matrix ele-

ments between tight-binding functions and plane waves,
as well as the calculation of the charge density. The
scheme is similar to that used by Louie, Ho, and
Cohen. The programs are all new, and both the pro-
grams and the algorithms were carefully optimized to
make large-scale defect calculations possible. We now
discuss the details of our methods, using the work of
Louie, Ho, and Cohen as a starting point. A detailed
description of the evaluation of the various matrix ele-
ments is presented in the Appendix. Further details on
the method are given elsewhere.

A. Basis set

Although a mixed basis allows great freedom in the
choice of the basis set, our approach has been to keep our
ZnSe calculations as similar as possible to the plane-wave
calculations for Si and GaAs. Consequently, we use
tight-binding functions to represent only the rapidly
changing part of the zinc d orbitals. All other contribu-
tions to the wave functions are represented by plane
waves. In this way we recover most of the advantages of
a pure plane-wave calculation, and reduce the effort need-
ed to choose and optimize the basis set. We have per-
formed ZnSe calculations using two different forms for
the zinc 3d orbitals: Gaussians and pseudoatomic wave
functions. The pseudoatomic functions are the 3d
pseudo-wave functions for the isolated zinc atom, as cal-
culated by the program that generates the atomic pseudo-
potentials. We multiply the pseudoatomic basis functions
by a smooth radial cutoff function that goes to zero for
large r to remove the long-range tail (Fig. l). (Basis func-
tions with long-range tails become numerically unstable
as the overlap between basis functions on different sites
causes the basis set to become linearly dependent. ) Using
Gaussians requires at least two basis functions for each
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FIG. 1. Zn 3d wave function and pseudoatomic basis func-

tions. The all-electron wave function is given by the dashed

line. The pseudoatomic wave function is given by the solid line.
The basis function (pseudoatomic wave function multiplied by a
cutoff function) is given by the dotted line.

zinc d orbital (ten functions per zine atom to represent
five d orbitals). With the pseudoatomic basis functions,
one orbital per state suffices (five functions per zinc
atom). The total energy of a perfect ZnSe unit cell calcu-
lated with one set of pseudoatomic orbitals is lower than
that calculated with two sets of Gaussians, even when the
decay constants of the Gaussians are optimized. We con-
clude that the pseudoatomic basis functions provide a
good description of the d states in the solid.

The reciprocal-space grid represents a parallelepiped
placed about the origin in G space. Because of the shape
of the parallelepiped, rotations that are symmetry opera-
tions for the crystal will map some G vectors that are in-

side the FFT grid into G vectors that are outside the
grid, and vice versa. As a result, the functions represent-
ed on the FFT grid will no longer have the correct rota-
tional symmetry. To correct this problem we set the
Fourier coefficients to zero for a11 G vectors that lie out-
side the largest sphere that fits inside the FFT grid. This
substantially reduces the number of nonzero G vectors.
For example, a simple cubic lattice has a FFT grid that is
a cube and the ratio of the volume of the inscribed sphere
to the volume of the grid is n./6=0. 5236. For other lat-

tices, the ratio is even smaller. To avoid unnecessary
storage, the program maps the full FFT 6-vector grid
onto a smaller G-vector grid containing only the points
in the sphere. This grid is mapped back onto the FFT
grid whenever an FFT is needed. No such reduction is
possible for the real-space grid; the full FFT grid must be
used in this case. Because of the asymmetry between real
and reciprocal space, it is advantageous to store the func-
tions and perform operations in reciprocal space whenev-
er possible. Thanks to the convolution theorem and
high-speed FFT routines, this can be done in most places.

The tight-binding functions used in our basis set are
not orthogonal; as a result, a generalized eigenvalue prob-
lem must be solved to find the eigenstates of the Hamil-

tonian matrix. This is commonly done using the Chole-
sky decomposition. Using this technique requires
simultaneous storage of three matrices the size of the
Hamiltonian matrix. In addition, the mixed-basis set
with a large number of plane waves can suffer from over-
determination problems: the basis set may become nearly
linearly dependent, which makes the generalized eigen-
value problem ill-conditioned. To avoid this problem and
to save storage space, we have made the tight-binding
functions orthogonal to the plane waves. ' Using the
reciprocal-space expansion of the tight-binding functions,
this is done simply by setting the Fourier components of
the tight-binding functions to zero for every reciprocal-
lattice vector that is included in the plane-wave part of
the basis set. Because the tight-binding functions are
now orthogonal to all of the plane waves, and because the
plane waves themselves are mutually orthogonal, the
overlap matrix of the Cholesky decomposition is reduced
to nT&XnT&, where nT& is the number of tight-binding
functions in the basis set.

Although the mixed-basis scheme reduces the size of
the basis set by several orders of magnitude, for a super-
cell calculation the Hamiltonian matrix is still on the or-
der of 2000X2000. To reduce the computation time for
the eigenvalue problem, we use group theoretical
methods to block diagonalize the Hamiltonian matrix.
We also use an iterative diagonalization scheme to solve
the eigenvalue problem.

B. Test calculations

We performed a great number of calculations to test
the reliability and accuracy of the programs, the basis set,
and the pseudopotentials. Test calculations were per-
formed for the two-atom unit cell of ZnSe and for a series
of supercells. Because these are the first accurate pseudo-
potential calculations for a II-VI semiconductor, special
care was devoted to these tests.

The two-atom cell tests were performed for three basic
material parameters: the lattice constant a&„, the bulk
modulus 8, and the transverse optical (TO) phonon fre-
quency, vTo. The lattice constant and the bulk modulus
are then derived from a fit of ET«(a&„) for five or six
different lattice constants to the Murnaghan equation of
state. We calculated more than 50 sets of Murnaghan
equation fits, determining the lattice constant and the
bulk modulus as we changed different calculational pa-
rameters. In these tests we varied such things as the form
of the tight-binding functions (either pseudoatomic func-
tions or Gaussians with different radii), the plane-wave
cutofT; the size of the FFT grid, the local component, and
the cutoff radii of the pseudopotentials. In all of our
tests, the lattice constant was predicted to within a few
percent of experiment, and the bulk modulus to within
30/o. The ability of these tests to reproduce small energy
differences (about l meV) guarantees the accuracy of our
defect calculations. Based on these tests, we have chosen
for our defect calculations a basis set of all plane waves
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with energies up to 9 Ryd, and one set of five pseudoa-
tomic basis functions per zinc atom. The calculated lat-

0

tice constant and bulk modulus are 5.65 A and 0.62
Mbar, compared with the experimental values of 5.67 A
and 0.63 Mbar.

