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Hall coefficient of cubic metals
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A systematic study of the low-field Hall coefficient R& of 23 cubic metals is done using tabulated
Slater-Koster parameters for the band structure and a tetrahedron method to calculate the Fermi-
surface integrals. In the approximation of an isotropic relaxation time, the Hall coefficient depends only
on the Fermi-surface topology. The e6ect of the band structure is rejected in deviations of R& from the
free-electron values —1/ne. In favorable cases, our calculations agree to =+10% with experimental
data. Some of the deviations can be traced back to inaccurate band structures, e.g., in Cs or to rapidly
changing R& with cz leading to problems with convergence, e.g., in Pt. Discrepancies with experiment
show the need for an anisotropic relaxation time, especially in Pd where small regions of high curvature
dominate the Hall coefficient and in Al where two bands cross the Fermi surface. The similarity in the
band structures of Rh, Pd, and Ag encourages the use of a rigid-band model, which agrees qualitatively
with the experimental Hall coefficients for the alloys Rh-Pd and Pd-Ag.

I. INTRODUCTION

The transport properties of high-T, superconductors,
including Hali coefficients R&, have been a rich source of
confusion. Currently, it is being argued whether these
data support a Fermi-liquid model. In light of this, it
seems reasonable to examine carefully the metallic ele-
ments with conduction electrons of s, p, and d character
which are described by the band Fermi-liquid picture. In
particular, in this paper we examined how well the low-
field Hall coefficient R~ is understood.

Hurd' has reviewed both theory and experiment for
the Hall coefficient R&', relatively few detailed calcula-
tions have been published. Beaulac, Pinski, and Allen
calculated the weak-field Hall coefficient of Cu and Nb
with isotropic relaxation time. Beaulac and Allen intro-
duced an anisotropic relaxation time to explain the Hall
coefficient of Pd. Hasegawa and Leavens and Laubitz
used the variational solution of the Boltzmann equation
to calculate the electrical conductivity and the relaxation
time of K which was then used to compute the Hall
coefficient. A nearly converged solution of the
Boltzmann equation for Cu was done by Beaulac and Al-
len. Butler has used the coherent-potential approxima-
tion to calulate R~ in Pd-Ag alloys.

This paper is a systematic calculation of Hall
coefficients for cubic metals, including the alkali metals,
the noble metals, Al and Pb, some of the alkaline earth,
and most of the transition metals. The Hall coefficient is
calculated in the lowest order in the relaxation-time ap-
proxirnation, using a formula given by Tsuji. In most
cases we assume an isotropic relaxation time. Our band
structures are tight-binding interpolations fitted by
Papaconstantopoulos. The results for most of the 23 cu-
bic metals are in good agreement with experimental data.
Deviations from experiment can be plausibly associated
with either inaccurate band-structure representations,
numerical problems associated with the band structure,

or anisotropy of the relaxation time.
In the low-field limit the Hall coefficient R& for cubic

metals is given by

R„=aIt /o o
2

where Oo is the conductivity,

tJo= g r(k)[Vi,E(k)]'
3/2 ~ Be

cr& the Hall conductivity,

(3)

and k is an abbreviation for wave vector k, band index n,
and spin tT. The mean reciprocal curvature 1/p at point
k is expressed in terms of velocities vk and the inverse
mass tensor M ' by

T

2 ~V&,(k)~ =tri vk[Tr(M ') —M ']vk,
p k)

(4)

where a particular element of M ', denoted by
(I/m) ti=(1/iri )B c, /Bk Bkti.

The function ( —Bf/Bc. ) is approximated by 5(e —eF).
For a detailed derivation see Ref. 1 and references
therein.

Since the relaxation time appears to quadratic order in
the Hall conductivity crII and to linear order in the con-
ductivity cro, the Hall coefficient does not depend on the
absolute strength of the relaxation time but only on the
distribution of r(k) on the Fermi surface (FS). If the re-
laxation time r(k) is isotropic, the Hall coefficient Rtt is
indeed independent of ~.

