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Impact ionization in semiconductors: Effects of high electric fields and high scattering rates
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We present a theory of impact ionization in semiconductors that expands an earlier theory of Kane
and includes the effects of high electric fields and high scattering rates on the electron-electron collision
process. We show that their combined effect, i.e., the intracollisional field effect and collision broaden-

ing, leads to a softening of the threshold energy for impact ionization and a marked increase in the an-

isotropy of the ionization rate with respect to the direction of the electric field.

I. INTRODUCTION

The multiplication of carriers by impact ionization is
of central importance in the theory of semiconductor de-
vices both as limiting mechanism and as a basis of device
functionality. Impact ionization results from a two-
electron effect corresponding to the exact inverse of the
Auger process: a highly energetic conduction-band elec-
tron collides with a valence-band electron which is ion-
ized over the band gap, leaving two conduction electrons
and a hole. The ionizing electron gains its energy typical-
ly in a high electric field. The subject of this gain of ener-

gy in the presence of phonon scattering was originally
developed by Wolff' (electron temperature model) and
Shockley. The ionization rate itself has been treated by
Keldysh and Kane. In the Keldysh and Kane theories
the electron energy is assumed, and the influence of the
high electric field and phonon scattering are disregarded.
More recent theories of carrier multiplication by impact
ionization have employed the Boltzmann equation also
including energy band structure and have used the Kel-
dysh formula in addition to phonon scattering in the col-
lision terms of their equations. Subsequently, it has be-
come clear that the Keldysh formula represents a coarse
approximation, and that the Kane approach is more
representative. We have, therefore, developed a numeri-
cal algorithm to compute the ionization rate similar to
Kane's. However, as a major addition, we have also in-
cluded in our calculation the effects of the high electric
field and collision broadening on the inverse Auger pro-
cess itself by using a method developed by Iafrate and
Krieger. In addition we have used a more advanced
calculation of band structure and dielectric function than
was available to Kane in his original work. In our results
we note that the influence of the electric field and col-
lision broadening results in a dramatic softening of the
ionization threshold and an increase in the anisotropy

with respect to the field direction of the ionization rate at
a given energy of the primary electron.

The organization of this paper is the following. First,
we introduce a quantum transport approach which offers
a more consistent method to calculate the impact ioniza-
tion scattering rate in the high field limit. Next we
present the analytical basis for the calculation of this
rate, and then discuss our numerical approach to this
more complete solution of the problem. Finally, we dis-
cuss our results and conclusions for the impact ionization
rate in Si.

II. INFLUENCE OF THE ELECTRON-PHONON
INTERACTION AND HIGH FIELDS

ON IMPACT IONIZATION

The conventional treatment of impact ionization in
semiconductors assumes that it is a two-particle scatter-
ing event which enters the Boltzmann equation in the col-
lision term. This process exhibits a strong threshold be-
havior as a function of incident electron energy as a
consequence of the requirement of energy and momen-
tum conservation. However, the threshold energy for im-
pact ionization in most important semiconductors is of
the order of electron volts and the operating electric
fields are extremely high (10 —10 V/cm). Under these
conditions, the assumption of universal energy conserva-
tion is certainly suspect, as is the applicability of the
Boltzmann equation.

Many authors have attacked the problem of finding
quantum transport equations which improve upon the
Boltzmann equation in the high field limit. Here we
start with a form of an equation derived by Levinson'
and Barker and Ferry which is applicable for impact
ionization. We first consider only electron-phonon
scattering. One then obtains the following equation for
the distribution function f:
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f (n, k;t)=, g g [N, + —,'(1+re)]IM(q)l'
1

q, n' g= —1, 1

X [f(n', k+q;t )S„(n,k;n', k +q; t) f—(n, k;t)S„(n', k+q;n, k+q;t)],

S„(n„k,;n2, k2, t)—:2Ref dt'exp ——f E„(k, EI—(t —r))dr
0 t'

—f [E„(k2 EI(—t r)—) rth—co ]dr

X exp ——f I'„(k, E&(t——r))+I'„(k EI(t —r))—dr

An equivalent form of this equation has been discussed in
detail in Ref. 11. Here, I is the imaginary part of the
electronic self-energy. The real part of the self-energy
has been neglected, M(q) is the electron-phonon matrix
element, and Acuq is the phonon energy. E& is related to
the field F through E&= (e lA')F. In the Fock approxima-
tion, I can be expressed by the scattering rate through

iri 'I (E)= Rp„( E)/2, (2)

where R~h(E) is the total phonon scattering rate. Note
that the distribution function has been taken out of the
time integration. The justification and strategy for this is
given in Ref. 11 and concerns the rate of change of the
distribution function as the wave vector k is accelerated
during the collision. Reference 11 also gives a detailed
overview of the physics involved in Eq. (1). The resulting
scattering rate must, of course, retain a dependence on
the field, although the distribution function f (n, k; t) has
been taken out of the time integrals. This is particularly
important in cases where the zero-field scattering rate
changes rapidly with energy.

