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Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni
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We present a computational method for the ab initio study of magneto-optical quantities like the

optical conductivity and the magneto-optical Kerr rotation based on density-functional theory. This
method is tested here on the ferromagnetic metals Fe and Ni. The results for Fe agree very well

with experimental data. The magneto-optical polar Kerr rotation is predicted accurately. For Ni the
results are in fair agreement with experiment. In those points where deviations from experimental
data are found, they can be traced back to the well-known fact that the local-density approximation
is of moderate success in describing some of the Ni 3d bands.

I. INTRODUCTION

The magneto-optical Kerr effect (MOKE) has at-
tracted much attention in fundamental and in applied
research, because in the latter case it is technologically
very promising for the realization of high density storage
systems. ' Digital information, which is suitably stored
in a magnetic material can be read out using MOKE.
This fact has greatly stimulated the search for good
magneto-optical recording materials and the magneto-
optical properties of many materials were investigated.
Detailed overviews were recently given by Buschow and
by Reim and Schoenes. In spite of the intensive experi-
mental research, the theoretical understanding of MOKE
leaves a lot to be desired. For instance, the appearance of
high peaks in the MOKE spectrum has been attributed
to different physical origins such as interband transitions
and spin-orbit coupling, half-metallic ferromagnetism
together with spin-orbit coupling, and even to relativis-
tic effects. A somewhat different explanation for large
MOKE peaks was suggested by Feil and Haas, who ar-
gued that such peaks correspond to plasma resonance
frequencies of free charge carriers.

Also, the successful description of MOKE by means of
first-principles band-structure methods is as yet rather
problematic. Although the absorptive parts of the opti-
cal conductivity tensor that determines the Kerr-rotation
angle were calculated for elemental metals and some
compounds, the polar Kerr-rotation angle itself has,
to our knowledge, not yet been calculated for elemental
metals, as Fe, Co, and Ni. For the case of the compound
NiUsn the situation is different; here the polar Kerr ro-
tation was computed by Daalderop et a/. But these
authors did not publish a test of their method on simpler
systems like elemental 3d metals. In our opinion, these
tests are essential since there are several computational
diKculties inherent in MOKE calculations.

One of the main reasons for these difficulties is that
for the evaluation of the Kerr rotation an accurate value
of both the dispersive and absorptive part of the off-

diagonal conductivity tensor needs to be known. This

quantity is di%cult to calculate, as it depends crucially
on small band-structure effects, like the spin-orbit cou-

pling and exchange splitting. The absorptive part can be
calculated with a standard Brillouin-zone (BZ) integra-
tion method and, in principle, the Kramers-Kronig (KK)
transformation can then be used to obtain the dispersive
part. However, special care is needed to achieve suFicient
convergence of the KK integral. For this reason, the KK
transformation is not very suitable for the ab initio study
of MOKE.

The aim of this work is to describe an accurate, first-
principles method with which detailed ab initio studies of
MOKE can be made. The theoretical basis for our work is

the density-functional theory in the local-density approx-
imation (LDA). The electron bands and the electron
wave function are evaluated with the augmented spheri-
cal wave (ASW) method. ~s The optical conductivity ten-

sor, which is the critical part of MOKE, is as usual calcu-
lated with the Kubo formula. But since it is particularly
important to obtain accurate values of this quantity, we

developed a special Brillouin-zone integration technique,
which is better suited for the study of MOKE as the
Kramers-Kronig technique. With this integration tech-

nique, lifetime effects are directly taken into account, so
that an additional smoothening of results for compari-
son with experiment is no longer needed. Furthermore,
we developed an accurate method for the computation of
the optical transition matrix elements. In these points
our approach differs from other computational methods
and it is exactly these two points which make a detailed
investigation of MOKE feasible with our method. This
statement is elucidated in this paper by our results for
Fe and Ni.

II. THEORY

The magneto-optical Kerr effect is found when polar-

ized light is reflected from the surface of a magnetic ma-

terial. The rotation angle of the polarization direction of
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the refIected light with respect to the original polariza-
tion is the so-called Kerr angle. This angle depends in

general on the relative geometry of the surface plane, the
magnetization direction, and the direction of the wave

vector of the incoming light. Here we shall consider only
the physically interesting case, namely, the polar Kerr
effect, for which both the magnetization and the incom-

ing wave vector are perpendicular to the surface. In this
case, the complex polar Kerr angle can be expressed in

terms of the macroscopic conductivity tensor o. For cu-
bic systems, with the z axis chosen parallel to the mag-
netization, the complex Kerr angle is given by4

4K = 4 K + i EK =
o.» 1+ i —o»

Here Pli is the real Kerr-rotation angle, eli is the so-
called Kerr ellipticity, and or~~ and o.~z are components
of the conductivity tensor.

