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The operator of a homogeneous electric field acting on a periodic quasi-one-dimensional system can be
decomposed into a sum of two terms. One term affects interband mixing of states with the same quasi-
momentum k and therefore describes the polarization of the electronic distribution due to the electric
field. The second part causes a change in the quasimomentum k and hence is responsible for the ac-
celeration of the electrons. While this latter term of the potential is divergent, the first term is invariant
under a translational symmetry operation. This property is used to derive a homogeneous non-
Hermitian system of equations to calculate the energy bands and the crystal orbitals of the periodic
infinite chain in the presence of the electric field. The system of equations is solved with the help of an
iterative self-consistent-field procedure. The occurrence of numerical problems, e.g., the band crossing
and the undetermined phase factor of the Bloch function, is discussed and ways in which they can be
solved are indicated. Finally, the method is applied to calculate the elements of the (hyper)polarization
tensors, using as input the induced dipole moment which can be computed as a function of the electric-
field strength. To test the method and to select the appropriate numerical procedures, applications have
been peformed for infinite chains of hydrogen, water, and lithium hydride molecules. The results of
these model calculations are compared with the corresponding studies on finite molecular clusters and
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investigations reported in the literature.

I. INTRODUCTION

Since the time when it was shown, originally for po-
lyacetylene,' that organic polymers have nonlinear opti-
cal responses of the same order of magnitude as inorganic
semiconductors, theoretical interest has increased rapidly
in the investigation of those properties of these systems,
namely the polarizability and the hyperpolarizabilities,
which are responsible for the physical behavior. The pri-
mary goals of the theoretical research are to achieve not
only an interpretation of the experimental facts, but also
the prediction and the design of chemical compounds
with improved properties. It turns out that systems with
conjugated hydrocarbon chains are the most promising
ones for applications in nonlinear optics and optoelect-
ronics.’

In the past, several different theoretical and computa-
tional methods have been developed and applied to a
variety of organic polymers that have a conjugated back-
bone as the common structural feature. The most serious
theoretical problem arises from the fact that the operator
representing the potential of the electric field (as it is used
in the finite field approach for molecules) acting on a po-
lymer is unbounded and consequently the translational
symmetry of the system will be destroyed. Therefore rel-
atively few methods have been worked out starting from
the infinite system. With the help of a perturbation-
theoretical ansatz, the nonlinear optical properties of
conjugated polymers* have been treated in the tight-
binding approximation. Recently this method has been
extended to the ab initio Hartree-Fock crystal orbital lev-
el.> Although a fundamental computational method for
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accurate calculations has been derived,® its application to
systems with large elementary cells has been forbidden
until now due to the very great computational require-
ments.” Recently another approach has been proposed®
where the unboundedness of the electric-field operator is
circumvented in a different way. In the case of a weak
electric field whose direction coincides with the polymer
axis, one can perform several crystal orbital calculations
for periodic systems, assuming different but constant po-
tentials caused by the electric field. To obtain the proper-
ties of the perturbed total system, one has to average over
polarizabilities resulting from various energy-band-
structure calculations. The overwhelming number of nu-
merical investigations has been performed on finite
molecular clusters. This approach offers the possibility
to extrapolate the values of the linear, second- and third-
order susceptibilities for the infinite chain from clusters
with increasing numbers of molecular units. Within this
context, the finite field approach® or the sum-over-states
method!? is applied in most of the investigations.!!

In this work, a different theoretical approach will be
presented to investigate, at the ab initio Hartree-Fock
level, the polarization of the electronic distribution in a
periodic polymer due to the presence of a homogeneous
electric field. The direction of the electric field is taken to
be parallel to the polymer axis. The basic idea behind
this theory is that the unbounded electric-field operator
can be partitioned into one term that represents the po-
larizing effect of the electric field without destroying the
periodicity of the infinite chain, and another one that de-
scribes the acceleration of the electrons under the
influence of the electric field. As this method takes into
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account only the first term, one can investigate the per-
turbed polymer, taking advantage of the translational
periodicity of the system. However, a time-dependent
formalism has to be used if the total operator of the elec-
tric field is to be considered. The polarized Bloch func-
tion obtained in the first step can then be used for an an-
satz of the time-dependent wave function.