Furthermore, once f(n, k;t) has been removed from
the time integrals, a collision time is easily identifiable.
The time integration in (1) is of the form

f dt'exp i f P(t, t'} e
0 t

210=f dt'exp i f P(r)dr e
0 0

(4)

The last equality results from a change of variables in
both integrals. From (4), we see that the scattering kernel
S„(ni,k, ;n2, kz,'t) is independent of t for t)t, . These
same arguments can be used to describe the scattering
kernel for additional scattering mechanisms such as im-
pact ionization which will be discussed in detail below.
However, we can always choose a t0 based on the total
scattering rate, which leads to the result 1/to =g; r;,
where I; is the self-energy of the ith interacting particle
from all scattering processes.

The use of Eq. (1) with the above prescriptions permits
the inclusion of two effects which go beyond the semi-
classical treatment based on the golden rule. These
effects are collisional broadening and the well-known in-
tracollisional field effect. '" In the zero-field limit the
scattering event k~k' is described by a scattering rate
R(k~k') givenby

R(k k )=, Rey lvkkl'A(E(k, ),E(k')),~ =2
k'

f dt'exp i f d P(rt r) e—
0 t'

(3)
where A(E(k), E(k')) is the joint spectral density func-
tion (see Ref. 9) which is just a Lorentzian in the energy
arguments and has the typical collision-broadened form

where (() is a function of the interacting states and t and
t' It involve. s the differences (in energy) of the accelerat-
ing states and is real. ri(t, t') expresses the decay of the
interacting states and is also real and positive. Either the
integration over the phase factor or the decaying ex-
ponential will limit the values to t' for which there are
contributions to the integral. We shall call this lower
limit t —t„where t, measures the duration of the col-
lision. It is dificult to determine t, in a complicated band
structure, and therefore we take a pragmatic approach.
Since the phonon scattering rate is not a strong function
of energy,

q(t, t ) =[r„(k,)+r„(k,)]lt t'= lt t—'lit—, . —

Certainly, t, is less than some multiple of t0. Conse-
quently, a very good approximation of (3) is given by

A (E,E')
fi I (E)+I (E')
& [E+b(E)—E' —h(E')] +ill [r(E)+r(E')]

In the limit of small I, one recovers of course, the famil-
iar golden rule expression A (E,E')~5(E E'). —

In the presence of high electric fields, the intracol-
lisional field effect can become important. This effect is
similar to the Franz-Kledysh effect in which energy is ex-
changed with the field during the time of the collision,
further broadening the effective spectral density. This
broadening is also manifested as a spatial broadening due
to the tunneling nature of the field-assisted processes (see
Ref. 9). The two broadening mechanisms, collision
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Htot Ho+H~+H~~+ V (7)

Here, Ho is the single-particle electron Hamiltonian in

the presence of an electric field F, and Hz is the uncou-
pled phonon bath Hamiltonian. H~~ couples the elec-
trons and phonons and V~~ couples the electronic states
to each other via the screened Coulomb interaction. We
assume a priori that the phonon scattering rate R~i, (k) is

larger than the electron-electron scattering rate for im-

pact ionization R,, (k). Then, we can treat impact ioniza-
tion as a simple first-order scattering event, but we must

I

broadening and the intracollisional field effect, have little
effect on the phonon scattering rates which do not in-
volve a threshold at high energies. " However, impact
ionization is a threshold process which varies exponen-
tially over a large range of energies. In fact, Kane has
found that in silicon, the impact ionization rate for elec-
trons varies from 10' s ' for energies below 2 eV to 10'
s ' for very high energy electrons. Therefore we expect
that both collisional broadening and the intracollisional
field effect will have a much larger effect on the impact
ionization rate than on phonon scattering. (For example,
see Ref. 11.)