For a spherical FS the expression for R~ reduces to the
well-known formula for free electrons,
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R «c= —1/ne,

where n is the electron density.

(5) TABLE I. Hall coefBcient for alkali metals, alkaline-earth
metals, noble and NFE, group-VIII and group-VB and -VIB
metals. The unit of R& is 10 "m C '. Experimental data are
from Ref. 1, taken at room temperature.

II. COMPUTATIONAL METHOD

~e use Eqs. (1)—(3) to calculate the Hall coefficient in a
variety of cubic metals using the parametrized tight-
binding bands obtained by Papaconstantopoulos. The
underlying band-structure calculations do not include
spin-orbit effects which may become important in the
heavier metals.

The integrals over the Brillouin zone (BZ) are per-
formed by using the linear tetrahedron method' '" with
the correctly symmetrized weighting of k points. ' The
irreducible BZ is covered by a uniform mesh of up to
3281 (fcc) and 1785 (bcc) k points. The integration region
is divided into cubes and tetrahedra that cover the entire
irreducible BZ according to Ref. 13. Within a tetrahed-
ron, the integral is approximated by linear interpolation.
The accuracy of this scheme can be increased by using a
finer mesh. Additional k points for this finer mesh are
generated by quadratic interpolation.

The Fermi energies c.+ are found by integrating the
density of states and are in good agreement with Ref. 9,
with small improvements arising from a finer mesh and
improved weighting.

Computation times on a SUN Spare workstation range
from several minutes for 85 and 55 k points in the irre-
ducible BZ for fcc and bcc structures, respectively, up to
about 3 h for 3281 k points.

Element

Li
Na
K
Rb
Cs

Ca
Sr
Ba

Cu
Ag
Au

Al
Pb

Rh
Ir
Pd
pt

V
Nb
Ta

Cr
Mo
W

R free
H

—13.2
—24.5
—44.6
—54.7
—68.6

—54
—70
—78

—7.3
—10.4
—10.5

—3.4
—4.7

—7.5
—8.8
—9.1
—9.4
—8.6

—11.2
—11.2
—7.4
—9.7
—9.8

R calc
H

—12.8+0. 1
—24.6+0. 1
—44.8+0. 1
—54.2+0. 1
—53.4+0.2

—60+10
?

—110+20
—5.2+0.2
—8.5+0.2
—8.1+0.2
—1.720.3
—2.4+0.3

11%3
5+2

—17%3
?

7.3+0.5
7.4+0.5

7.4+0.5

13.0+2.0
10.0+2.0
10.0+?

R expt
H

—15.0
—24.8
—42.8

—50.0 to —59.2
—73.3
—17.8

?

—5.17
—8.81
—7.16

—3.4+0.5
—0.9+0.2

5.00
3.18

—7.60+0.2
—2.30+0. 1

7.9+0.3
8.7+0.5
9.2+1.0

36.0
18.0+0.2
11.5+0.5

III. RESULTS

Our results are summarized in Table I. %'hen not stat-
ed otherwise, an isotropic relaxation time for all bands is
assumed. The stated uncertainties in the calculated Hall
coefficient were determined from the last two meshes
after the calculation of R& seemed to have converged.
The free-electron values in Table I are calculated using
the usual number of "free" electrons, i.e., one for the al-
kali metals, noble metals, and group-VB and -VIB metals;
two for the alkaline-earth metals; three for Al and four
electrons for Pb. For transition metals, no sensible "usu-
al" choice exists; Table I assumes one electron per atom
in these eases. The Hall coefficient is given in units of
10 "m C

In some metals (e.g., Pd) it is appropriate to explore
possible consequences of anisotropic relaxation times.
The band structure provides the necessary information
about the FS topology. The knowledge of FS velocity
and curvature is helpful in designing an anisotropic r(k).
Since metals of the same group have similar Fermi sur-
faces the anisotropy model should lead to results closer to
experiment for all elements of that group.