The first-principles norm-conserving pseudopotentials
used in this work were generated according to the
Hamann-Schluter-Chiang scheme. The s, p, and d
cutoff radii were 1.6, 1.56, and 1.01 a.u. for the zinc po-
tential and 1.40, 1.40, and 1.51 a.u. for the selenium po-
tential. The Zn d cutoff radius lies beyond the maximum
of the zinc 3d wave function (which is at 0.56 a.u. ). We
tested the effects of this large cutoff radius on the pseudo-
potential by comparing it to a pseudopotential with a
zinc d cutoff radius, 0.5 a.u. , within the wave-function
maximum. In a comparison of the bulk properties of
ZnSe, the only one that was affected by the change in
cutoff radius was the zone-center TO phonon frequency.
The calculated TO phonon frequency using the smaller
radius was 26.2 meV (=6.33 THz) compared with experi-
mental values of 25 —26 meV; ' using the larger cutoff ra-
dius induces a 10% error in the calculated frequency. In
our defect calculations, we used the larger core radius,
which produces a smoother pseudopotential and pseu-
doatomic function. (This allows us to use a smaller FFT
grid. ) We have confirmed in supercell defect tests that in-
creasing the core radius changes defect formation ener-
gies by less than 0.1 eV. We have also calculated the
band structure of ZnSe, and find agreement to within
0.25 eV with the band structure calculated using all-
electron methods. Figure 2 shows our calculated band
structure. We note that the band gap is smaller than its
experimental value, due to the well-documented LDA er-
ror. The implications of this deficiency for our defect cal-
culations will be discussed where appropriate.

We also performed a series of defect supercell tests to
check the effects of the basis set, pseudopotentials, and
FFT grid on defect formation energies. The error bar
due to the combined effects of plane-wave cutoff, the FFT

grid size, and the pseudopotential is 0.1 —0.2 eV. We
have also checked our results with respect to supercell
convergence. Comparative tests were performed for 8-,
16-, and 32-atom supercells. We calculate the cell-size
correction between an J2-atom supercell and an N&-atom
supercell as

b(X~/X, ) =F.~,~„, F. —,',f„,
Nl NiEdefect +Eperfect (2)

where Ed,f„, and Ep f t are the calculated total energies
of an X-atom supercell with a defect and a perfect X-
atom supercell, respectively. Cell-size corrections were
calculated for the zinc vacancy and the zinc interstitial in
different charge states. (As discussed later, these two de-
fects are the most abundant native defects in
stoichiornetric p-type ZnSe. ) Two trends emerge from
these calculations. One is that the defects in the neutral
charge state are well converged in a 32-atom cell, but that
the charged defects (either positive or negative) may have
cell-size errors of up to 0.4 eV. The second is that the
correction terms are positive when going from a smaller
to a larger supercell, indicating that the true defect-
formation energies are larger than those calculated in the
32-atom supercell. (Cell-size corrections are not included
in our results, however. ) Since our main conclusion will
be that the defect-formation energies are too large to al-
low for substantial compensation, the supercell tests
strengthen our results by showing that the true formation
energies are likely to be even larger than our calculated
values.

III. RESULTS FOR INDIVIDUAL
NATIVE POINT DEFECTS IN ZnSe

Using the methods described above, we have calculated
the energies of all of the basic native point defects in
ZnSe: Zn;, Se; (interstitials), Vz„, Vs, (vacancies), Zns„
and Sez„(antisites). Interstitial energies were calculated
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FIG. 2. ZnSe band structure. Calculated ZnSe band struc-
ture along high-symmetry directions in the Brillouin zone. The
band gap is hatched. [Note that the theoretical (LDA) value of
the direct band gap is 1 eV, compared to the experimental value
of 2.7 eV. LDA problems are discussed in the text. ] Note the
set of narrow bands associated with the zinc 3d electrons.

FIG. 3. Location of the two tetrahedral interstitial sites in
ZnSe. Zinc atoms are represented by solid circles, selenium
atoms by open circles. The x axis is in the [110]direction and
the y axis in the [001] direction. Each tetrahedral site is sur-
rounded by four atoms of the same type {two of which are out of
the plane of the figure and are not shown).
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at the two tetrahedral interstitial sites in ZnSe. The one
site (Tz„) is tetrahedrally surrounded by four Zn atoms
while the other site ( Ts, ) is surrounded by four Se atoms
(Fig. 3). These two sites are the most favorable intersti-
tial sites for large atoms because they are surrounded by
a large empty space. In fact, the nearest-neighbor
configuration of the tetrahedral interstitial sites is the
same as that of the atomic sites of the perfect crystal.
Separate calculations were performed for the different
charge states of each defect. Our calculated energies for
each charge state of each defect (E; ) are presented in
Table I.

A. Relaxation

The formation energy of a point defect can be reduced
by relaxation of the atoms surrounding the defect. The
lattice-relaxation energy is the energy difference between

the unrelaxed defect (all atoms around the defect in their
ideal lattice sites) and the relaxed defect. To find these
relaxations, we must map out the total energy as a func-
tion of the positions of the surrounding atoms, and find
the energy minimum. This is an arduous task because
the relaxation of each atom is a function of the relaxation
of the others. For practical applications, we limit the
number of degrees of freedom in our relaxation calcula-
tions. The minimum of the total energy is found by cal-
culating the total energy with different relaxations, and
fitting the total-energy surface to a parabolic form about
the minimum. We limit our calculations to symmetric re-
laxations in which each shell of atoms relaxes by the
same amount ("breathing-mode" relaxations). A possible
cause of nonsymmetric relaxation is the Jahn-Teller
effect, which occurs when a degenerate electronic state in
the band gap is partially filled with electrons. Our pri-

TABLE I. Native-point-defect energies, in eV. E; is the calculated energy for a supercell containing
the defect in a 32-atom cell geometry (excluding relaxation energy). The energy of a perfect ("bulk" )

32-atom supercell is —27 363.522 eV. e; =E;—(Nz„+Ns, )Ez„s,', e; includes the appropriate shift for
charge states (referred to a state with the Fermi level at the top of the valence band). E; and e; individ-

ually should not be interpreted as carrying physical meaning; in particular, they depend on the pseudo-
potential and on the choice of reference for the Fermi level. F; is the formation energy for the defect in
stoichiometric p-type ZnSe (doped with 10" cm ' Li) at T=600 K; it is based upon specific reference
energies for individual Zn and Se atoms, calculated by solving the complete set of reaction equations, as
described in the text. F; includes the relaxation energy (which is set to 1 eV where not calculated). R;
is the calculated relaxation energy. Although F; is a physically meaningful energy, it should not be
construed as the formation energy of a single defect; as explained in the text, such a concept is not
defined in a compound semiconductor.

