
PHYSICAL REVIEW 8 VOLUME 45, NUMBER 18 1 MAY 1992-II

Superconductivity and Madelung potential of YBa2Cu306+ ordered superstructures
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The Madelung potential of each possible ordered superlattice of YBa2Cu306+, is calculated as the
oxygen content x varies from zero to I. hV&, the diAerence in Madelung site potential between apex
and in-plane (Cu02) oxygen atoms, is presented as a function of the composition x. The correlation of
T,. and x is discussed in terms of Ohta's empirical curve of T, vs h, V~. The theoretical results suggest
that the superconductivity depends on the superlattice structure.

The physical properties, resistivity, magnetic suscepti-
bility, and the temperatures of the structural phase transi-
tion and of the superconducting transition of the high-T, .

oxide superconductors are quite sensitive to oxygen
stoichometry, and specifically to the positions of the oxy-
gen atoms. '- In YBa2Cu306+,-, T,. depends on x. Figure
1 sho~s the change of T,. with the oxygen content. On the
other hand, corresponding structures that differ in the ar-
rangement of oxygen atoms in the CuO„planes have been
reported to exist for different values of x at low tempera-
tures. ' The reported superstructures were the tetragonal
phase for x =0, the orthorhombic phase for x =1, and
the orthorhombic with a double unit cell for x = —'. '"
More complex superstructures were observed for
x= —„', " x near &, and x near —', . ' A recently ob-

served structure is the tetragonal phase for x = -„'. '' For
x =

4 and 4, a set of superstructures have been pro-

posed. ' To establish a relationship between the various
observed types of oxygen ordering in the Cu-0 basal plane
and their superconductivities, a variable AV.& defined

I

within an ionic model' is used. h, V~ equals the difference
between Votq & and Vp(p), where V; [i =0(A ), 0(P) l is

the Madelung site potential for a given charge distribution
of corresponding superstructure. 0(A) and 0(P) denote
the apex and in-plane (Cu02) oxygen atoms, respectively.

Several experimentally observed and theoretically pos-
sible superstructures at low temperature in YBa2Cu306+, -

systems with different x are shown in Fig. 2, where the
distributions of oxygen atoms and oxygen vacancies in the
Cu-0 basal plane is exhibited. The valence of Cu in the
plane is assigned in terms of the following rules

O-Cu-O, fourfold coordination Cu with a valence of+2,

O-Cu-o, twofold coordination Cu with a valence of+1,
O-Cu-G, threefold coordination Cu with a valence of+2.

Therefore, the valence of all ions of each superstructure in

the YBa2Cu306+, - system is given for different x with the
condition of compound charge neutrality (see Fig. 2):

(1) YBa~Cu307 Y ++2Ba +0 +2Cu~+0' " +Cu ++0'
(2) YBa2Cu306s7s (a) 8Y ++16Ba +0 +16Cu +0' "' ' +7Cu ++Cu'++70

(b) 8Y'++16Ba +0- +16Cu +0' " +6Cu ++2Cu'++70

(3) YBa2Cu3067~ (a) 4Y ++8Ba +0-' +8Cu +0'"'-" +3Cu-'++Cu'++30

(b) 4Y ++8Ba +Q'-+8Cu-+0'" +4Cu ++3Q

(4) YBazCu)0667 3Y ++6Ba +0 +6Cu +0'" ' +2Cu ++Cu'++20

(5) YBa~Cu306s 5Y ++10Ba +0 +10Cu-+0'" +3Cu +2Cu'++30

(6) YBa2Cu306s 2Y ++4Ba +0 +4Cu'-+0'" ' +Cu'-++Cu'++0

(7) YBa.Cu&06 &7~ (a) 8Y'++16Ba +0 +16Cu-+0' " '-' +3Cu'++SCu'++30

(b) 8Y ++16Ba'+0 +16Cu +0 +6Cu ++2Cu'++30

(8) YBa Cu306ps (a) 4Y ++8Ba +0 +8Cu +0' "' +3Cu'++Cu'++0'

(b) 4Y ++8Ba +0 +8Cu-+0 +2Cu ++2Cu'++0-

(9) YBa2Cu30s Y'++2Ba +0 +2Cu-+0- +Cu +
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FIG. l. Correlation of superconducting transition tempera-
ture T,. and composition x in YBa2Cu306+, , derived from Ref.
l.
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The structural type and hole densities are listed in Table I.
We assume the charge on each ion is distributed as a

point charge, i.e., ionic model. Such an ionic approxirna-
tion has been shown" to be complementary to normal
band-structure calculations. More accurate calculations
will improve and go beyond this model, but the essential
physics will remain. ' Because the compounds under
study are ionic crystals and the most important factors to
determine the hole distribution are the Madelung energy,
the ionization energy of cations, and the electron a%nity
of anions, the ionic model is appropriate for calculating
the site potential of this compound, although covalency
may also play an important role in some cases. ' For each
superstructure and corresponding valence distribution the
Madelung potentials of each ion in the unit cell are calcu-
lated by use of the standard Ewald method. The
Madelung potentials are listed in Table II. For the case
when all the ordered states of YBa2Cu306+„(0&x & l)
are the orthorhombic superstructures, the curve of h, V~
versus concentration x is sketched in Fig. 3. Using Ohta's
empirical curve" showing T,. =0 when AV~ & —2 (eV),
the curve of T,. vs x is obtained and shown in Fig. 4. As a
result, it is predicted that the Y system is superconducting
for the whole range of 0 & x & 1. For the case when the
ordered states of YBa2Cu306 75 YBapCu306 375 and
YBa2CU30625 are taken as tetragonal superstructures,
and the others as still orthorhombic, the curve of h, V~ vs x
in Fig. 5 is obtained. The function of T, vs x that results
is shown in Fig. 6 by use of the same empirical curve of T,
vs h, V~. '' From Fig. 6 it is clear that T,. decreases as x
decreases and finally approaches zero at about x =0.4,
while the corresponding hole density in the plane is zero
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FIG. 2. Several possible superstructures at low temperature
in the YBa.Cu&06+, - system: 0, copper; 0, oxygen; &, oxygen
vacancy; the lines show the superstructural unit cell. (l )
YBu~Cu&07, (2) YBu~Cu~o&, «7s (3) YBuiCu3067s, (4) YBu2-
Cu&O«, 7., (5) YBu2Cu~o&, &„. (6) YBa~Cu&O&, ~, (7) YBu.Cu3-
O(..37s, (8) Y Ba.Cu ~Of, .~~, (9) YBa.Cu&O~.
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FIG. 3. Curve of h, V,~ vs concentration x when all ordered
states are orthorhombic.