The macroscopic conductivity tensor in turn can be
related to microscopic optical transitions with the Kubo
formula. A clear derivation was given by Wang and
Callaway, i ~ to whom we refer for details. The com-
ponents of the interband conductivity tensor (per unit
volume) can be expressed as
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with 6 = 1/r, 7 being a phenomenological relaxation
time, and hu„~, «, —E«, (k) —E«, (k), the energy
difference between an unoccupied band n with spin index
cr2 and an occupied band 8 with spin o'i. The quantities
II„,g, are matrix elements of the momentum operator

II„,r, (k)

the conductivity tensor can be calculated with a standard
integration routine. The dispersive part can then in
principle be obtained by performing a KK transformation
on the absorptive part, e.g. ,

OQ ~ I

0
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with g„~,(r) the Bloch wave function. Apart from the
interband contribution to the conductivity tensor, there
is also the intraband conductivity, which can be de-
scribed well with an empirical Drude term

~D(~) =
1 —Nd TD

The constants cr0 and rD are usually known from exper-
iments.

So far we only summarized the standard theory for
MOKE, which is used in all existing first-principles meth-
ods. It is, however, instructive to analyze first the com-
putational difIiculties that are connected with the evalu-
ation of MOKE, so that we can elucidate why we decided
to develop a computational technique. These difIiculties
are twofold: first there is the BZ integration needed for

and o &, and second, the calculation of the matrix
elements II„,~, need be mastered. Most of all, one
would of course like to use the expressions (2) and (3) of
Wang and Callaway directly, with the lifetime effects
exactly taken into account. However, in all existing ab
initio methods the procedure followed is different: first
the limit 6 ~ 0 is taken and then the absorptive part of

with o z and ~ „ the real and imaginary part of o s,
(i) (z)

respectively. At the end, the calculated spect;ra are
smoothed again as to simulate lifetime effects and to al-
low for comparison with experiment. One of the prob-
lems connected with this procedure is that it is difBcult to
achieve convergence of the KK integral. The absorptive
part of the spectrum has a very sharply peaked structure
(see, for example, Fig. 1) and therefore a very dense ur

mesh is needed to resolve the peaks properly. In addition
to this, one has to carry the KK integration up to high
frequencies, due to its slow convergence. Cutoff values
of about 5 Ry are required to make the integral conver-
gent for frequencies up to 2 Ry. However, the intrinsic
error in the absorptive part o.» can become very large,(2)

even more than 100% for frequencies over 1 Ry. This
error is caused by the second problem, the evaluation of
II„,g, . It is difIicult to compute the matrix elements
precisely, due to basis set incompleteness and approxima-
tions of the integrals in (4). Most first-principles methods
use a set of variationally constructed, incomplete basis
functions, which yield a good estimate of the band en-
ergies, but the wave functions are not as well described
and this description becomes especially bad for energy
bands which lie high above the Fermi energy. This leads
to the fact that matrix elements belonging to such bands
can easily be off by more than 100% and consequently
the absorptive part of the conductivity tensor is not well
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determined for high frequencies.
In order to avoid the above-mentioned problems al-

together, we developed a new method to evaluate the
transition matrix elements and a special BZ-integration
method. ~ The matrix elements are calculated as pre-
cisely as possible, although our basis set is also in-
complete. Further, it is important that with our BZ-
integration method, the full complex conductivity tensor
is calculated directly in the form of (2) and (3), as a
function of the frequency and at a fixed relaxation time.
Thus, no additional smoothening of the spectra is needed.
Moreover, since our spectra are smooth, we only have to
perform the BZ integrals for a small number of ~ points.
In the following we first outline the way in which we
evaluated the matrix elements and then discuss the BZ-
integration method.