A. Alkali metals: Li, Na, K, Rb, and Cs

All alkali metals have a bcc structure and their FS is
nearly spherical, i.e., with nearly constant mean curva-

ture and velocity on the FS. Hence the Hall coefficient is
expected to be close to the free-electron result given by
8 "'=—1/ne

Our calculations are very close to both the free-
electron result and experimental data as shown in Table
I. Only for Cs our calculated Hall coefficient disagrees
considerably with experiment. A closer look into the
band structure produced from the Slater-Koster (SK) pa-
rameters shows that it produces a neck in the (110)
direction for Cs which is not seen in de Haas —van Al-
phen measurements. '" The necks are therefore a spurious
effect of either the underlying augmented plane-wave en-
ergy bands, or, more likely, the SK interpolation which is
not ideally suited for nearly-free-electron (NFE) metals.
The discrepancy between our calculated and measured
Hall coefficients for Cs occurs because there is no FS
point along I X since the 1V point has an energy lower
than cz. Reducing the Fermi energy cz by -7 mRy
yields a closed FS and the Hall coefficient changes by
about 40%%uo to give a value very close to the experimental
result. An anisotropic relaxation time r(k) has only a
small effect on the Hall coefficient. For example, in po-
tassium, a model where 'T 7, in a cone with opening an-
gle 2a=20 along a (110) direction, r=ro elsewhere,
yielded a change of less than 10% in R~ when
7i/%0 0.7.
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B. Noble metals: Cu, Ag, and Au

Noble metals, especially Cu, are some of the most stud-
ied metals of all. They crystallize in the fcc structure.
Their FS is well known and consists of a belly and a neck
in the (111) direction. The free-electron results are
larger by about 30% than experiment. Our results, on
the other hand, are within 5% of the experimental data
for Cu and Ag and within 15% for Au. The reduction in
the Hall coefficient from the free-electron results is
caused by the contribution from the neck regions where
the curvature has the opposite sign from that of the belly
region.

One of the earliest studies of relaxation-time anisotro-

py r(k) was done on Cu. ' To investigate the influence of
anisotropy of ~ on R~ we use a model of relaxation time
given by r=ri in the neck region (within +10 of the
(111)direction) and r=ro elsewhere. R~ changes from
the isotropic value —5.2 to —4.7 for r, /ro=0. 7 and to
—4.9 for ~o/w&=0. 7. Another model used by Beaulac
and Allen, which is motivated by the FS geometry of Pd,
is given by ~=~& within +6' of the I XL plane and ~=1"p
elsewhere. For the same ratios of the relaxation times,
i.e. , for r, /so=0. 7 the Hall coefficient changes from the
isotropic value —5.2 to —4.5 and for ~p(7] =0.7 it
changes from —5.2 to —5.6. The effects on Ag and Au
are similar. This shows that the relaxation-time anisotro-

py has only a small effect on R& of noble metals.

C. Nearly-free-electron metals: Al and Pb

w, (k

r(k)
(6)

where w~= ~(l ~k) ~
is the fractional tight-binding char-

acter of state k in angular momentum I satisfying
ow~=l. In Al, s and p states dominate up to EF and

a ratio of 7 7p 7d 1.6:1.0:1.0 reproduces the experi-

Aluminum and lead have an fcc structure and are ex-

amples of NFE metals. The free-electron value for the
Hall coefficient for Al agrees well with experiment. How-
ever, as we discuss below this agreement is highly ac-
cidental and involves cancellations from regions of high
curvature with opposite sign. With an isotropic relaxa-
tion time our calculation for Al yields only half the ex-
perimental result. The free-electron Hall coefficient for
Pb is about five times larger than the experimental result,
whereas the band-structure calculation brings it within a
factor of 2.5 ~

Both Al and Pb have two bands (bands 2 and 3) at EF

with curvatures ~p2~, ~p3~ in the ratio 2:1, p2 is negative
and p3 positive. The conductivity O.

p of A1 is dominated

by band 2 (6:1); in Pb they are comparable. Hence a
modest ratio of the relaxation time in a two-band model
can account for the deviation from experiment. In Al a
ratio of the relaxation time in bands 2 and 3 of 0.8:1 and
in Pb a ratio of 0.92:1 gives good agreement with data.