In the next section the basic concept of the present
theory will be described, first the general method and
second its implementation into the Hartree-Fock crystal
orbital formalism. The following part deals with
difficulties that may occur in the course of the numerical
solution. This section is followed by the description of
the method to calculate the elements of the tensors for
the (hyper)polarizability, starting from the induced dipole
moment as a function of the electric-field strength. Then
we will report results of the application of the theory on
model chains built up by hydrogen, water, and lithium
hydride molecules.

II. METHODOLOGY

A. General formalism

The total Hamiltonian H of the polymer in the pres-
ence of a constant electric field can symbolically be writ-
ten in the form that is formally identical with the opera-
tor in the finite field approach,

A=H,-Fr, (1)

where F is the force of the electric field E acting on the
electron

F=¢E (2)

and A, o is the Hamiltonian of the unperturbed periodic
infinite system. It is easy to verify that for the gradient of
the Bloch function ¢X(r)

@h(r)=e™Tux(r) (3)

with respect to k, where uX(r) is the periodic part, the
equality holds:

Vi (r)=it@s(r)+e ™"V, uX(r)
=irgX(r)+e’*" 'V, e " kTek(r) . (4a)

After multiplying both sides of Eq. (4a) by —ieE and
reordering the terms, the perturbed total Hamilton
operator [Eq. (1)] can be expressed as

—eE-rgX(r)=—ieEe' -V e~ Tpk(r)
+ieE-V, @X(r) . (4b)

Substituting Eq. (4b) into Eq. (1), the total Hamiltonian A
can be rewritten in the form

A=HA,—ieBe™ ™.V e "XT+ieE-V,
rtieE-V,, 5
where it is seen by inspection that A r is defined as

Ap=A,—ieEe'*T.V e kT (6)
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The Hamiltonian A r takes the polarization effect of the
electric field into account and is invariant under a lattice
transformation because the term in eE does not mix
states with different values of k but only those of different
bands with the same value of k. It can be shown that
that if @X(r) are the eigenstates of A, then

<p',‘,(r)>

=—ie [dre’* KX (DE-V,uX(r), (@)

eik-rE_Vke—ik-r

—ie<<pi‘,;(

whlch vanishes except for k=k’ because the term
uX (r)V,uX(r) is invariant under a lattice transformation.
This means that A r affects interband mixing and only the
divergent term ieE-V, in Eq. (5) can cause a change of
the quasimomentum k (Ref. 12), which would destroy the
periodicity of the chain.

The definition of the translational invariant operator
A r [Eq. (6)] is used to calculate the energy-band structure
of the periodic system perturbed by the electric field.
With the help of the variational principle one can derive
(as in the case of molecules) the expression for the Fock
equation in k space:

Fiok(r)=ekgk(r) . (8)

B. Formalism for periodic quasi-one-dimensional
polymers using the linear combination of atomic
orbital expansion for the crystal orbitals

Assuming the z axis to be the polymer axis and that the
constant electric field is applied in the same direction
(E,=E,=0), the total Hamiltonian [Eq. (1)] reduces to

A=8,-F,z, (1
with
F,=¢E, . )

It has to be mentioned that nonzero electric-field com-
ponents E, and E, perpendicular to the polymer axis do
not cause any difficulty. Here they are assumed to be
zero for the sake of clarity and simplicity of the equa-
tions.

The total operator A r including the perturbation [Eq.
(6)] (taking only the periodic part of the electric-field
operator into account, which is responsible for the polar-
ization effect) can now be written in the form

Ap=A,=—ie™eE,(d/dk,)e * (6

where k stands now for the nonzero wave-vector com-
ponent k, [k=(0,0,k,)]. In the ab initio Hartree-Fock
crystal orbital method'>!* as well as in most semiempiri-
cal approximations, the one-electron crystal orbitals

@%(r) are expanded in a linear combination of atomic or-
bltals (LCAO):

Pn(r)=(2N +1)"1/Zikr 2 e ke 2 CapXp(r)e T
j=-N

(3"
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N stands for the number of neighboring cells whose in-
teractions with the reference cell are taken explicitly into
account (the strict neighbor approximation is used, which
means that the same cutoff radius is used for all different
types of integrals). X, (r) is a shorthand notation for the
atomic orbital y,(r—r; —r,) located in cell j at position
T, and m is the number of atomic orbitals in the elemen-

tary cell. |

» c,{;, (Fq’; ——sﬁSq’;, )+eE, Y ja eikj“Sgg—eEz S eikj"D;’F{
P J j

Fql;, and Sq’; are the elements of the Fourier transforms of
the Fock and overlap matrices in direct space, respective-
ly:
Fk= % e'kiapY (10a)
ap =y ap