In the ASW method, ~s as in other fast methods like the
linear-muffin-tin-orbital (LMTO) method, 27 the unit cell
is divided into an interstitial region, that nearly vanishes
and where the potential is assumed to be fIat, and into a
collection of atomic spheres centered around the nuclei.
The wave function in these two parts is written as

Q„"~ (r) = ) Cl", (n, k) 6„„HI, (r 7.„)—
+) Biiii, (jp Tp k)

L I I

x JL,&&~(r 7p)

for r inside the sphere centered around 7„and

Q„y (r) = ) Cl" (n, k)
Lp

x ) e'"' ' Hr, (r —R~ —r„) (8)
K~

for r in the interstitial region. Here H and J denote the
augmented spherical Hankel and Bessel functions, while
H denotes the unaugmented spherical Hankel functions,
and ~ is the spin index. 8 is the Korringa-Kohn-Rostoker
(KKR) structure constant which is set equal to zero for

Further details can be found in Ref. 18. The
Schrodinger equation is solved in the scalar relativistic
approximation with spin-orbit coupling included by a sec-
ond variation. The spin-orbit term in II„,g, , however,
is known to be much smaller than the canonical momen-
tum operator, and therefore we neglect this term in

(4). This means that no spin-fiip transitions are taken
into account, but the efFect of spin-orbit coupling itself
is taken into account through the band energies and the
wave functions. In our approach the integral over the unit

I

cell (UC) naturally splits up into an integral over atomic
spheres and one over the interstice. It is convenient to
extend the free Hankel functions into the spheres, so that
the integral can be rewritten as

II ~ (k) = —& I ).[ (+.k. lvl&I~ )&-

vip, „.),.]

+ (O.~.lvlOei, .&Uc» (9)

where the parentheses stand for an integral over a sphere
only. The combination of two extrapolated free Hankel
functions that are both centered at v„ is to be treated
differently as we will show, because such a combination
would lead to divergent integrals, due to the poles of
the unaugmented Hankel functions. An important con-
sequence of rewriting the integral in this form is that the
L" sum in (7) converges much more rapidly and so an
improved accuracy is gained. ~ The free Hankel functions
can be represented with the KKR expansion theorem
as a sum of free Bessel functions, so that every wave
function in (9) can efFectively be written as a sum of a
Hankel and a Bessel part. An integral in (9) thus gives
four contributions, namely a Hankel-Hankel combination,
a Hankel-Bessel combination, a Bessel-Hankel combina-
tion, and a Bessel-Bessel combination. Before we work
out these integrals, we mention that a difFerent derivation
of the matrix elements in the ASW method was given by
Rompa, Eppenga, and Schuurmans. s Their derivation
leads to an expression that is more difFicult to evaluate
than ours; we come back to this point later.

The first term in (9) is relatively easy. The r

independent coeKcients can be taken out of the inte-
gral and the integration itself can be split into a ra-
dial and an angular integration. The angular integration
can be done analytically, but the radial one has to be
done numerically. The second term is more complicated.
The Hankel-Bessel and Bessel-Hankel combinations have
poles at r = 0 due to singularities of the free Hankel

functions. It can be shown that these poles exactly can-
cel and that the remaining integrals can be done analyti-
cally, using mathematical properties of Bessel and Hankel
functions. The third term can be worked out by extend-
ing the integral over the UC to an integral over 'R and
then apply Green's theorem to transform the integration
into an integration over infinitesimal spherical surfaces
enclosing the singularities of the free Hankel functions.
This procedure leads to energy derivatives of the struc-
ture constants. Our results for the matrix elements can
be summarized as follows:

II„r (k) = h ) ) ( C& (nk) [M~&&, l(1, 1)+ T~&&1,(1, 1)]C&~",l (Ek)
v IL'

+Cl (nk) [ML&, (1,2)+ Tzz, (1,2) + PL, L, (1,2)] Az (Ek)

+A "
(nk) [M~"', 1(2, 1) + T~"~,(2, 1) + P (2, 1)]C~", l (Ek)

+AL" (nk) [M~~~, 1 (2, 2) + T~~), (2, 2)] A~', ~ (kk)

+C! (-k) [~- (1,2)]A."'.Vk»
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Here we introduced the following abbreviations:

A&" (nk) = ) Bl,l, (r„—a&, k) C&", (nk)

and

At~"~(nk) = ) BI.L, (r —r„;k) C~t", 1 (nk)
L'p

(12)

with B the energy derivative of the structure constant. The matrices in square brackets are numbered according

to the partitioning into Hankel- and Bessel-type functions, with the convention that "1" stands for a Hankel type

function and "2" for a Bessel type. The M matrix is given by

M~~q', l(n, P) = sgn (E' —E) dr r d ' 1(r) frtP' l(r) Dr, L, I

)

+sgn(E' —I.) l d« f, ' (r) —f,, ' (r) G«

witho, P=1, 2and fz' (r) = hz (r) and fz~'l-
jz (r), the augmented Hankel and Bessel functions. The
matrices G and D are de6ned through

(14)

and through

DL,I. — dA YI. r rV YL, r .