Therefore, we generalize Eq. (1) to include impact ion-
ization by adding the electron-electron interaction to the
Hamiltonian which then can be written as

keep the higher-order terms in the electron-phonon in-
teraction. In other words, we ignore the effect of the
electron-electron interaction on the electron propagator,
but dress it with the phonons. This is valid for all but ex-
tremely high energies as will be shown later.

The effect of the electric field on the electron-electron
interaction introduces several new terms to the equation
of motion (1) including Zener tunneling, and field-assisted
impact ionization and has been considered already by
Keldysh, ' Kane, ' Krieger and Iafrate, ' and Bude,
Hess, and Iafrate. ' Here, we will concentrate solely on
impact ionization. We have generalized this treatment by
including contributions of the electron-phonon interac-
tion through collision broadening. For a detailed discus-
sion of the physics of these effects, we refer the reader to
the review of Capasso, ' who originally suggested that
collision broadening be included in Monte Carlo simula-
tions.

The addition of the electron-electron interaction in the
Hamiltonian of Eq. (7) changes Eq. (1) in the following
ways. First, the collision kernel takes on a two-body
form as a result of the two-body nature of the electron-
electron interaction. As justified above, only the
inhuence of the electron-phonon interaction is included
in the calculation of the electronic self-energy. Therefore
we can replace S„(n„k,;nz, k2) with S(12;34) given by

2to 1 t 2 4 4

S(12,34)= f dt' exp —i f dr g E„(k; Efr) Q—E„(k—; Efr) +—g —I (n;, k;)t'

where the indices n, k, , n2k2, . . . are designated by the
numbers 1,2, . . . for convenience. For electron initiated
impact ionization, n&, n3, and n4 are conduction bands

and n2 is a valence band. As stated above, to is the in-

verse of the sum of the imaginary self-energy of the in-

teracting particles in the presence of phonon scattering.
The second change of Eq. (1) concerns the matrix ele-

ments. The impact ionization process involves the in-

teraction of a conduction band and a valence band elec-
tron via the Coulomb potential V (r r'), —

screened by the wave vector and frequency-dependent
dielectric function e(q, co), where q and fico are interpreted
in the context of electron-electron scattering as the
momentum and energy exchanged during the collision.

Because the interaction is between two-particle states,
the matrix elements contain direct and exchange terms.
When summed over all spins except for the initial state
spin, the matrix elements for impact ionization are then

M,'., = [2IMi I'+2IM3 I' —(Mi M2+MiM2 )],
with

Mi=—&n, k„.n, k, lVln3k3 n4k4~,

~2 =—&n, k, ;n3k2l Vln4k4, n3k3),

where n and k are band indices and Bloch wave vectors.
Here the subscripts 1 and 2 refer to the initial conduction
and valence electrons and 3 and 4 refer to the final con-
duction electrons.

When the Bloch wave functions are expanded in
Fourier series using reciprocal lattice vectors G,
u„k(r)=e'"'QGzG(n, k)e' ', we have for the quantities
in (11)

zi(G)z2(G3+G~ —Gi —Go)z3 (G3)z4, (G4)
M, =

G& G3 G4 Vq, e(q, co, )

qi =ki —k3+Gi —G3, coi =[E„(ki) E„(k3)]/iri, —

q3=k, —k4+G, —G~, co2=[E„(k,) E„(k )]3/A', —

Go=k] +k2 k3 k4

R, , (n, , ki)= g g S(12;34) .
nl, n2, n3 k3, k4

(12)

The wave vector sums in Eq. (12) run over the first Bril-

as derived by Kane. V represents the volume.
To obtain the total scattering rate we need then to sum

over the two independent k vectors and the secondary
particle band indices in S(12;34). Given n, and k„ the
total impact ionization scattering rate R,-, from that state
is simply
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louin zone (BZ}. Go is the umklapp reciprocal lattice vec-
tor necessary to ensure that k2 lies in the first BZ for a
given k, . Note that the matrix elements M& and M2 con-
serve crystal momentum.

III. NUMERICAL APPROACH

In order to calculate the scattering rate from Eq. (12), a
local pseudopotential band-structure calculation was per-
formed for the excitation spectrum and Bloch wave func-
tions for Si following the local-pseudopotential approach.
We have used 825 points in the irreducible wedge defined

by k„+k»+k, & —', (2n/a) and k» ~k„&k, ~0. The mesh

points in this wedge were spaced by 2A =
—,', (2n /a ).