(10b)

In the first version of the corresponding computer pro-
gram a twofold iterative procedure has been used to solve
Eq. (9). In the first step the homogeneous system of equa-
tions had been solved. Afterwards, using the eigenvector
coefficients {c,{‘p }, the inhomogeneous part had been cal-
culated. However, the inhomogeneous system of equa-
tions (9) can easily be transformed into a homogeneous
system of equations by multiplying and dividing the
terms of the sum on the right side by c,{‘p. This leads to
the final form of the system of equations as it is realized
in the more-advanced computer program:

Sk |(FK—ekSk)+eE, 3 jae™'Sy—eE, 3 e™Dy]
P J j

=ieE, 3 (1/ck Ndck /dk)Sg, | =0, (11
)
where D,/ is an element of the dipole matrix.

C. The iterative solution of the homogeneous
system of equations

The individual steps of the iterative self-consistent-field
procedure to calculate the electronic polarization due to
the applied electric field on the periodic polymer are de-
scribed in more details in the following paragraphs.

(i) The very first step is to solve the ab initio Hartree-
Fock crystal orbital problem for the unperturbed periodic
polymer:

Fkck=¢ekskek . (12)

The sets of the one-particle eigenvalues X and the eigen-
vector coefficients {c¥}] are used as input data for the first
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The Bloch function in the LCAO approximation
defined in Eq. (3') is now substituted into the Fock equa-
tion [Eq. (8)]. The operator eigenvalue equation is multi-
plied from the left with xg(r) and integrated over space
coordinates. The further evaluation leads to the set of in-
homogeneous systems of equations that has to be solved
for the perturbed eigenvector coefficients c,{‘p for each
band n and each value of k:

k sdk)Sk

=ieEZ E(dc,,p ap

P
g =1,2,..., up to the number of atomic orbitals ,
n=1,2,...,up to the number of bands ,

k =1,2,...,up to the number of k points .  (9)

r

iteration of Eq. (11). The dipole matrices D%
(j=—N,—N +1...,N) are calculated first in the direct
space and then Fourier transformed to matrices in k
space. It is well known that the resulting Bloch orbitals
are determined only with respect to an arbitrary phase
factor, which poses a serious problem for the calculation
of their derivatives with respect to k.

(ii) To solve the complete system of equations [Eq.
(11)], which has to be performed for each band n and
each k value separately, one needs the derivatives of the
eigenvector coefficients {c,fp} with respect to k. These
quantities are obtained in the following way.

For a given band n, and a given atomic orbital p, the

set of complex coefficients {c,,} for k;=1,2, ..., up to
the number of k points is fitted to a polynomial function
in k. The real parts of the coefficients are an even func-
tion in k, and therefore the polynomial is of the form

ck(real):al_+_a3k2+ask4+a7k6+ e

np (13a)

The imaginary parts of the coefficients are an odd func-
tion of k and therefore they can be expanded in a polyno-
mial of odd powers in k:

ckiimagl=p, +b,k+byk>+bek>+ -+ .

» (13b)

Different methods have been tested to obtain the op-
timal fit: (1) the real and imaginary parts of the
coefficients are fitted in a polynomial expansion with the
same maximal power in k; (2) the real and imaginary
parts are fitted separately by a polynomial series with
different maximal powers in k; (3) the real and the imagi-
nary parts, respectively, are fitted in a Chebyshev polyno-
mial. Of course, all three methods lead to the same final
result for the derivatives dc,fp /dk, but the computer time
is less for (1) than for (2) and especially for (3). Once
these polynomial functions have been obtained with the
help of method (1) or (2), it is very easy to calculate the
value of the derivative with respect to k for a given value
k; using Eqgs. 13(a) and 13(b). In the case of method (3),
one has to again use other appropriate programs to deter-
mine these quantities.

(iii) The complete homogeneous non-Hermitian system
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of equations [Eq. (11)] is built up for each band n and
each value of k. The resulting eigenvectors have to be re-
normalized. The problems concerning the undetermined
phase factor will be discussed later.