We work here with real spherical harmonics and these
matrices can simply be evaluated and then tabulated
once and for all. The matrix T is defined by

(16)

Pal. '(1 2) = GI.I, br-i c,
whereas

Pl.l, (2, 1) = —GL,r, br+) r

Our expression for II looks cumbersome, but it has sev-
eral computational advantages. The matrices in square

with d1(mr) = 2+~ hr(zr) and d (zr) = & jr(«), 4
and jg being the free spherical Hankel and Bessel func-
tions, respectively, and ~~ = E, the fixed energy param-
eter of the interatomic wave functions. The integration
domain P„ is [0, S„]for all Hankel-Bessel combinations,
except for the Hankel-Hankel combination, for which P„
is [oo, S„],due to the restriction made in the derivation
of (9). Analytical expressions for these integrals can be
found in Ref. 29. Finally, for P and Q we have

m BE„,(k)
h Ok

(18)

Here E„(k) are the band energies which can be deter-

brackets are independent of n and k and therefore they
have to be calculated only once. The nk-dependent co-
efBcients do not require extra computer time as they are
computed already in every band-structure calculation.
This is an important diA'erence with the result obtained
by Rompa, Eppenga, and Schuurmans. ss Their deriva-
tion leads to an expression that contains the wave-vector
derivative of the structure constants, e.g. , BBI,I,~/Bk.
Such a term does not appear in a standard ASW band-
structure calculation and for MOKE calculations it would
be necessary to compute this term additonally on many
k points. For this reason our expression is better suited
for calculations of the conductivity tensor. Further, it is
important that our matrix elements are Hermitian. This
must be so on account of the general expression (4), but
it is not obvious from our formula for the matrix ele-
ments (10). Nevertheless, tests showed that our matrix
elements are Hermitian with an accuracy of better than
1 in 10 . This is an important feature of our method,
because there is one approximation which is often made
to evaluate II„g~, in which one neglects the integral over
the interatomic region and only considers the contribu-
tion from the atomic spheres. This approximation would
correspond to taking only the M terms in (10) into ac-
count. We found that this approximation is generally not
very good; the resulting matrix elements are not Hermi-
tian (errors of about 20%) and the deviations from the
Hermitian II„r are of the order of 12%. These errors
partially originate from the insu%cient convergence of
the I sum in (11). All these problems we thus circum-
vent with our approach.

As mentioned before, the basis set that we use is in-
complete. One way of testing the errors introduced by
using an incomplete basis is to consider the diagonal ma-
trix element, for which the following expression is valid:
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mined variationally much more accurately than the wave
functions. In comparing the results we obtained with (18)
with those of our expression (10), we find that for energy
bands below the Fermi energy the deviations are small,
normally less than 7%. For energy bands above the Fermi
energy, the maximal deviations increase roughly with in-
creasing band energy, to values of about 10% for energies
of 0.5 Ry above the Fermi energy. The matrix elements of
bands up to 1.0 Ry above the Fermi energy deviate max-
imally up to 25%, while for energy bands placed 1.5 Ry
above the Fermi energy the deviations can maximally be
50%. These values were obtained for monoatomic 3d met-
als. We note that the deviations are in general smaller
for materials with several atoms in the unit cell, due to
the larger basis sets that are then used. Also we remark
that other methods 3 do not achieve as good II's as
ours does.