Defect

Vzn

Vzn

Vzn

Zn; (Ts, )

Zni (Tse)
Zn; (Ts, )

Znf (Tzn)
Zni (Tzn)
Zn, (Tzn)

Vs.
Vs

Vs

(Tzn)
Sei (Tzn)
Se; (Tz„)
Se, (Tzn)
Sei (Tz )

Se; (Tzn)
Se, (T,„)

Znse

Znse

Znse
Znse
Zns
Sez.
Sezn

Sezn

Sezn

Sezn

Charge

2—
1—
0
0

1+
2+
0

1+
2+
0

1+
2+
2—
1—
0

1+
2+
3+
4+
2—
1—
0

1+
2+
2—
1—
0

1+
2+

n;

1—
1—
1—
1+
1+
1+
1+
1+
1+
1+
1+
1+
1—
1—
1—
1—
1—
1—
1—
2+
2+
2+
2+
2+
2—
2—
2—
2—
2—

E;

—25 906.228
—25 908.114
—25 909.881
—28 809.490
—28 813.860
—28 818.018
—28 810.117
—28 814.075
—28 817.795
—27 099.998
—27 102.872
—27 105.503
—27 609.480
—27 613.571
—27 617.084
—27 620.356
—27 623.412
—27 626.280
—27 628.975
—28 542. 164
—28 546.076
—28 549.775
—28 553.036
—28 556.086
—26 159.399
—26 163.706
—26 167.784
—26 171.377
—26 174.689

598.343
598.378
598.532

—590.856
—592.538
—594.007
—591.483
—592.753
—593.784
—591.585
—592.381
—592.935

604.089
602.530
601.550
600.810
600.287
599.950
599.787

—1183.563
—1185.014
—1186.252
—1187.051
—1187.640

1199.827
1197.699
1195.739
1194.295
1193.132

F;

2.20
2.09
1.81
3.87
2.97
1.80
3.24
2.82
2.16
3.14
2.55
2.21
6.94
5.59
4.83
4.30
3.98
3.86
3.91
6.46
5.22
4.20
3.61
3.61
6.96
5.01
3.29
2.06
1.95

R;

0.00

0.43
0.34

0.22
0.20

0.62

0.16
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bond-bending forces, it is energetically more favorable to
move the fourth-nearest neighbors outwards. This effect
was not included in previous calculations. '

As a rule, the calculated relaxations were small: the
largest relaxation energy that we found was about 0.6 eV
and the typical relaxation distance was 0.1 A, which is
only 4% of the ZnSe bond length of 2.54 A. Our calcu-
lated relaxations are listed in Table II. We will now de-
scribe our results for the individual native defects.

FIG. 4. Relaxations around the Ts, site. Outward relaxa-
tions are shown for the first-, second-, and fourth-nearest neigh-
bors (NN, 2NN, and 4NN, respectively) around a zinc intersti-
tial on the Ts, site. Four of the fourth-nearest neighbors relax
in the same direction as the first-nearest neighbors. The magni-
tude of the relaxations is exaggerated for clarity.

TABLE II. Calculated relaxations for native point defects in

ZnSe. Calculated energies E„&,„and relaxations of nearest (NN)

and next-nearest (NNN) neighbors. A positive relaxation indi-

cates relaxation outward from the defect. All relaxations in the

table are symmetric. For relaxations about interstitial defects,
the fourth-nearest neighbors relaxed by the same amount as the
NN's.

Defect E„,.„(eV)
Relaxation (A)

NN NNN

Zn, + (T„)
Zn + (Ts, )

Zn, - (rz„)

ZI1
2+

0.43
0.34
0.22
0.0
0.62
0.16

0.11
0.06
0.09
0.0
0.2
0.1

0.05
0.09
0.03

mary objective is to study the behavior of defects in
doped ZnSe, where defect states in the gap will either be
completely full (in n-type material) or completely empty
(in p-type material). Consequently, we will calculate re-
laxations only for defects that do not have partially filled
states in the gap. For these cases, no Jahn-Teller relaxa-
tion will occur.

For substitutional site defects, we have relaxed the
shell of four nearest-neighbor atoms. (The nearest-
neighbor distance in ZnSe is 2.45 A. ) We have found the
relaxations to be small in all cases (smaller than 0.2 A),
and the second-nearest-neighbor relaxation should be
even smaller. (The second-nearest-neighbor distance is
4.01 A. ) For the tetrahedral interstitial sites, we relaxed
both the first- (consisting of four atoms) and the second-
neighbor (six atoms) shells simultaneously. For the relax-
ation of the nearest-neighbors around a tetrahedral inter-
stitial site (Tz„and Ts, ), it turned out to be important to
also include relaxations of fourth-nearest-neighbor atoms
that are located on a line through the tetrahedral intersti-
tial site and the first neighbors (Fig. 4). The reason is that
a breathing relaxation of the nearest neighbors will

change the length of the bond to these fourth-nearest
neighbors. Since bond-stretching forces are larger than

B. Zinc self-interstitial

We start with the zinc self-interstitial (Zn;). The neu-

tral zinc interstitial has two electrons occupying a single
level in the band gap. The possible charge states are
therefore 0, 1+, and 2+, making the defect a double
donor in p-type material. The zinc interstitial in ZnSe is
a particularly interesting defect because it was the first
isolated native interstitial directly observed in a semicon-
ductor. " Using optically detected magnetic resonance,
Ron g and Watkins identified the isolated zinc self-
interstitial in the 1+ charge state. The defects were pro-
duced by electron irradiation of ZnSe at a temperature of
4.2 K. They found that the interstitial occupied the Ts,
site, and that there were no asymmetric relaxations of ei-
ther the nearest-neighbor Se atoms or the second-
nearest-neighbor Zn atoms. They also found the transi-
tion level from the 1+ to the 2+ charge state to occur
when the Fermi level is at 1.9 eV above the valence-band
edge. (This energy is the thermodynamic level in the
gap. ) The interstitials were observed to be mobile at tem-
peratures above 260 K. Although experiment can
determine the site of the defect and its symmetry, the
magnitudes of the relaxations and their energies must be
determined from theory. In our calculations for the zinc
self-interstitial, we have performed relaxations for the