(iv) After having calculated the complete set of per-
turbed eigenvectors (for all bands and all k values), the
charge-bond order matrices are computed. These P%
matrices (j=—N,—N +1,...,N) are in turn used to re-
calculate the Fock matrices F% and then the Fourier
transforms F*. Then step (i) (the polynomial fit of the
complex coefficients) is repeated until the maximal
difference between matrix elements of the charge-bond
order matrix P® for two successive cycles is less than a
given threshold value. The number of iterations to
achieve self-consistency is in the order of five to ten cy-
cles for the simple model system poly(H,).

D. Possible numerical and computational
problems and their solutions

1. Band crossing

The first difficulty occurs in the ab initio Hartree-Fock
energy-band-structure calculation of the unperturbed
periodic polymer. To date there has been no general and
simple way to decide without doubt whether energy
bands are crossing each other or whether they avoid
crossing due to local symmetry in the elementary cell or
whether they cross at all. In the case of an elementary
cell with only a few atoms, the calculation of the deriva-
tive of eX with respect to k and the inspection for a
discontinuity may be helpful. In the case of more-
complex chemical systems, where band crossing can be
observed between many bands, this method will be very
cumbersome. Another approach has been developed,
namely to calculate the contribution of each eigenvector
ck to the number of electrons per band (in the closed-
shell case each band is occupied by two electrons). This
method turned out to be very promising; however, again
for large elementary cells, it became too complicated.
Therefore a program has been incorporated into the ab
initio Hartree-Fock crystal orbital program that yields
large-scale plots of the energy-band structure in the criti-
cal regions. By comparison with the coefficients of the
different crystal orbitals, a unique decision could be made
about the band crossing, and the eigenvectors could easi-
ly be reordered.

To avoid the manual work of reordering the Bloch or-
bitals, a useful concept has been developed and included
in the computer program. The sequence of the energy
bands at k;=0 (i=1) is taken as the reference state.

Then the overlap integrals S,’:,",,k" *1 are calculated,
k; ki1
[ o (n)p, *\(n)dr (14)

between all Bloch functions at k =k; and k =k; . The
corresponding bands are detected by the maximal value
of the overlap integral, which is in the order of 0.9, while
the value is much smaller in those cases where the bands
do not match. If it is necessary, the bands can now be
easily reordered for the case where k =k; . Then the
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sequence of the crystal orbitals at k =k, ;. is used as the

reference order, the overlap integrals S ‘*'**? are com-
puted, and the comparison is performed. The repetition
of this procedure finally leads to a completely ordered
energy-band structure. Furthermore, using the already
calculated overlap matrix over atomic orbitals, the com-
putation time is negligible, and the method is reliable
even in the case of only a few k values in the Brillouin
zone.

2. o-w band separation

To transform the inhomogeneous system of equations
[Eq. (9)] into a homogeneous one [Eq. (11)] it was neces-
sary to divide the inhomogeneous term by the appropri-
ate eigenvector coefficient. Though most organic poly-
mers are m-electron systems, this would lead to numerical
difficulties due to possible divisions by zero coefficients of
the  atomic orbitals in the case of o bands and vice ver-
sa. Therefore one has to treat the o and 7 bands sepa-
rately, which means that one has to identify the 7 bands
and the number of 7 atomic orbitals (AO’s). This is done
automatically in the computer program in a way similar
to the band crossing problem discussed earlier. The over-
lap integrals between states belonging to o and 7 bands
are exactly zero, and the m AO’s can be detected by their
nonzero coefficients in the corresponding states.

3. Phase factor of the Bloch function

It is well known that the one-electron Bloch functions
obtained from the Hartree-Fock crystal orbital calcula-
tion are undetermined with respect to an arbitrary phase
factor e*. According to our experience based on
numerous crystal orbital calculations of chemically
different systems, only the phase factors A=0 or A=m
have been observed, which means that for a given band
the sign of the coefficients for two successive k values
may differ by a factor of —1 (the magnitude of the indivi-
dual coefficients changes smoothly). It has to be men-
tioned that for the calculation of the charge-bond order
matrices P%, the problem of different phase factors is not
relevant because one has to integrate over k. However,
when the coefficients are to be fitted by a polynomial
series in k this change in the phase factor would lead to
serious difficulties. This problem is easily overcome by
selecting the largest coefficient of each eigenvector at
k =0 and assigning its sign to the coefficients of the cor-
responding eigenvector for all other k values by multiply-
ing by the factor of +1 or — 1, respectively, when its sign
is the same or the opposite one. It has further been ob-
served that the calculation of the eigenvectors of the
non-Hermitian system of equations [Eq. (11)] with the
help of an appropriate diagonalization routine from the
IMSL (International Mathematics and Scientific Library)
computer program library results in a phase factor com-
mon to all eigenvectors. This advantage has also been
used in the actual calculations of the unperturbed and
perturbed crystal orbitals.
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E. Calculation of the electric polarizability
and hyperpolarizability

Due to the polarization effect of the electric field, a di-
pole moment is induced in the system. The total dipole
moment per elementary cell is then given by the expres-
sion

w(E)=p,+pu"(E) , (15)

where p, is the permanent dipole moment of the unit cell
in the absence of the electric field.