Previously, the effect of the Em» cutoff of the wave-
function expansion on the matrix elements was studied
by Chen for the KKR method and by Uspenski ef at. s~

for the LMTO method. They both find that the matrix
elements depend sensitively on the 8 „cutoff. In going
from E~ „=2 to E „=4, Chenst found that the matrix
elements can easily change by a factor of 2 or 3. Uspenski
et al. found that for 8~~„= 2 the calculated intraband
matrix elements can be 2 or 3 times smaller than those
obtained from the band energies with (18), even for en-

ergy bands below the Fermi energy. For 8 „=3 they
find that this deviation is already much smaller, less then
10% for energy bands below the Fermi energy. In our
case, the deviations of the diagonal elements obtained by
(10) and by (18) are nearly the same for / „=2 and
S~~„=3, and thus our matrix elements are converged al-

ready for a cutoff of 1m~„= 2. This is due to the special
treatment of the free Hankel and Bessel functions in (9),
and it implies that we have achieved convergence with
respect to the E summations in our expression (10) for
II.

Since the BZ-integration technique is an important
element of our method, we briefly outline this tech-
nique now. It is originally due to Coleridge, Molenaar,
and Lodder, ~4 while modifications and extensions were
made by Oppeneer and Lodder. It is an analytical
tetrahedron method, in which an integrant of the form

F(k)/G(k) is approximated within one tetrahedron by
the quotient of two linear functions, the linear approxi-
mations to F and G, respectively. This approach is well
suited for the evaluation of integrands with poles, as is
the case of the conductivity tensor. Furthermore, as the
integration is good for complex functions, we can evaluate
o and o

& [Eqs. (2) and (3)j with a lifetime parameter
explicitly included. At a given frequency, this method
yields therefore directly the real and imaginary part and
thus the absorptive and dispersive part of the conduc-
tivity tensor without KK transformation. An important
feature is, furthermore, that in the limit of 6 ~ 0 the
method gives the correct answer, which is nontrivial, as
effectively a pole in the complex plane is approached.
This feature allows us to check our results for 6 ~ 0
against those that were computed previously with stan-
dard integration methods. The accuracy of an integra-

tion depends of course on the number of mesh points,
but normally for 512 tetrahedra in the irreducible wedge
of the BZ, this technique achieves accuracies better than
2%%uo. This was established by tests against the simple cu-
bic Green function for which analytic results are known.
In the neighborhood of a van Hove singularity the accu-
racy is less good, with deviations of about 4%%uo. Since we

normally work with finite lifetimes, these van Hove sin-
gularities do not affect our accuracy. The only disadvan-
tage of this integration method is that it requires more
computer time per integration than other tetrahedron
methods, due to the more complicated nature of the
formulas. This, however, bears no weight against the
many more BZ integrals that are needed for the dense ~
mesh of the KK integrals. In concluding, we feel that this
integration technique has precisely those features which
are desirable for the study of MOKE.
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FIG. 1. The absortive parts of the conductivity tensor

w&th (a) O'P~ and (b) no~„, as calculatd by several
authors. Results shown are as follows: solid curve, this work;
dashed curve, Uspenski and Khalilov (Ref. 36); dotted curve,

Ebert, Strange, and Gyorffy (Ref. 13) for o~ l and Ebert (Ref.
34) for ceo~„.
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III. RESULTS

With the method outlined in the previous section, we

computed the conductivity tensors of Fe and Ni in the
limit of infinite relaxation times, i.e., 6 ~ 0. Previously,
the absorptive parts of o and o & were calculated by
several authors, so that we can compare our results. For

Fe, the real part of o (o ) and the imaginary part of
o'

&
(o'

& ) were calculated by Ebert and co-workersis s~

with the spin-polarized relativistic LMTO methods5 and

by Uspenski and Khalilov with a scalar-relativistic ver-
sion of the LMTO method. 27 Results of the different com-
putations are shown in Figs. 1(a) and 1(b). For o, the
features of the spectra are clearly similar in all three cal-
culations. Our results and that of Ebert, Strange, and
Gyorffyis appear to be shifted with respect to each other,
which might be due to different lattice constants. We
used here the experimental value of a = 5.4163ao. For

au~&, the result of Uspenski and Khalilov and ours
compare very well, but the result of Ebert has a differ-
ent structure. He smoothed his curve, so that the sharp
peaks disappeared, but apparently the hump at 2 eV is
shifted to 3 eV, while the peak at 5 eV is missing in his
result.