Ts, site in the 2+ and the 1+ charge states and for the
2 z„site in the 1+ charge state. The calculated relaxa-
tions are listed in Table II. The calculated valence-
charge-density contours for the Ts, site interstitial (in the
1+ charge state) are shown in Fig. 5. Including relaxa-
tions, the energies of the 1+ charge state at the two in-

terstitial sites are the same to within the accuracy of our
calculations. Rong and Watkins actually also found a
signal which they tentatively identified as the Zn self-
interstitial at the Tz„site. Although this defect is not
stable, its energy may be only slightly higher than that of
the self-interstitial at the Ts, site. We calculate (includ-

ing relaxation energies) a value of 1.4 eV for the level in
the gap between 2+ and 1+ interstitial on the Ts, site.
The agreement with experiment is reasonable, in light of
the large errors in the band gap inherent in LDA. For
the 1+ Ts, site, Van de Walle and Laks have calculated
the values of the hyperfine parameters for the central Zn
atom, and the first- and third-nearest-neighbor Se atoms.
The hyperfine calculations included the relaxations of the
neighboring atoms. The agreement between the theoreti-
ca1 and experimenta1 hyperfine parameters is very good.
This confirms both the experimental identification of the
defect and the accuracy of the calculated relaxations.
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FIG. 5. Valence-charge density of the Zn self-interstitial.
Contour plot of the valence-charge density around a zinc inter-
stitial at the Ts, site, in the 1+ charge state. Relaxations of
neighboring atoms are included. The x axis is along the [110]
direction and the y axis along the [001] direction. The intersti-
tial atom is at the center of the plot. The charge density is given

o 3
in units of electrons per 32-atom cell volume (=728.2 A ) and
the contour spacing is 40.

C. Zinc vacancy

The other native point defect in ZnSe that has been
positively identified is the zinc vacancy. This defect was
also observed in electron-irradiated ZnSe at low tempera-
tures by %atkins. The neutral zinc vacancy has a
threefold-degenerate level in the band gap (with a capaci-
ty of six electrons), of which four are occupied. The pos-
sible charge states are 1 —and 2 —,making the vacancy
an acceptor in n-type ZnSe. Watkins observed the 1—
charge state using electron paramagnetic resonance and
found that it undergoes a Jahn-Teller distortion. The 1—
vacancy fills five electrons out of the six electron states in
the gap. The remaining hole is localized by the Jahn-
Teller effect on one of the four nearest-neighbor Se
atoms. The Se atom with the hole moves in toward the
vacancy and the syrnrnetry of the defect is lowered from
tetrahedral (point group Td ) to trigonal (C3„). The ener-

gy lowering from the Jahn-Teller relaxation is estimated
by Watkins to be 0.35 eV. The level in the gap between
the 2 —and the 1 —charge states is found to be at 0.66
eV above the valence-band edge. We have calcuhted the
relaxation for the 2 —charge state, which is expected to
be symmetric. No relaxation (to within 0.02 A) was
found for the nearest neighbors. We did not explicitly
calculate the low-symmetry relaxations for the 1—
charge state. To compare with experiment, we can look
at the level in the gap for the 2 —to (unrelaxed) 1 —tran-
sition, which we find at —0.03 eV. Adding in Watkins s
estimate of the Jahn-Teller energy of the 1 —vacancy
(0.35 eV) brings the level to 0.32 eV. Taking the LDA
deficiency into account, this value is once again in reason-
able agreement with experiment (0.66 eV).

D. Other defects

There is no direct experimental evidence about the Se
interstitial or the Se vacancy. The neutral Se interstitial
has four electrons in a threefold-degenerate leve1. The

possible charge states range from 4+ to 2 —.Of the two
tetrahedral interstitial sites, the Tz„site is preferred. The
neutral Se vacancy has a single level in the gap that is ful-

ly occupied by two electrons. The possible charge states
are 1+ and 2+. We find that the formation energy of ei-
ther of these defects is so high that they do not play any
important role in ZnSe.

Nothing is known experimentally about the two an-
tisite defects, either. Both the neutral Zn-on-Se antisite
and the Se-on-Zn antisite have two electrons in a
threefold-degenerate level in the gap. Possible charge
states range from 2+ to 4—.For the neutral Se on Zn,
we find a large lattice relaxation, in which the antisite
lowers its energy by about 0.7 eV by moving about 1 A
along the (111) direction toward a tetrahedral intersti-
tial site. This relaxation is favorable because it lowers the
energy of the electrons in the states in the gap; it does not
occur for the 2+ charge state, where the states in the gap
are empty. This relaxation is similar to that found
theoretically for the As-on-Ga antisite defect in
GaAs. ' The large lattice relaxations of the antisite in
GaAs have explained the puzzling properties of the de-
fect known as EL2. The occurrence of a similar relaxa-
tion in ZnSe may also be observable experimentally.

IV. DETERMINATION
OF DEFECT CONCENTRATIONS

In this section we will describe how to determine the
concentration of the native point defects from their cal-
culated formation energies. Determining defect concen-
trations for a compound semiconductor is more difBcult
than for an elemental system, where the total energy of a
single bulk atom is well defined. In the latter case the
formation energy of a native point defect can be unambi-
guously determined from an S-atom defect supercell cal-
culation: the defect formation energy is the difference be-
tween the calculated supercell energy and X times the en-

ergy of a single bulk atom. In the case of a Si self-
interstitial, for instance, an extra Si atom is placed inside
the crystal. This Si atom can be thought of as taken
"from the surface, " a process which does not change the
nature of the surface; the crystal simply becomes one
atom larger, and the reference energy is simply the ener-

gy of a bulk Si atom, which can be determined from a
bulk calculation. This analysis cannot be applied to a
compound semiconductor like ZnSe. Here, the energy of
a pair of zinc and selenium atoms is well defined, but the
energy of a single zinc or selenium atom depends on in-
teractions between the crystal and its external environ-
ment. Hence energies and concentrations of the native
defects will also depend on the environment.

Well-defined energies for defects in a compound semi-
conductor, such as ZnSe, can be determined in one of two
ways. The first way is to define the energies of reactions
that conserve the relative number of zinc and selenium
atoms. For example, the reaction energy for forming a
pair of zinc and selenium interstitials can be defined in
the same way as the formation energy of a single silicon
self-interstitial. This is true because removing a pair of
zinc and selenium atoms from the surface does not
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change the nature of the surface. The energy of a pair of
zinc and selenium atoms can be determined from a bulk
calculation. The second way to define defect formation
energies is to introduce an external reservoir of zinc
atoms. Zinc atoms may be added to the crystal from the
reservoir, or removed from the crystal and added to the
reservoir. The energy of zinc atoms in the reservoir is
constant, and in thermal equilibrium with the crystal.
The reservoir allows us to assign an energy to the zinc
atoms. Since the sum of the zinc and selenium energies is
determined by the total energy of the perfect ZnSe cell,
the zinc energy determines the selenium energy. This, in
turn, allows us to determine the formation energy of any
defect.