Another approach is to assign different scattering times
to s, p, and d states yielding a weighted average of the
form

mental result. Applying the above model and the same
ratios of the relaxation times to Pb leads to an improved
Hall coefficient R&= —1.2. This is surprising since the
sates at the FS have only 10% s character on average,
and yet the effect of introducing anisotropy between s and

p states reduces the isotropic Hall coefficient by a factor
of 2. In Al, on the other hand, the s character is about
40% and the anisotropic-relaxation-time model increases

R~ by a factor of 2. Our calculated Hall coefficient, how-

ever, is in good agreement with experimental data at low
temperatures. This indicates that scattering in this tem-
perature range is isotropic.

As an alternative (and equally satisfactory) model for
Al, Boning et al. ' found that the largest part of the FS
has a low positive curvature as expected for an NFE met-

al, but near the E and U symmetry points the FS has two
small regions with large curvatures of opposite signs.
They suggested that by an appropriate choice of relaxa-
tion times, these two high-curvature regions could cancel
each other, thereby recovering the free-electron result.

The extreme sensitivity of the theoretical R& of Al to
anisotropy of ~ is confirmed by experimental observation
of extreme sensitivity to impurities, radiation damage,
and temperature. ' In the presence of these perturbations
the Hall coefficient tends to increase, sometimes even

yielding a positive sign. This can be interpreted as a
change in the anisotropy of ~, whereas changes of the FS
play a minor role. These results would be very hard to
understand if a free-electron picture were applied.

This discussion shows very clearly that the approxima-
tion of Al and Pb as NFE metals is valid only in a limited
sense. Certain quantities, e.g., the velocity on the FS, are
close to the free-electron result. However, the Hall
coefficient, which depends also on the curvature of the
FS, deviates from free-electron behavior.

D. Group VIII: Rh, Ir, Pd, and Pt

These four fcc metals show some of the difficulties that
may be encountered in calculating the Hall coefficient.
Their FS consist of two (Pt), three (Pd, Ir), or even four
(Rh) sheets which make an analysis of the Hall coefficient

much more difficult than in the previous cases where the
FS had only one or two sheets. The case of Pd has been
studied before and is easy insofar as the overwhelming
contribution to the Hall coefficient comes from the I-
centered sheet. The disagreement between the theoretical
result and experimental data can be corrected by a simple

anisotropic ~ within +6 of the 1XL plane. A ratio of
1&/7p 0.7 is sufficient to account for the discrepancy.

Applying this model of relaxation time to Rh also yields

the experimental value of the Hall coefficient.
The Hall coefficient of Pt failed to yield the correct

sign. The difficulty here is that very close to the Fermi

energy (within 10 mRy) the Hall coefficient changes sign

abruptly. Bands 5 and 6 have very large curvatures but

of opposite sign in the 1 XL plane; band 5 dominates up
to c,F and band 6 is important above it. The calculated

Hall coefficient is therefore very sensitive to slight correc-
tions of the band structure around EF and to anisotropy
in the relaxation time; the results of a fully converged
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(but isotropic scattering) calculation would thus not be
very meaningful. A calculation of the Hall coefficient for
Pt by Dosdale and Livesey' found that the conductivity
c70 and the Hall coefficient showed a two-peaked struc-
ture as a function of velocity. By assigning a relaxation
time ratio of 0.73 for fast over slow electrons they were
able to reproduce the experimental result.

E. Group-VB and -VIB metals: U, Nb, Ta; Cr, Mo, and W

These six metals crystalize in the bcc structure. The
group-VB metals have two- bands and the group-VIB-
metals have three bands cutting the Fermi energy cF.
Our results are close to the experimental results except
for Mo and Cr. In the case of Cr this is not surprising
since in our calculations Cr is treated as a normal bcc
metal and we do not include the fact that Cr is an antifer-
romagnet with a Neel temperature of 321 K. The free-
electron model in all cases already fails in predicting the
right sign for the Hall coefficient.