The induced dipole moment can also be expressed by
the series expansion

p"(E)=gE+1BE?+LyE*E+ - - - . (16)

Here a is the polarizability tensor and 8 and y are the
hyperpolarizability tensors. In the case of a constant
electric field applied in the direction of the polymer axis,
Eq. (16) simplifies to

:u'iznd(Ez )zazzEz +% zzzEzz+ +

6 Y 222z

E} (17

for the dominant elements of the tensors. The diagonal
elements can also be obtained from the relations that re-
sult from the expansion of the dipole moment in E, (Ref.
15) and the use of the Hellman-Feynman theorem:
d Hind
Z
dE,
d?yind

z

Q=

) (18a)
E =0

z

) (18b)

BZZ=’

(18¢)

In this work these quantities are calculated performing
the following steps: (i) The polarized wave function will
be computed as has been described in the preceding sec-
tion in the presence of a constant electric field E,. (ii) Us-
ing these polarized crystal orbitals, the total dipole mo-
ment u,(E,) is evaluated according to the expression

pAE)=(a/m) [ dk 3 [@(E,))*lez|@K(E,) . (19)

i=1

The induced dipole moment p"Y(E, ) is then given by Eq.
(15). In addition, the contribution of each band to
u'"(E,) is calculated, allowing for a detailed analysis and
interpretation, which finally may lead to specific propo-
sals with respect to the chemical structure. The two
steps (i) and (ii) are repeated for about six different field
strengths Ezi ranging from —0.003 to 0.003 a.u. (iii) The

obtained series of induced dipole moments p"4(E, ) is

then fitted to a polynomial expansion in E,. It is then
very easy to calculate the required derivatives with
respect to E,, which are given in Eqgs. (18a)-(18c).

ITII. RESULTS AND DISCUSSION

The simple model system poly(H,) has been chosen to
investigate in detail the different numerical algorithms
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that have to be applied in the present method. Secondly,
an extensive study on the same system is reported in the
literature’ so that the results of different methods can be
compared with each other. The tables and figures in the
following sections contain only the most important re-
sults.

As has been mentioned, the finite field method is a pos-
sible approach to determine the polarizability of
poly(H,), extrapolating the results from the cluster calcu-
lations to the infinite system. In this approach the in-
duced dipole moment u"(E, ) is calculated as a function
of E, for the molecules (H,),, with » ranging from 1 to
15. For large enough clusters the value of the polarizabil-
ity per H, molecule will converge to an approximate limit
of the polarizability of the infinite chain and can be com-
pared with the result of the calculation of the energy-
band structure in the presence of the electric field.

The geometry of poly(H,) has been taken as in Ref. 5
with the H-H bond length of 2.0 a.u. and the translation-
al lengths of 5.0, 8.0, and 10.0 a.u., respectively. The
STO-3G basis set'® has been employed for most of the
calculations. Some results will be reported also using the
minimal (MB), double-{ (DZB), and double-{ plus polar-
ization (DZBP) basis sets by Clementi.!”

A. poly(H,): Effect
of the number-of-neighbors interaction

We take 61 k points for the numerical integration over
the Brillouin zone to calculate the charge-bond order ma-
trices P% in direct space and to fit the complex LCAO
coefficients of the Bloch functions in a power series of k
up to 20 (to calculate the derivatives with respect to k).
The effect of the number of neighbors taken into account
is given in Table I for poly(H,) with the repeating length
of 5.0 a.u. On the average eight self-consistent-field
(SCF) cycles were necessary to achieve a convergence of
107° for all elements of the P® matrix. The results in
Table I indicate that the value of the polarizability con-
verges slowly with the number of interacting cells. All
the following calculations were performed using the
seventh-neighbor approximation in the strict sense
(which means that for all types of integrals the same
cutoff radii have been used).