The one problem with the latter prescription is that we
must choose a zinc reservoir and calculate its energy.
The choice of the reservoir depends on the conditions un-
der which the crystal is grown. Instead of limiting our
choice to a single reservoir energy, we picture a reservoir
in which we can change the energy of the zinc atom to
any value that we choose. Or, equivalently, we can set
the difference between the zinc and selenium energies,
5E, to be any value that we want. The formation energy
for the ith defect F; can then be expressed as

C —M defect yM site B i BS/k —F. /k T
I

S/kB —(e,.—n,.5E)/kB T

S/kB —e,- /kB T n,. n,-=e ' ' 'y '=a,y '. (4)

where M,-''" and M,""are the total number of defects
and the total number of defect sites in the crystal,
y =exp(5E/k& T), and a,. =exp(S/kz e, /k& T).—The
concentration of defects per unit volume is found from
the fraction by multiplying by the site concentration,
which, for ZnSe, is 2.2X10 cm . (The site concentra-
tion is the number of atoms of each type per unit volume,
not the total number of atoms per unit volume. )

i Ei +zn zn se Ese

=E; —(Nz +Ns )Ez s (Nz Ns )~E-

=e; —n;5E .

Here E, is the total energy of the supercell for the ith de-
fect, containing Nz„zinc atoms and Xs, selenium atoms,

5E =(Ez„Es,)/2, —

Ez s (Ez +Es )/2

e, =E, —(Nz +Ns )Ez s

and ni =Nzn —Ese. Eznse is determined from a calcula-
tion of the energy of a perfect ZnSe supercell. (At T=O
K, Ez„and Es, can be identified with the chemical po-
tentials for Zn and Se.) n; is the number of extra Zn
atoms that must be added to form the defect (1+ for Vs„
2 —for Sez„, etc. ), independent of the size of the super-
cell.

From the formation energy of the defect and its entro-

py S we can determine its fraction C; by

The stoichiometry parameter is defined as

Ms. —Mz.X=
Mse Mzn

= —
—,
' g n, C, = —

—,
' g n, a; y

' .

D ~D++e

The energy of this reaction is E (E++EF ) where E—F is
the Fermi level. We can treat the combination of
D++e as a single entity with energy E++EF. The
quantity E+ is the energy of the charge-state defect when
the Fermi level is at zero. To follow the convention of
choosing the zero of the Fermi level in a semiconductor
at the valence-band maximum, we must change E+ to
E++Et/ and EF to EF—Ev, E~ being the valence-band
maximum. This can be generalized to any charge state:
the defect energy for charge state m is E' '+ mEF, where
we change E' ' to E' '+ mE~ to place the zero of the
Fermi level at the top of the valence band.

Dealing with charged defects thus requires that we
know the energy of the top of the valence band in the de-
fect cell. The quantity that we want is (the energy of) the
top of the bulk valence band in the defect cell. One can-
not simply use the k=0 band structure of the defect su-
percell because it includes the distortion of the band
structure in the immediate vicinity of the defect. We
should use the valence-band energy far away from the de-
fect, which would correspond to a pure bulk calculation.

Mz„and Ms, are the total numbers of zinc and selenium
atoms in the crystal. X=O for perfect stoichiometry, and
X & 0 for Se-rich. The factor of —,

' enters this equation be-
cause the stoichiometry parameter is defined by dividing
by the total number of atoms in the crystal, while the
fractions are divided by the number of sites of each type.
The stoichiometry parameter defined in this way only
takes into account the deviations from perfect
stoichiometry due to native point defects. In real crys-
tals, deviations from stoichiometry may also be present
because of higher dimensional defects, surfaces, and pre-
cipitates. Substitutional impurities are counted as the
host species that they replace, since this replacement does
not directly introduce native defects.

This formulation allows us to determine native-point-
defect formation energies and concentrations for any
value of 5E. In practice, it is more convenient to fix the
stoichiometry parameter X and determine from X the
value of 5E. We can do this simply by solving for y given
X, using Eq. (5). The problem is essentially finding a root
of a polynomial, which can be done quickly and easily us-
ing standard algorithms. For our purposes, it will be
clearer to talk about the stoichiometry X rather than the
value of 5E. However, we stress that our approach is
quite generally valid for describing a system in equilibri-
um with other solids or gases which impose certain con-
ditions on the chemical potential and thus determine 5E.

The defect-formation energies for charged defects de-
pend on the Fermi level. (The Fermi level is used here as
the chemical potential of the electrons. ) Consider a reac-
tion in which a neutral defect D with formation energy
E is ionized to its positive charge state D+ with energy
E +,
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However, there is no absolute reference for potentials or
eigenvalues in supercell calculations; we therefore need
additional information in order to "line up" the bulk
band structure with the defect supercell. Here we use the
"model solid" theory of Van de Walle and Martin, '
which allows us to calculate the average electrostatic po-
tential of a system of atoms on an absolute energy scale.
Since the defect supercell and the bulk supercell in gen-
eral contain a different set of atoms, the average electro-
static potentials will be shifted; the magnitude of the shift
is predicted by the model solid theory. We have verified,
by inspection of the locally averaged self-consistent elec-
trostatic potential in the defect cell, that the model-solid
lineup indeed provides an adequate description of the po-
tential shift.

V. RESULTS AND DISCUSSION
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In this section we present our calculated native-point-
defect concentrations in ZnSe and discuss the general
question of native-point-defect compensation in wide-
band-gap semiconductors. As described in the preceding
section, we need to know the formation energy and entro-

py of the defect to determine its concentration. Entropy
calculations are unnecessary because our results are in-
sensitive to values in the range 0 ~ S ~ 10k& (see Fig. 6).
By comparison, a recent accurate calculation ' of the
formation entropy of the Si self-interstitial found a for-
mation entropy of (5—6)ks for the ground state. The Si
self-interstitial represents an extreme case in that the
ground-state configuration has low symmetry, which ac-
counts for half of the formation entropy. It is therefore
highly unlikely that the entropies for native point defects

TABLF. III. Native-point-defect concentrations in
stoichiometric p-type ZnSe, at T=600 K. Only defects with
concentrations greater than 10' cm are shown. A formation
entropy of 5 kb is assumed for each defect.