We write the total scattering rate from state (n &, k, ) as
a sum of integrals over small regions of hyper-k-space,
centered at the mesh points k3, k4. The total rate
R„,(n &, k, ) is then given by

where

Ra(k(, k3, k~, k2, n)—:M„,f d k, d k2S(12;34) .

(14)

We seek an analytic expression for the k-space integrals
and the inner time integral. This is achieved by expand-
ing the band structure in a Fourier series in terms of the
reciprocal lattice vectors which lie in the field direction.
In our example, we have chosen the field to be in the
( 100) crystallographic direction. Then,

E(ko, k Eft,—k, )= ps" (k„,k, ) c os[ mn(k»
. Ef—t)]

2 VR„,(n, , k, }=

X g Rq(k„k3, k~, k2, n),
k3, k40 0

(13)

for all t and k . We use eleven expansion coefficients
(m=0, 1, . . . , 10) for each unique pair (k„,k, }. Also,
since 6 is small, we use a linear interpolation algorithm
in the x and z directions for the energies of points near

(k„,k, ). Our result can be written as

sin[5(A, k, +B,kz +C, )]
o g a,.

) A;k)„+B;k2„+C;

4

X exp —g I (n;, k; }t'~ (16)

where A, , B,, C, , X„X&, and X, are time-dependent
coefficients, and I „,is the sum of the imaginary parts of
the electronic self-energies for the four states involved.
Here we have approximated I'„, as R h/2 where R „ is

the total energy-dependent phonon scattering rate for
these states. By using a proper change of coordinates, we
remove one of the k-space integrals and create a two-
parameter lookup table for the remaining k-space in-

tegral. Thus only the last time integral remains to be per-
formed numerically in Eq. (16) during run time.

The matrix elements in M„, are evaluated using the
Fourier-series expansions for the pseudopotential wave
functions and the frequency- and wave-vector-dependent
dielectric function e(q, co), which has been calculated
from the band structure, using a random-phase approxi-
mation. We include 15 bands to calculate the dielectric
function, and 8 bands to calculate the rate.

Because it is impractical to actually evaluate all of the
terms in the summation of Eq. (13), we employ a Monte
Carlo algorithm to evaluate this summation. This leads
to an interpretation of the Rz terms as local averages, in
which the function being integrated over k3 and k4 is
piecewise continuous. Then the Monte Carlo evaluation
of the sum in Eq. (13) is a Monte Carlo integration of this
approximate, piecewise continuous function.

IV. RESULTS AND DISCUSSION

Figure 1 shows impact ionization scattering rates as a
function of initial electron energy for Si. [Note that the
rate at a given energy E is an average over all wave vec-
tors and bands with E„(k}=E.] The lower, dashed curve
is Kane's result for the impact ionization rate in Si using
the energy-conserving 5-function expression, and a much
larger mesh 2k= —,'(2m. /a). Our result using the same

method is shown as the solid line just above Kane's. Al-
though Kane has used a rather coarse grid and a much
less accurate expression for the 5 function (he allows en-

ergy differences of up to 0.2 eV between initial and final
states), his result agrees surprisingly well with ours.

The dotted curve represents our zero field using Eq.
(13). In the zero-field limit, there is still a finite collision
broadening due to the phonons which lowers the thresh-
old for impact ionization from the golden rule's result.
This may seem somewhat surprising, for if collision
broadening had any effect on the impact ionization rate
near threshold, one would expect that this effect would be
more pronounced in Kane's work than in ours because
Kane has considered energy conservation only up to 0.2
eV (as a numerical approximation), which is greater than
the phonon-induced collision broadening for electrons
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near threshold, =30 meV. However, the collision
broadening replaces the 5 function with a Lorentzian, see
Eq. (6), whose full width at half maximum is I'O=I „„
which is approximately 30 meV, but the tail extends
much farther than the 0.2 eV which Kane has used, de-

caying slowly to zero. Because the density of fina1 states
for impact ionization increases rapidly as a function of in-
itial electron energy for electrons near threshold, other-
wise rare processes with ~E, Ef ~

))I o
c—an actually be

favored. It is just these processes, which are far from en-
ergy conserving, that inflate the impact ionization rate
near threshold. The collision broadening effect becomes
small for higher initial electron energies since the rate is
much less sensitive to changes in energy in this region. A
similar and additional effect is seen in the high field case
as discussed below.