The results for Ni are shown in Figs. 2(a) and 2(b). In
this case we can compare with results obtained by Wang
and Callaway and again with those of Ebert and co-
workers ' and of Uspenski and Khalilov. ss Our results

for 0» and that of Wang and Callaway are nearly iden-(1) 10

tical, while there is also a close resemblance with Ebert,
Strange, and Gyorffy. is Also for the off-diagonal con-

ductivity acr &, there appears to be a very good agree-(s)
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FIG. 2. As in Fig. 1, but for Ni. Results shown are as
follows: solid curve, this work; dashed-dotted curve, Wang
and Callaway (Ref. 10) for al; dashed curve, Uspenski and

Khalilov (Ref. 36) for un~„; dotted curve, Ebert, Strange,
and Gyorffy (Ref. 13) for n~~) and Ebert (Ref. 34) for urrrPvl.

ENERGY (eV)

FIG. 3. Experimental and calculated results for (a) n~'~

and (b) uo~ J of Fe. Experimental data shown for n~ 1 (a)
are as follows: (a) Yolken and Kruger (Ref. 39), (!)Bolotin,
Kirillova, and Mayevskiy (Ref. 40), () Johnson and Christy

(Ref. 41), and (~) Weaver et al (Ref. 42). For ua .„(b)
the experimental data shown are as follows: dashed line, van

Engen (Ref. 43); (o) Krinchik and Artem'ev (Ref. 44); and

(h) Ferguson and Romagnoli (Ref. 45). Calculated results
are given for two inverse lifetimes, b = 0.03 Ry for the full
curve and b = 0.05 Ry for the dashed-dotted curve.
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ment between the three calculations. As a first result,
we conclude that our technique yields conductivity ten-
sors which are trustworthy as far as the evaluation within
energy band theory is concerned.

In order to use our method for ab initio predictions
of MOKE, it is important that the calculations are also
capable of giving a good description of experimental op-
tical conductivities. It is found experimentally that life-
time eA'ects play a considerable role in optical transitions.
Excited states do not have an infinite lifetime, but due
to many-body effects they decay after a certain time.
The lifetimes are state dependent, since high-lying en-

ergy states are found to be more unstable and to have
shorter lifetimes. " In principle it is even possible for us
to use state-dependent lifetimes. But the difhculty is that
as yet not much is known about such relaxation times.
Therefore we use here one fixed relaxation time for all en-

ergy bands. These fixed relaxation times were estimated
from the intraband relaxation times rD [see Eq. (5)j for
which experimental values exist. We assumed that the
interband lifetimes are equal to or slightly smaller than
the intraband lifetimes. Our results for Fe are compared
in Figs. 3(a) and 3(b) with the experimental data of sev-
eral authors. The inverse relaxation times used were
6 = 0.03 Ry and 6 = 0.05 Ry. The inclusion of lifetime
eA'ects clearly broadens and smoothens the sharp peaks
in the spectra of Fig. 1. Although the exact height of
the peak at 2.5 eV in o.~ ~ is experimentally uncertain,
we can nevertheless conclude that our curves represent
the shape of the experimental data quite well. The steep
increase in the experimental o( ) (Ref. 40) below 0.5 eV
is caused by the intraband Drude behavior. A Drude
term was not added in our calculation of o~ ~, but we
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FIG. 4. As Fig. 3, but for Ni. Experiments shown for
of~ (a) are () Johnson and Christy (Ref. 41), (&) Ehren-
reich, Phillip, and Olechna, (Ref. 46), and (Cl) Shiga and Pells
(Ref. 47). For wo „(b) the experimental data are as follows:
dashed line, van Engen (Ref. 43); (o) Krinchik and Artem'ev
(Ref. 44), and dotted line, Erskine (Ref. 48). The inverse
lifetimes used for the calculated results were b = 0.03 Ry for
the full curve and b = 0.04 Ry for the dashed-dotted curve.

FIG. 5. Results for the dispersive parts of the conductiv-
ity tensor of Fe, with (a) ido~ and (b) ohio~„, respectively.(2) (~)

Experimental data shown are those of (a) Yolken and Kruger
(Ref. 39) and () Johnson and Christy (Ref. 41) for bio (2)

(a), and for ohio „(b) those of (5) Ferguson and Romagnoli
(Ref. 45); dashed line, van Engen (Ref. 43); and (o) Krinchik
and Artem'ev (Ref. 44). The calculated results are as given
in Fig;. 3.
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shall take it into account for MOKE later. For ~0 z our(2)

curves resemble the experimental data, but they predict
higher values than the measurements.