IV. HALL COEFFICIENT IN ALLOYS

We discuss the use of a simple rigid-band model to ob-
tain the Hall coefficient in alloys of Rh, Pd, and Ag
which have similar band structures. We expect the Hall
coefficient as a function of energy to show the same quali-
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FIG. 1. Band structure of Pd. The dotted line indicates the
Fermi energy of Pd. The relative positions of the Fermi ener-
gies of Ag (upper dashed line) and Rh (lower dashed line) are
shown. Taken from Ref. 9.

F. Alkaline-earth metals: Ca, Sr, and Ba

Experimental data are only available for Ca which
disagree with our result. The band structure of Sr yields
a semimetal with practically zero density of states (DOS)
at cz. The computation of the Hall coefficient is difficult
since it does not converge in this "gap" region. Our re-
sult for Ba could be considered a prediction, but we do
not have especially high conMence in our number at this
stage.
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FIG. 2. Hall coefficient RH vs the number of electrons n(e)
from rigid-band models based on Rh, Pd, and Ag. The solid
lines are our calculations, the solid circles are the experimental
data of the alloys Rh-Pd and Pd-Ag from Refs. 18 and 19, and
the open circles are calculated values (at room temperature)
from Ref. 7.

tative behavior for all three metals. In Fig. 1 we show
the band structure of Pd with the relative positions of the
Fermi levels of these three metals. The d bands span a
range of about 0.4 Ry. The Fermi levels of Rh and Pd lie
in these d bands. The Fermi level of Ag which has one
additional electron is higher since the density of states
above the d bands is lower than in the d bands.

In Fig. 2 we show the rigid-band model Hall coefficient
calculated as function of the number of electrons n (s) ob-
tained by integrating the DOS. For example, n(e)=9
corresponds to pure Rh, n(s) =10 to pure Pd, and in be-
tween it corresponds to the alloy Rh-Pd. %e assume that
the Hall coefficient of Rh-Pd (similarly for Pd-Ag) can be
obtained at least qualitatively by putting more electrons
into Rh or by taking up to one electron out of Pd. An-
isotropy was included using the model of Eq. (6). Figure
2 shows that experimental values' ' of RH for the alloys
exhibit trends which are qualitatively contained in the
rigid-band model. Quantitative agreement is not as good
as with the coherent-potential approximation calcula-
tions of Butler which are also shown. The sharp cusp
near n =10.5 and the sign change near n =9.5 are both
qualitatively contained in our results. The sharp feature
at n =10 is probably a result of change in scattering an-
isotropy as pure Pd is altered by alloying.

V. DISCUSSION

The results of our study show that RH even in elemen-
tal metals is a fairly complicated quantity, but can be ac-
counted for in a Fermi-liquid model provided band-
structure effects are included. We verified that modest
anisotropy of r(k) has little effect on RH in alkali and no-
ble metals, but for Pd and related metals the effect is
bigger, as it is in Pb. In Al the effect is dramatic, because
of accidental near cancellations. As one can see from
Eqs. (1)—(3) we only need the relative anisotropies in or-
der to be in better agreement with experimental results.
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Since we do not know the absolute value of the relaxation
time we cannot easily compare the Hall coefficient results
with other transport data. The variational principle for
the conductivity implies that modest anisotropies of the
relaxation time change the conductivity only very little.

In high-T, superconductors there is some evidence for
a systematic large temperature dependence of RH, ap-
proximately j./T in form. Such behavior is not common-

ly found in the elements, but is not prohibited by the
theory, and is in fact seen in some of the Pd-Ag alloys.
Here the effect is probably explainable as a consequence
of the T dependence inherent in r(k) anisotropy. At low

T, only alloy disorder scattering occurs with anisotropy
of its own. Butler's calculation includes this effect,

which our calculation omits. As T increases, phonon
scattering (with a different anisotropy) becomes increas-
ingly important. It is hard to see how such a description
could account for the systematic behavior of several
different copper oxide systems.
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