Defect Charge Concentration (cm )

in ZnSe could be larger than 10k~.
We have explicitly calculated relaxation energies for

the defects which are dominant in p-type ZnSe. As
shown in Table I, the relaxation energies are all smaller
than 0.7 eV, which is of the same order as calculated re-
laxations in other semiconductors including Si, ' ' dia-
mond, ' and GaAs. ' ' The defect-formation energies
of other defects are high enough that, even with a gen-
erous estimate of the atomic relaxation energies (we as-
sume 1 eV), the concentrations remain very low. Even a
relaxation of 2 eV does not change our results (that is, the
native-point-defect concentrations are still too low to
compensate in stoichiometric material).

It is important to assess to what extent the LDA
band-gap problem affects the formation energies. The
band-gap problem has no direct effect on the concentra-
tions of defects in p-type material, where electron levels
in the band gap are empty. For n-type material, the posi-
tion of occupied electron levels in the gap is uncertain
due to the LDA band-gap error. We will treat this uncer-
tainty by using the worst-case value of the defect energy.

Figure 6 shows the concentrations of minority carriers
produced by native point defects for p-type
stoichiometric ZnSe. The individual native-point-defect
concentrations are given in Table III. The error bar is
determined by allowing the formation entropy to range
from 0 to 10 kz. The results shown are for material with
10' cm dopants. The dopants are used to determine
the position of the Fermi level. As the temperature in-
creases, the Fermi level moves closer to the middle of the
band gap. (This is because the intrinsic carrier concen-
tration increases with temperature. ) This efFect slows the
increase of the defect concentrations with increasing tem-
perature. (Jansen and Sankey, ' in their determination of
the defect concentrations at T=1658 K, set the Fermi
level at the valence-band edge. Taking into account the
shift of the Fermi level with temperature would substan-
tially lower their concentrations. ) The dominant native
point defects are Zn; (a double donor) and Vz„(an accep-
tor). At molecular-beam epitaxy growth temperatures
(T=600 K) the concentration of minority carriers pro-
duced is less than 10' cm . For ZnSe grown at higher
temperatures and not rapidly quenched, excess native
point defects will be annihilated during cooling, as long

FICx. 6. Native-point-defect compensation in stoichiometric
ZnSe. For p-type ZnSe the net number of electrons produced by
all native point defects is shown. For n-type material, the net
number of holes is shown. The range of values shown for p-type
ZnSe is bounded by assuming relaxations of 1 eV and entropy of
10 k& per defect for an upper bound and kz for a lower bound.
For n-type ZnSe, the uncertainty of the results is increased by
the LDA band-gap error, and no error estimate is included.

Zn; (Ts, )

Vz„
Sezn

Sezn

Vz„
Vz„

Zn, (rz„)
Vs.

2+
0

2+
1+
1—
2—
2+
2+

2.48x10'
2.14x10'
1.46x10'
1.71x10'
8.70x10'
1.17x10'
2.21x10'
8.58 X 10
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TABLE IV. Native-point-defect concentrations in n-type
ZnSe. Same conditions as Table III.

Defect

Vz„
nse

Znse

Znse

Vs.
Zn; (Tz„)

Znse

~s.

Charge

2—
1—
0

2—
0
0

1+
1+

Concentration (cm )

1.37x10"
5.23 x10"
1.26 X 10'
3.54 X 10"
3.65 x 10'
S.07 X 10
6.19x 10'
1.70x 10'

as the defects are free to move. The temperature that
determines the native-point-defect concentration is that
at which the defects become immobile. The dominant
native point defects in p-type material, Vz„and Zn;, are
known experimentally to be mobile at temperatures
above 400 and 260 E, respectively. At 400 K the
native-point-defect concentrations in p-type ZnSe are at
most 10 cm

We have also determined the concentrations of native
defects in n-type ZnSe (Fig. 6 and Table IV). The dom-
inant native point defects are Vz„and Zns, . It is an
experimental fact that n-type ZnSe can be produced
much more easily than p type. If native-point-defect
compensation were the cause, we would expect that de-
fect concentrations would be much larger in p-type ma-
terial than in n type. Instead, we find that defect concen-
trations are actually somewhat larger in n-type ZnSe.
This is an additional proof that native point defects do
not compensate p-type ZnSe. (For n-type ZnSe the levels
in the band gap were shifted up by the LDA band-gap er-
ror, which increases the defect-formation energies. Actu-
al defect concentrations may be higher than shown; this
would further support the notion that native-point-defect

compensation is no greater in p-type ZnSe than in n

type. ) We conclude that, in stoichiometric ZnSe, native-
point-defect compensation will be insignificant.

To further support our conclusions, we have derived
native-point-defect concentrations for diamond (Fig. 7)
based on the first-principles defect energies of Bernholc
et al. ' The doping level is again 10' cm . The calcu-
lations show that only the vacancy is found in significant
concentrations. Experimentally, diamond is easy to make

p type but dificult to make n type. In our results for n-

type materia1, we once again made a worst-case assump-
tion about the LDA error (the LDA band-gap error is
about 1 eV here): the Fermi level was shifted rigidly with
the conduction-band edge, but the levels in the gap for
the vacancy were not shifted at all. This assumption
significantly increases the defect concentrations. The
true concentrations are probably much smaller still. At a
chemical-vapor-deposition-growth temperature of 1100
K, the number of holes produced in n-type diamond by
native point defects is at most 2 X 10' cm . Clearly, the
concentrations of native point defects in both
stoichiometric ZnSe and diamond are far too low to pro-
duce significant compensation.
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FIG. 7. Native-point-defect compensation in diamond. The
native-point-defect concentrations are shown for both n-type
and p-type diamond containing 10' dopants. For n-type dia-
mond, a worst-case treatment of the LDA band-gap error is

used; the Fermi level is shifted up by the band-gap error, while
the defect levels in the gap are not shifted. This gives an upper
bound on the defect concentrations; actual defect concentra-
tions in n-type diamond are probably much lower.