Results for Ni are shown in Figs. 4(a) and 4(b). The
relaxation times used were 6 = 0.03 Ry and b = 0.04
Ry. Again the experimental features can be recognized in
the calculated spectra, but the position of the calculated

peak in ~ at 5.5 eV is off by about 1 eV. The dip in

~~ & is similarly displaced by 1 eV, while also the struc-
ture at 1—2 eV appears to be slightly shifted. We could

trace the origin of this discrepancy by plotting 0~(s) band
by band. The Xit, Xil bands are responsible for the
calculated peak at 5.5 eV. The position of these bands as
calculated within the local-density approximation is not
in accordance with the findings of angle-resolved pho-
toemission measurements. Photoemission measure-
ments place these bands about 1 eV higher than LDA

band-structure calculations do. This failure of LDA
for the description of these correlated Ni bands was in-
tensively studied and its physical origin is understood.
This implies that the differences between experimental
results and the calculated curves in Fig. 4 are not due to
our computational method, but are caused by the LDA.

In Fig. 5 we present ab initio calculations of era() (a)
and uo'( v) (b) of Fe. The relaxation times were the same
as used for the absorptive parts and no empirical intra-
band conductivities were added. Just like o~&, the exper-
imental values of ~0(,) (a) spread widely. This could be
caused by different surface preparation techniques, since
the surface of Fe is sensitive to oxidation. For uo & of
Fe [Fig. 5(b)j the agreement with experiment is quite

satisfactory. The results for ufo s and uo v of Ni are(2) (~)

shown in Figs. 6(a) and 6(b), respectively. The overall
trend seen in Fig. 6 is analogous to what was found for
the absorptive parts (Fig. 4): the calculated conductiv-
ities resemble the experimental data quite well, but the
structure around 5 eV appears to be displaced by about
1 eV.

Finally, the polar Kerr rotation was calculated from
o and 0 z with Eq. (1). The results for Fe are shown
in Fig. 7 and those for Ni in Fig. 8. We note that in both
cases the experimental data are in close agreement
with each other. This indicates that these data are repro-
ducible and reliable, which is not always obvious, since
magneto-optical measurements tend to depend strongly
on the surface preparation of the sample (see, e.g. , Ref.
43). For Fe, our results agree very well with experiments,
both for the used inverse relaxation time of 6 = 0.03 Ry
and for b = 0.05 Ry. Apparently the precise value of
b is not so critical for the calculated Kerr rotation of

0.2

0

A 0

-oa -':.
Z 4
O

-04—
O

—0.6

—0.8

10

10

ENERGY (eV)

FIG. 6. As Fig. 5, but for Ni. The experimental data
shown for uo are as follows: dot ted line, Ehrenreich,
Phillip, and Olechna (Ref. 46); (Q) Johnson and Christy (Ref.
41); and for wo~ J are as follows: dashed line, van Engen (Ref.
43); (o) Krinchik and Artem'ev (Ref. 44); and dotted line, Er-
skine (Ref. 48). Calculated results are as given in Fig. 4.

ENERGY (eV)

FIG. 7. Experimental and calculated results for the Kerr
rotation of Fe. Experiments shown are those of (o) Krinchik
and Artem'ev (Ref. 54) and dashed line, van Engen (Ref. 43).
Calculated results are given for two inverse lifetimes, b = 0.03
Ry for the full curve and b = 0.05 Ry for the dashed-dotted
curve. The effect of an empirical Drude conductivity on the
calculated Kerr rotation is illustrated by the dotted curve,
which is the result (for b = 0.03 Ry) with Drude term (Ref.
38).
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FIG. 8. Experimental and calculated results for the Kerr
rotation of Ni. Experimental data shown are as follows: (o)
Krinchik and Artem'ev (Ref. 54) and dashed line, van En-
gen, Buschow, and Erman (Ref. 53). The full curve is the
calculated result with lifetime parameter b = 0.03 Ry, while
the dashed-dotted curve is the result for b = 0.04 Ry. The
influence of an empirical Drude conductivity (Ref. 38) on the
calculated Kerr rotation of b = 0.03 Ry is illustrated by the
dotted curve.