A note of caution has to be added for the long time
limit. As steady state is approached, the electron system
cannot "borrow" more energy from the phonon bath
than it returns. We believe that a more exact analysis
than that given by the Levinson equation is needed in or-
der to correct any energy imbalances which may result
from the inclusion of collision broadening into the impact
ionization processes, but that for short times, the above
broadening and threshold shifting represents a good ap-
proximation. If this is not the case, the problem is con-
siderably more complicated, and its solution is beyond
the capabilities of modern computational resources. The
importance of these higher-order terms is currently under
investigation. It may also be necessary to examine the
effect of the averaging on the heat bath in a more micro-
scopic way.

The dash-dotted curve at the top is our result for
F=SX10 V/cm. Here it is seen that the field also sub-
stantially softens the threshold energy while for higher
electron energies, the field has little effect on the average

Initiating Electron Energy (eV)

FIG. 1. Impact ionization rates for Si averaged over all ini-
tial electron states with a given energy measured from the bot-
tom of the conduction band. Dashed curve, Kane's result; solid
curve, zero-field, no collision broadening; dotted curve, collision
broadening; dash-dotted curve, F=SX10' V/cm and collision
broadening.

scattering rate. We interpret these results in the follow-
ing way: according to Eqs. (8) and (13) the scattering rate
associated with an electron in state k depends on E(k)
and energies E(k+E&t) with t (t, .This means that
electrons experience energy gains and losses as they are
accelerated through the band structure during the time of
the collision (limited by the phonon scattering rate which
is much larger than the impact ionization rate for most
energies). Therefore the scattering rate associated with
these electrons is "averaged" over these energies. Elec-
trons whose energy is near the zero-field threshold may
gain sufficient energy during the collision to cross over
the threshold. As mentioned before, the field exhibits its
strongest effect on electrons near threshold. For higher
energies, the effect of the field, commonly known as the
intracolhsional field effect, is drastically reduced since the
functional energy dependences are weak.

Figures 2(a) and 2(b) show the secondary electron and
hole distributions as a function of initial electron energy
for ~F~=0 V/cm and ~F~=SX10 V/cm, respectively.
The distributions for ~F~ =5X10 V/cm are slightly
broader than those for zero field for the same reason as
discussed above. Even in the zero-field case, lower energy
electrons are subject to considerable energy broadening.
For instance, classically, the secondary electrons and
holes produced by an initiating electron of energy E; can
have energies E„, (measured from band edges) of up to
E ' E

g p disregarding conservation of crysta 1 momen-
tum. (E,„ is the energy band gap. ) However, the secon-
dary distribution functions for E, =1.5 eV show E„, of
up to 1.5 eV, This agrees with the conclusions reached
earlier regarding collision broadening. Again, our results
represent an upper limit on the effect of collision
broadening, since in the long time limit, energy conserva-
tion of the total system must be maintained. Secondaries
produced by high-energy impact ionizing electrons show
little energy broadening. We would like to emphasize the
fact that for the extreme energy tails of the broadening,
our calculation may become increasingly inaccurate. As
stated, we believe that this problem is not amenable to
easy fixes. We have checked that the non-Markovian
corrections to the electron propagator giving rise to the
self-energy which are usually cited to correct optical
spectra, do not reduce the broadening significantly.

The effect of the field on the wave-vector-dependent
scattering rate is also dramatic. The rates in Fig. 1 only
demonstrate the effect of the field averaged over all k
with the same energy. Because Monte Carlo transport
simulations show that in silicon most impact ionization
events occur for 2.5 eV~E ~3.5 eV (Ref. 17) and the
effect of the field is reduced, it is instructive to investigate
the anisotropy of the impact ionization rate for energies
in this range.

Figure 3(a) shows the effect of the field as a function of
wave vector for states with E(k)=2.5 and 3.0 eV in the
second conduction band, where k =cosO, k =sinO,
k, =0, where —~/2 ~ O ~ ~/2 with the field applied
along the y direction in real space. The zero-field result is
shown by the dotted and dashed lines for E(k)=2.5 and
3.0 eV, respectively. For these energies, the impact ion-
ization rate is almost isotropic. (For energies near the
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zero-field threshold, the anis te anisotropy becomes more pro-
nounced. ) However, for high Selds, the im ac

ecomes quite anisotropic as demonstrated by the
dashed-dotted and solid lines in F' 3q ~

k-d
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