Jansen and Sankey' have calculated the formation en-
ergies of native defects in ZnSe and ZnTe, using pseudo-
potentials that treat the Zn d electrons as frozen-core
states. From their defect-formation energies they derived
defect concentrations as a function of temperature and
stoichiornetry. To derive defect concentrations from
their calculated energies, Jansen and Sankey impose the
stoichiometry parameter as an external constraint. This
is equivalent to using our own method with an unknown
chemical potential that produces the same stoichiometry.
Their results exhibit the same trends as our own, al-
though the actual defect concentrations are different, due
in part to their approximate treatment of the d electrons.
They also find the zinc interstitial and the selenium-on-
zinc antisite defect to be the dominant defects in p-type
ZnSe, which are both donors. In n-type ZnSe, they find
that the zinc vacancy and the selenium antisite are dom-
inant (both acceptors).

Jansen and Sankey suggest that their results explain
why ZnSe prefers to be p type. Their calculated defect
concentrations for n-type ZnTe are higher than those for
n-type ZnSe, while their defect concentrations for p-type
ZnSe are higher than those for p-type ZnTe. Based on
these results, Jansen and Sankey propose that native
point defects hamper the doping in p-type ZnSe and n-

type ZnTe. Careful examination reveals that this con-
clusion is doubtful. For ZnSe, their numbers indicate
that native-point-defect concentrations are 3,000 times
lower in p-type material than in n type. Thus, if any-
thing, native-point-defect compensation should prevent
the growth of n-type ZnSe. Furthermore, their results
were reported for a very high temperature ( T= 1658 K),
and do not apply to the question of compensation for ma-
terial that is grown at 600 K and never thermally an-
nealed at higher temperatures. At the lower temperature,
the native-point-defect concentrations derived from their
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calculated energies are only —10 cm, even lower than
our own predictions, and far too small to compensate
doping.

Our conclusion that the concentrations of native point
defects in stoichiometric ZnSe are very low does not
mean that native-point-defect compensation in ZnSe nev-
er occurs. If the sample is grown with even a slight devi-
ation from perfect stoichiometry, the concentration of
native point defects will necessarily be very large, even at
T=O K (assuming that deviations from stoichiometry are
accommodated by native point defects alone}. Because
the density of atomic sites in ZnSe is 4 X 10 cm, a de-
viation from stoichiometry as small as 10 implies a de-
fect concentration of about 10' cm . Our major con-
clusion for nonstoichiometric material is that the native
point defects that accommodate deviations from
stoichiometry are always those that compensate the ma-
jority carriers. For p-type ZnSe, the dominant defect is
Zn; in Zn-rich material, and Sez„ in Se-rich material; we
find that both are double donors. For n-type ZnSe the
dominant (acceptor} defects are Zns, and Vz„ for Zn- and
Se-rich materials, respectively. Similar results were
found by Jansen and Sankey. '

This defect structure is much richer than that used in
many previous analyses of native point defects in II-VI
semiconductors. Ray and Kroger, ' for example, studied
the properties of ZnSe as a function of Zn partial pres-
sure, and analyzed their results in terms of only two na-
tive defects: Vz„(an acceptor) in Se-rich material and

Vs, (a donor) in Zn-rich material. Their model predicts
that Zn-rich material should be n type and Se-rich ma-
terial p type. Our results show that this model is
oversimplified; changing the stoichiometry from Zn-rich
to Se-rich will not convert n-type ZnSe to p-type ZnSe.
Instead, the greater the deviation from stoichiometry in
either direction, the greater the level of compensation.

Having addressed the native-point-defect compensa-
tion issue quantitatively, we now reexamine the notion
that native-point-defect compensation increases with the
width of the band gap. Let us state precisely the stan-
dard argument for this trend: For p-type material, imag-
ine a prototypal compensating native-donor defect that,
when neutral, introduces one electron into a state in the
gap; the formation energy for this defect, E, is assumed
not to depend on the width of the band gap. The energy
gained by transferring the electron from the level in the
gap EL to the Fermi level EF should, in contrast, increase
with the width of the gap; thus, the net energy needed to
form compensating defects, E (EL E~), shou—ld—de-
crease as the band gap increases. The Aaw in this argu-
ment is that it assumes that EL and E are independent
of one another. Actually, the level in the gap is defined
by EL =E E+, where E + +—Et; is the (Fermi-level
dependent} energy of formation of the positive charge-
state defect (Fig. 8). Substituting this definition into the
formula for the net energy of compensation, we find

Eo (E~ E~ }=Eo (E E——Ep) =E—+ +Ep,——

independent of the energy offormation of the neutral de
feet We see that na.tive-point-defect compensation will

EO

O
E
o E+

C)

Ev EL

Fermi Level

FIG. 8. Level in the gap for a donor defect. Total energy as a
function of the Fermi level for the positive and neutral charge
state of a prototypal donor defect. The level in the gap (El ) is
the value of the Fermi level at which the two charge states have
the same energy.

increase with the width of the band gap if and only if
E++EF decreases with increasing band gap. For this to
be true, additional assumptions would have to be made
about how the formation energy of the charged defect
changes as the band gap widens. In particular, there is
no a priori reason to assume that E+ would be lower in
wide-band-gap materials. The first-principles results re-
ported in this paper definitely show that, whatever the
qualitative trends may be, the native-point-defect concen-
trations in stoichiometric ZnSe and in diamond are far
too small to be a source of compensation.

VI. CONCLUSIONS

We have described a mixed-basis pseudopotential
total-energy scheme which is fast and efBcient enough for
supercell calculations (Sec. II). These programs are cap-
able of accurately describing the structural properties of
ZnSe, including the important efFects of the zinc 3d-
electron states. We use these techniques to examine
native-point-defect compensation in ZnSe; we calculate
the total energies of the native point defects in ZnSe (Sec.
III) and show how to extract defect concentrations from
these energies (Sec. IV). We have shown that native-
point-defect concentrations are very low in
stoichiometric ZnSe; in nonstoichiometric material, both
n and p-typ-e doping would be compensated (Sec. V).
These results indicate that native-point-defect compensa-
tion is not responsible for the doping problems in ZnSe
(and other wide-band-gap semiconductors}. EfForts at un-
derstanding these problems should be aimed at investigat-
ing the behavior of individual dopant impurities.
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complicated by the presence of the V (r) term .We can
write the matrix element in reciprocal space as:

H,', = gyes,*(G)V'(G—G )y, (G ) .
G G'

(A5)

This formula is of order nG, where nG is the number of
reciprocal-lattice vectors, and its evaluation is prohibi-
tively expensive. To convert this expression into a more
convenient form, we define

APPENDIX F,(G')= g P;(G) V (G' —G),
G

(A6)

(Al)

where Q is the unit cell volume, R is a direct lattice vec-
tor, and f is a localized real function (the pseudoatomic
Zn 3d wave function in this work), which is of the form

f(r)=f(r)ZI (r) (A2)

where ZI is a Bethe Kubic-harmonic function. The
tight-binding function may be Fourier transformed to
give

P„(G)=e ' f(k+ G), '

l

f(K)= Z~ (k)f jI(Kr)f(r)dr,
0

(A3)

(A4)

where jl is a spherical Bessel function.
The number of TB-TB matrix elements is proportional

to n a. T(For our supercell calculations, nTa is typically
80.) The TB-TB matrix elements require an integration
over the crystal unit ce11, making their evaluation a nu-
merically intensive process. Instead of simply summing
over a real-space grid, it is more efficient to perform these
operations in reciprocal space.