FIG. 5. Curve of h, V,i vs concentration x when part of the su-

perstructures are tetragonal and others are still orthorhombic.
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FIG. 4. Curve of T, vs concentration x for all orthorhombic

states.
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FIG. 6. Curve of T, vs concentration x for the second case.

TABLE I. Superstructure type and carrier density in YBa.Cu&O(, +, systems,

Compound

Y Ba.Cu &07

Y Ba.Cu ~O(, g7s

Y Ba.Cu &06 7~

Y Ba.Cu &O(, .(,7

Y BaiCU306 (.

Y Ba~Cu ~06.s
Y Ba~Cu ~06.~7s

Y Ba~Cu ~06.z~

Y Ba.Cu &0(,

Superstructure type

1 x 1 orthorhombic
(a) 8 x 1 orthorhombic

(b) 2J2 x 242 tetragonal
(a) 4 & 1 orthorhombic

(b) 2x2 tetragonal
3x 1 orthorhombic
5 x 1 orthorhombic
2x 1 orthorhombic

(a) 8 x 1 orthorhombic
(b) 242 x 242 tet r agon a I

(a) 4 x 1 orthorhombic
(b) 2x2 tetragonal

1 x 1 tetragonal

Hole density
in CuO.

1.0
0.875

1.0
0.75
0.5
0.67
0.6
0.5

0.375
0

0.25
0
0

Electron density
in basal plane

0.0
0. 125
0.25
0.25
0.0
0.33
04
0.5
0.625
0.25
0.75
0.5
1.0
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TABLE I I. Madelung potentials of apex and in-plane oxygen atoms.

Compounds

YBa2CuqOq
YBa2Cu yOe g7s

YBa2CuqOe 7s

YBa2CugOe ey

YBa2CugOe. e

YBa2Cu &Oe.c,

YBa7Cu30e.375

YBa2CugOe 2s

YBa&Cu &Oe

Structural type

Orthorhombic
Orthorhombic
Tetragonal

Orthorhombic
Tetragonal

Orthorhombic
Orthorhombic
Orthorhombic
Orthorhombic

Tetragonal
Orthorhombic

Tetragonal
Tetragonal

Vo(g)
'" (a.u. )

—0.612
—0.630
—0.476
—0.658
—0.712
—0.687
—0.683
—0.694
—0.720
—0.762
—0.728
—0.974
—0.775

Vo(p) ' (a.u. )

—0.897
—0.872
—0.883
—0.850
—0.802
—0.834
—0.818
—0.801
—0.780
—0.535
—0.753
—0.735
—0.706

hV~ = Vo(~) '-Vo&p&
"' (eV)

7.70
6.28

5.18
2.43
3.94
3.65
2.91
1.62

—6.13
0.68

—6.45
—1.86

"Average value over diAerent sites in the superstructural unit cell.
'This value is more than —0.5 (a.u. ), the critical value of the Madelung potential for a stable O~ ion,

leading to unstable structure. Therefore, the corresponding b, V~ is excluded in this model.

but the in-plane electron density is not zero as given in the
Table I. This is consistent with YBa2Cuq06+„being a
hole-type superconductor. Comparing Figs. 4 and 6, we
can conclude that the theoretical prediction in Fig. 6 is in

much better agreement with the experimental results' in

Fig. l. It is further concluded that the structures of
YBa2Cug06 37$ and YBapCuq06 25 systems are tetragonal
and those systems have valence distributions that lead to
zero hole density in the Cu02 planes.

Ohta, Tohyama, and Maekawa' thought that the ener-

gy splitting AE- between the in-plane (Cu02) and out-of-
plane 2p-3d transition correlates with T, , in particular,
with the one-body energy level splittings Ae~ [for the P.-.
orbital of O(A) relative to P orbital of O(P)] and hey
(for the 3z -r orbital of Cu 3d relative to its x -y orbit-
al). Madelung potentials are screened due to core polar-
ization to give, e.g., the energy levels he~ =AV~/e(~),
where e(~) is the dielectric constant at optical frequen-

cies. Crystal-field theory suggests that hop may be linked
with h, V&. Thus, a larger AV~ yields a larger he& and
hey„ leading to the larger AE:. Covalency between the P,
and 3z -r orbitals may be suppressed due to the splitting
h, e~, which also enhances hE:. It seems clear that there is
a strong correlation between the hV~ and the supercon-
ducting temperature; in other words, any parameters or
factors changing hV~ will inAuence T,. %'e have shown
that the relationship between T, and concentration x in
the YBa2Cu~06+, system can be interpreted by using a
empirical curve of hVz and T„. Recently, Ledbetter and
Lei'" presented a direct relationship between 6V~ and T,.
This, of course, suggests that the relation of 6V~ and T, is
worth studying further theoretically and experimentally.
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