TABLE I. The influence of the neighboring cells (n.) on the
polarizability of poly(H,) using a repeat length of 5.0 a.u., 61 k
points, and a power-series expansion of 20 terms for the
coeflicients.

ne a,, (a.u.) Aa,, (a.u.)
1 12.468 0.0

2 12.900 0.432

3 13.038 0.138
4 13.090 0.052

5 13.117 0.027
6 13.133 0.016
7 13.143 0.010
10 13.162 0.019
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TABLE II. The dependence of the polarizability of poly(H,) on the number of k points (n;) using
the maximal power (n,) of the expansion in k for the complex coefficients and for the real and imagi-
nary parts (n,, and n,) of the coefficients, respectively (repeat length 5.0 a.u.; number of interacting
cells =7). In addition, the results are given for the expansion of coefficients using Chebyshev polyno-

mials.

ny n, N, i a, (n,) a,, (n,,ny) a,, (Chebyshev)
11 10 10 9 12.632 12.621 13.122

21 20 20 19 13.087 13.095 13.127

31 30 30 29 13.092 13.087 13.127

41 40 40 39 13.083 13.083 13.127

51 50 50 49 13.090 13.087 13.127

61 60 60 59 13.422 13.189 13.135

91 90 90 89 13.782 13.609 13.127

B. poly(H,): Comparison between different
series expansions of the coefficients

It has been mentioned before that three different
methods to fit the LCAO coefficients to a polynomial
function of k have been tested. In the first two pro-
cedures the coefficients are adjusted to a simple power
series in k with either equal or different lengths for the
real and imaginary parts, respectively. The third method
makes use of a Chebyshev polynomial, performed sepa-
rately for the real and imaginary terms. In Table II the
results are listed for poly(H,) with the translational
length of 5.0 a.u. and the seventh-neighbor interaction
approximation. The number of k values that determine
the maximal power of k in the expansion varies from 11
up to 91. It turns out that for this model system the Che-
byshev polynomial is the most stable one and leads to the
required accuracy already with relatively few k points
(equivalent to the maximal power of the series in k). This
is important because the necessary computation time is
about five times higher than for the two other algorithms.

In addition, we have investigated the possibility of
choosing different maximal powers in k for a given num-
ber of k points for the real and imaginary parts of the
coefficients in the series expansion in k. In Table III the
computational results are summarized using the Che-
byshev polynomial and the power series in k, performed
separately for  the real and imaginary parts of the
coefficients. It can be seen that the stability is less for the
last method unless the maximal possible power of k is
used. These preliminary investigations suggest that a
large number of k points and in addition the therewith
defined maximal power of k have to be applied for the po-
lynomial fit in k. However, a significantly lower number
of k values and a shorter polynomial series can be taken
for the Chebyshev polynomial.

C. (H,), cluster: The polarizability per unit cell
as a function of the cluster size

In Table IV we present the numerical results of the po-
larizability per H, molecule with increasing chain length

TABLE III. The dependence of the polarizability of poly(H,) on the maximal powers (n,,,n,;) of the
series expansion for the real and imaginary parts of the coefficients, respectively, for different numbers
of k points (n; ) (repeat length 5.0 a.u., number of neighboring cells =7).

n, =61 n, =91
- n a,, (Chebyshev) a, (ny,ny) a, (ny,ny)
19 19 13.273 13.087 13.139
19 20 13.273 13.133 13.143
20 19 13.273 13.143 13.149
29 29 13.127 13.092 13.132
29 30 13.127 13.110 13.119
30 29 13.111 13.124
39 39 13.083 13.383
39 40 13.127 13.096 13.105
40 39 13.096 13.380
49 49 13.090 13.104
49 50 13.127 13.096 13.105
50 49 13.103
59 59 13.135 13.075 13.256
59 60 13.135 13.982 13.632
60 59 13.135 13.189 13.950
60 60 13.823
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TABLE IV. The average polarizability per hydrogen molecule from (H,),-cluster calculations for
different repeat lengths using minimal and extended basis sets.