Fe. We also added an empirical intraband Drude con-
ductivity to the calculated interband conductivity with
the optical constants oo and 7D [see Eq. (5)] taken from
experiment. The effect of the intraband Drude conduc-
tivity is illustrated by the dotted curve in Fig. 7. This
curve shows the calculated Kerr rotation for 6 = 0.03
Ry with the Drude term. The results for Ni (Fig. 8) are
more difficult to interpret than those of Fe. Below 3.5 eV
the calculated Kerr rotations have the same structure as
the measured ones, but for higher energies there is hardly
any correspondence. The difference seen around 4.5 eV
beautifully illustrates the effect of the shifted peaks in
o'~~ and o~& on the Kerr angle. The calculated ~cr» has
no dip at 4.5 eV [Fig. 4(b)], but rather a maximum, while
o has no peak at 4.5 eV, but more a local minimum.
This changes the Kerr rotation at 4—5 eV completely and
instead of a decreasing Kerr angle we obtain the opposite
behavior.

IV. DISCUSSION

From Fig. 7 we conclude that the ab initio calculated
Kerr rotation of Fe is in excellent agreement with exper-
imental data. The calculated Kerr angles of Ni are in
good agreement with experiments for energies below 3.5
eV, but for higher energies they deviate markedly from
experiments. This deviation could be attributed to the
fact that the LDA is only of moderate success in de-
scribing some Ni 3d bands. In conclusion, these results
illustrate that our method is capable of giving ab initio
predictions of MOKE.

In the following we wish to discuss the limitations of
our approach. As we mentioned before, the accuracy of
the method is satisfactorily good for energies below 0.5

Ry, Above 0.5 Ry the transition matrix elements are
less accurate, due to basis set incompleteness. Likewise,
the accuracy of the Kerr rotation is only reasonable for
higher energies. Another point one has to be aware of
is the dependence of the conductivity tensors on lattice
constants. Changing the lattice constant changes the po-
sitions of the peaks in the conductivity spectra, and con-
sequently, the position of peaks in MOKE are shifted.
The size of this effect was investigated experimentally
for Ni, where shifts of 0.5 eV were found. ~ By doing
calculations for different lattice constants, we examined
this effect theoretically and found exactly the same be-
havior. Therefore, for detailed predictions or for compar-
ison with experiments, a precise knowledge of the lattice
constant or the temperature is required. In addition to
this, we wish to stress that we are essentially calculating
bulk quantities. Many MOKE measurements are made
on thin films, for which our technique can at best give an
estimate only. As we noted before, a further restriction is
posed by strong electron correlations. The LDA descrip-
tion of correlated electron bands is only modestly good
and therefore one cannot expect that the calculated Kerr
rotations of correlated materials are very accurate. Diffi-
culties with strong electron correlations can, however, be
recognized before hand, since one usually knows in which
materials strong correlations can be anticipated.

Previously, a number of explanations of MOKE were
discussed in the literature. 9 From the outcome of
the calculations we can contribute to these viewpoints. In
the first place, our results confirm that MOKE depends
primarily on spin-orbit interaction. In test calculations
without spin-orbit coupling we obtained o'~&(u) = 0.0 for
the interband part, a result which was also expected on
theoretical grounds. Also, we find that the magnitude
of the Kerr rotation scales in proportion to the spin-
orbit coupling strength. Nonetheless, spin-orbit inter-
action in itself is not sufficient for large MOKE peaks.
The strength of the spin-orbit coupling in Fe and Ni is
actually of similar size, but the Kerr rotation of Fe
is about 3—6 times larger than of Ni. As a second re-
sult, our calculations show that this difference is due to
the positions of occupied and unoccupied bands in the
BZ and the detailed exchange splitting. Thus, the basic
origin of MOKE appears to be interband transitions in
combination with spin-orbit coupling and exchange split-
ting, as proposed by several authors. ~ The validity of
the interband picture for these metals was previously un-

clear, mainly because other calculations that used elec-
tron bands which were fitted to photoemission data, gave
results for o» of Ni which were in complete disagreement
with experiment. Contrary to these findings, however,
our calculations show that the interband model can in-
deed give a reliable description of MOKE. We further
found that intraband effects are not unimportant, but
their infIuence on the MOKE spectrum is restricted to
energies smaller than 1—2 eV (see Fig. 7). Other mecha-
nisms, like the plasma-resonance model of Feil and Haas
could not be confirmed in the present study, but neither
can they be completely excluded. Similarly, the explana-
tions for the occurrence of large Kerr rotations in Heusler
alloys as given by de Groot et al. and Wijngaard, Haas,
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and de Groot can be verified only by calculations for
these alloys, which we intend to carry out in the future.
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