1. Local matrix elements

The overlap and the kinetic-energy matrix elements are
calculated in the manner of Louie, Ho, and Cohen.
The TB-TB matrix elements of the local potential are

The mixed-basis set results in a much smaller Hamil-
tonian matrix than a plane-wave basis, but requires more
effort for matrix element evaluation. This appendix de-
scribes the techniques used to calculate various matrix
elements. Setting up the Hamiltonian matrix for the
Kohn-Sham equations requires evaluation of three types
of matrix elements: (1) kinetic energy and overlap, (2)
local potential, V (pseudopotential plus screening poten-
tials), and (3) nonlocal pseudopotential.

Each type of matrix element must be evaluated be-
tween (1) two plane waves (PW-PW), (2) two tight-
binding functions (TB-TB), and (3) a plane wave and a
tight-binding function (TB-PW). The PW-PW matrix
elements are evaluated in the same way as they are in
standard calculations with a pure plane-wave basis set.
We will limit our discussion to (TB-TB) and (TB-PW)
matrix elements.

A tight-binding function centered on atomic site T of
the crystal's unit cell can be written as

H, = gF (G')P)(G') . (A7)

We can now use the convolution theorem to evaluate
F;(G'):

(AS)

This procedure is very efficient because the real-space
operations are limited to nTB sets of multiplications and

2nra FFT's [for the convolution in Eq. (AS)]. The only
operations that are performed n TB(n TB+ 1)/2 times are a

multiplication and a summation over the reciprocal lat-
tice [Eq. (A7)]. Only a small amount of extra computer
memory is needed to store one copy of the function F;.

2. Nonlocal matrix elements

(A9)

where ~P;) is the actual tight-binding function of the
basis set, ~P, ) is the "full" tight-binding function before

The nonlocal pseudopotential TB-TB matrix elements
can, in principle, be evaluated by applying projection
operators to the reciprocal-space expansion of the tight-
binding functions. Instead, we take advantage of the lo-
calized nature of the tight-binding functions by using the
so-called on-site approximation. In the on-site approxi-
mation, the nonlocal pseudopotential acts only on tight-
binding functions on the same site as the potential. This
approximation is well justified because both the nonlocal
potential and the tight-binding functions used in our cal-
culations are very short ranged. Thus the product of the
nonlocal potential on one site and the tight-binding func-
tion on a different site will be extremely small. The on-
site approximation reduces the nonlocal matrix element
to a single radial integral.

The nonlocal matrix elements involve one additional
complication. The on-site approximation is based on the
assumption that the tight-binding functions are short-
ranged functions. This is true only for the full tight-
binding functions; the tight-binding functions used in our
calculations are orthogonalized to the plane waves by set-
ting their low-frequency Fourier components to zero.
This orthogonalization leads to tight-binding functions
with long-range oscillations, for which the on-site ap-
proximation is no longer valid. To correct for this we

write the tight-binding functions in the following form:
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orthogonalization, and IP,. & consists of the orthogonali-
zation terms. The

I P; & are just the components of the
full tight-binding function for all reciprocal-lattice vec-
tors in the plane-wave basis.

H,,"-'=&y, IVI', &

=&y, IVI','& —
&y,'Ivy, &

—
&qs', I vfy, &+ &y,'I vf@,'&, (A 1 1)

cut

yF(l +G) i(k+G) r.

In this form, the nonlocal matrix element becomes

(A 10) where the nonlocal potential is now represented by V.
The on-site approximation can now be applied to the first
term. The on-site approximation is also applied to the
second term:

y,"(it+a)f. '"' "'+"'VIp(r)f;(r)Z, (r)dr.
ik+Gi &E,„,

(A12)

(A13)
K &E„

The T& term appears because the tight-binding function is centered about a specific atomic site, while the plane wave is
defined with respect to the origin. By applying both the angular-momentum expansion of the plane waves and the
orthogonality of the Kubic-Harmonic functions, we can reduce this expression to

I

& P; I VI/1 &
= g e eP; '(K)Z&~(K) f r Vi &(r)j I(Kr)f; (r)dr,

where K=k+G. We are again left with a set of radial
integrals in real space. The third term is of the same
form as (the complex conjugate ofl the second term. The
fourth term is treated as an expansion in terms of plane
waves:

& p,'I vip,'& = g y y';*(1 +G) &1 +a
I
v"'lk+ G'

&

G G'

XP (k+G') . (A14)

Because both summations are limited to reciprocal-lattice
vectors in the plane-wave basis set, evaluation of the
fourth term takes about the same amount of time as the
nonlocal plane-wave matrix elements.

3. TB-PW matrix elements

We now describe the calculation of the TB-PW mixed-
basis terms. These terms are relatively simple. The over-
lap and kinetic-energy matrix elements are all zero be-
cause of the orthogonalization of the tight-binding func-
tions to the plane waves. The local-potential matrix ele-
ments between the ith plane wave and the jth tight-
binding function are

1 —i (,k+6,. )j.r=—f e ' F (r)dr0 ue J

=F,(G;) .

The function F is the same function that was introduced
in the calculation of the local TB-TB matrix elements
[Eq. (A6)]. Thus we get all of the local TB-PW matrix
elements without any extra calculations. We see here the
convenience of expanding the tight-binding functions in
reciprocal space. For the nonlocal TB-PW matrix ele-
ments we will use the on-site approximation and an ap-
propriate correction term once more:

(A15)

(A16)

~~1.=&k+G, lv~L fy. &

&1+G, I

v"'—IyF& &k+G; I

v"—Ip'&

The &k+G, l represents the ith plane wave. The two
terms here are just the same as the third [Eq. (A13)] and
fourth [Eq. A14)] terms in the TB-TB nonlocal matrix
elements described above, where

P;(k+G)=5o o (A17)

Thus, these terms do not require any extra computation
either.
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