Repeat
n aST0-36 aMB ab?® alDZPB length
1 5.81 8.84 12.20 12.06 5.0
2 8.35
3 9.92 15.04 18.34 18.40
4 10.92
5 11.58 17.86 21.44 21.56
7 12.40 19.32 23.10 23.24
9 12.88 20.20 24.10 24.26
11 13.19 20.78 24.76 24.92
13 13.14 21.18 25.08
15 13.57 21.50 25.42
1 5.81 8.84 12.20 8.0
3 6.05 9.42 13.08
7 6.14 9.66 13.59
9 6.15 9.70 13.66
11 6.16 9.73 13.71
1 5.81 8.84 12.20 10.0
3 591 8.98 12.68
5 5.94 9.14 12.81
7 5.95 9.17 12.87
9 5.96 9.19 12.90
11 5.97 9.20 12.92

using the finite field approach. The numbers are given
for minimal and extended basis sets (STO-3G, Clementi’s
MB, DZB, and DZBP). The calculations have been per-
formed for three different intermolecular distances (5.0,
8.0, and 10.0 a.u.). In the case of the short intermolecu-
lar distance (3.0 a.u.), Clementi’s minimal and double-§
basis sets predict polarizabilities almost twice as large as
for the STO-3G basis set. This fact is reflected also in the
crystal orbital calculations, where for weakly alternating
molecular hydrogen chains the extended basis set leads to
numerical instabilities already at the Hartree-Fock level.
This may be the reason that diffuse basis functions
overestimate the polarizability in nearly equidistant

TABLE V. The polarizability per unit cell (H,) as a function
of the repeat length. A comparison between the finite-cluster
approach (H,);s and the crystal orbital method, using 31 k
points, seven interacting cells, and 30 terms in the power-series
expansion of the complex coefficients.

Repeat
length a,, (crystal orbital) a,, (cluster)
5.0 13.13 13.56
5.5 10.57 9.53
6.0 8.99 7.81
7.0 7.26 6.54
8.0 6.49 6.16
9.0 6.16 6.03
10.0 6.01 5.97
12.0 5.91 5.90
100.0 5.81 5.81

chains of hydrogen atoms.

The addition of a set of p-type polarization functions
increases the a,, value only about 1% compared with the
DZB results. The table also shows that the polarizability
of (H,), is strongly dependent on the intermolecular dis-
tance and that it converges slowly with increasing size of
the cluster.

To verify our results we have repeated some of the
cluster calculations with the help of the GAUSSIAN88
computer program using the STO-3G basis. The polar-
ization tensor elements are computed on two different
levels of approximation. The more sophisticated method
leads to numbers that are identical to the results obtained
in this work, while the approximate results agree with
those reported in Ref. 5.

D. poly(H,)-(H;),: Comparison of the results
for the polarizability obtained with the crystal
orbital and the finite cluster approach

In Table V the results of the polarizability per unit cell
are summarized as a function of the translation length us-
ing the STO-3G basis set. The calculations were per-
formed for (H,),5 clusters and with the crystal orbital ap-
proach (seventh-neighbor interaction, Chebyshev polyno-
mial expansion up to the 30th power for 31 k points), re-
spectively. The results are graphically presented in Fig. 1
together with the corresponding results for Clementi’s
MB and DZB. It can be seen that the polarizability per
elementary cell is a strongly dependent function on the
translational length beginning at 7 a.u. Due to the end
effects in the finite cluster calculations, the curves are
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o<zz large repeating lengths both methods converge to the po-
aw) larizability a,, for an isolated water molecule.
a.u)
7 2. Results for poly(LiH)
201 ) )
1 The Li-H bond length has been optimized for a trimer
. where the LiH sticks have been linearly arranged. The
. cluster and crystal orbital calculations have been per-
- formed using the STO-3G and Clementi’s minimal basis,
15- respectively. In Fig. 3(a) the results for the polarizability

CO-STO-3G

1 MO-STO-3G

T T T T T LN
5.0 100 T (au)

FIG. 1. The comparison of the polarizability a,, per elemen-
tary cell using the finite field (MO) and crystal orbital (CO)
methods, respectively, for different basis sets and translational
lengths.

below the curves of the crystal orbital calculations for all
employed basis sets. The computational results for the
additionally investigated model systems, poly(H,0) and
poly(LiH), will not be reported in numerical details, but
graphical representations will be given and discussed.

1. Results for poly(H,0)

The water molecule is an example with a small polari-
zability. The relative geometrical arrangement of the
molecules in the clusters and in the periodic polymer
linked by hydrogen bonds is shown in Fig. 2(a).
Clementi’s minimal basis set has been used for the molec-
ular and crystal orbital calculations. The polarizability
per water molecule resulting from cluster calculations on
(H,0), with n =1,2, ..., 6 is depicted in Fig. 2(a) for the
intermolecular distance of 5.5 a.u. The convergence is
slow, and the asymptotic value can be extrapolated to be
about 6.5 a.u. for a,,. This becomes understandable if
one looks at the gross atomic population of the hydrogen
atoms in the case of the cluster (H,0)s [shown in Fig.
2(b)]. It is clearly seen that the end effects play an impor-
tant role because the electronic charge of, e.g., H; in the
six water molecules differs quite significantly. Figure 2(c)
shows the comparison between the cluster approach for
(H,O)¢ and the new polymer concept for the polarizabili-
ty using different intermolecular distances. Of course, for

per unit of the calculations on (LiH), clusters
28
zz K2 K q
@] ...o—;--0-H
6.5 q
] Ha
] ~ 0691
6.0
] 068
5.5 0.67-
1 qH1
a 066 b
123456n 123456 n
zz
(au)
6.5
- CO-MB
]
6.0
.
5.5
MO-MB
§ c

60 80 100 120 T (au.

FIG. 2. (a) The polarizability a,, per water molecule result-
ing from (H,0), cluster calculations (n =1,2,...,6). The re-
peating length is 5.5 a.u. (b) The gross atomic charge of the two
H atoms in the (H,0); cluster. (c) The polarizability a,, per ele-
mentary cell using the finite field (MO) and crystal orbital (CO)
approaches, respectively, for different translational lengths.
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(n=1,2,...,20) are drawn for the intermolecular dis-
tance of 7.5 a.u. The use of Clementi’s minimal basis set
predicts a larger polarizability than for the STO-3G basis
set. The additional points in Fig. 3(a) are obtained for
(LiH); and (LiH), when one takes into account the poten-
tial of the infinite chain to the left and to the right of the
finite cluster via a Madelung summation. In this way the
end effect is partially corrected; and the rise is much
steeper than without the inclusion of long-range interac-
tions. The reason that the convergence is slow can be
seen from Fig. 3(b), where the gross atomic charges of H
and Li are drawn for the (LiH),, cluster with 7.5 a.u. in-

P. OTTO 45

termolecular distance. The deviation of the electronic
charge of the first three and the last three atoms is appre-
ciable from one of the central atoms. Figure 3(c) again
shows the comparison of the polarizability calculated
with the help of the cluster (n =20) and polymer ap-
proaches, respectively, as a function of the translational
length. In both cases the minimal basis set by Clementi
predicts higher polarizabilities than the STO-3G basis
set. The reason is that the first one is more flexible, and,
according to our numerous experiences in general, the re-
sults obtained with the help of this basis set are very close
to the results obtained with a double-{ basis set.

77
Iq Hl Iq Li |
(au) S _
301 . q H 0.65
MB - L
0.45j
201 f STO‘3G 060
040-
L
101 055
] U
0.351
a b i
2 6 10 14 18 n 2 6 10 14 18 n
X
zz
(au)
1004 CO-MB
ﬁ CO-STO-3G
50
] MO-MB
1 G\O\O\O\\o
101 MO-STO-3G c
700 100 130 T (au)
FIG. 3. (a) The polarizability a,, per LiH molecule obtained from (LiH), cluster calculations (n =1,2, ..., 20; the intermolecular

distance is 7.5 a.u.) using the STO-3G and Clementi’s minimal basis set, respectively. In addition, for n =3,4 long-range interaction
has been taken into account. (b) The absolute values of the net atomic charge for H and Li in the (LiH),, cluster. (c) The dfependence
of the polarizability per LiH unit on the repeating length calculated with the cluster and crystal orbital approaches, respectively.
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IV. CONCLUSION

A theory has been developed and the numerical
methods have been worked out to treat the effects of a
constant homogeneous electric field on the energy-band
structure of periodic polymers in a variational manner.
The solution of the complex system of equations has to be
performed in an iterative self-consistent-field approxima-
tion. The application of this method to calculate the in-
duced dipole moment of a periodic chain as a function of
the electric-field strength opens the possibility of obtain-
ing the elements of the (hyper)polarizability tensor ele-
ments. The results obtained for the model systems
poly(H,), poly(H,0), and poly(LiH) are quite stable with
respect to various numerical techniques that have been
tested in the course of the calculations. Further prelimi-
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nary investigations on polyenes, which will be reported
elsewhere, confirm these observations. In summary, this
approach is a very promising one for the calculation of
basic properties of polymers in the presence of an electric
field.
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