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Kinetic and magnetic energies are calculated for the two-dimensional Hubbard model using the vari-
ational Monte Carlo method and including a fictitious flux phase. In contrast to earlier results for the
two-dimensional ¢-J model, we found all the flux phases studied lie higher in energy than the

paramagnetic or the antiferromagnetic states.

Near half filling, the 7-J model with no double occu-

pancy on a lattice site is dominated by the magnetic energy, while the Hubbard model with partial
double occupancy is dominated by the kinetic energy. When flux phases are introduced into the Hub-
bard model, the decrease in the magnetic energy is not nearly enough to offset the cost in kinetic ener-

gy

A common feature of all the high-T. oxide supercon-
ductors is the existence of CuO; layers. It has been pro-
posed that the 7-J model,'-> which is derived from the
large-U limit of the Hubbard Hamiltonian (J=4¢%/U in
two dimensions), is a reasonable starting point to de-
scribe the properties of these materials. In order to under-
stand the mechanism of high-temperature superconduc-
tivity, many exotic quantum-spin-liquid states have been
proposed as the ground state for this model. Anderson et
al.* were the first to propose that the ground state is a d-
wave resonating-valence-bond (RVB) state, which is sup-
ported by several numerical studies of the 7-J model. Al-
ternatively, early mean-field calculations have shown that
the ground state of the Heisenberg model evolves in a
fictitious, internal magnetic field with + flux quantum per
plaquette, called the 7 phase.>® This has been generalized
to states with arbitrary flux quantum per plaquette,”® as
well as to a staggered flux phase, in which equal but oppo-
sitely directed flux is enclosed between neighboring pla-
quettes.”'" Time-reversal symmetry is broken if the flux
is not a half-integral or integral multiple of the flux quan-
tum. It has been shown that the generalized flux phase is
similar to the fractional quantum Hall effect, with anyon
excitations obeying fractional statistics.'"'> At half
filling, it has been shown that both the d-wave RVB states
and the commensurate or the staggered flux phases con-
verge to the antiferromagnetic state.'’

Using the variational Monte Carlo method on the ¢-J
model, Liang and Trivedi® found that the commensurate
flux phase (CFP) is stabilized for t <J, at 10% doping,
while Lee and Chang'® showed that away from half filling
the staggered flux phase (SFP) has the lower energy, al-
though its energy is still higher than that of the supercon-
ducting d-wave state. Uniform and staggered chiral order
have also been investigated for a 4x4 cluster in the 7-J
model using Lanczos algorithm.'* The cluster calcula-
tion'* suggests that staggered chiral phase may be impor-
tant in the low-energy physics of the ¢-J model, while
there is no evidence in favor of uniform chiral state. Since
the ¢-J model is derived from the large-U limit of the
Hubbard Hamiltonian, it is interesting to see if these con-
clusions remain valid in the Hubbard model.

We have carried out variational Monte Carlo simula-
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tions for the two-dimensional Hubbard model on a square
for a wide range of electron density, flux phases, and U.
In contrast to earlier results for the 7-J model,®~'* we find
that the nonsuperconducting ground state is either
paramagnetic or antiferromagnetic. The discrepancy can
be understood from the choice of variational wave func-
tions: The ¢-J model, being derived from the large-U lim-
it of the Hubbard model, employs a Gutzwiller projection
operator to eliminate any possibility of doubly occupying
a site, while in the Hubbard model, the fraction of doubly
occupied sites is a variational parameter. In agreement
with the earlier calculations for the 7-J model,®~'* we
find the presence of flux in the wave function leads to an
increase of the kinetic energy and a drop in the Coulomb
energy. However, the cost in the kinetic energy near half
filling is significantly lower in the 7-J model than that in
the Hubbard model (the kinetic energy of the 7-J model
vanishes at half filling). In the Hubbard case, the de-
crease in magnetic energy is not nearly enough to offset
the cost in kinetic energy.
The nearest-neighbor Hubbard model is given by
H=—1t Z C’,'t,(‘jo'{‘ZUfl”ﬂ,‘l, (l)

{i.j.o) i

where {i,j) denotes a sum over the nearest-neighbor pairs.
The simplest trial state is the Gutzwiller wave function:

|G>=H[l—(l—g)n,-;n,»1]|‘lf>, )

which projects out some fraction of doubly occupied sites,
with the parameter g determined variationally. The state
| %) is an independent-particle state which can contain ad-
ditional variational parameters. For the antiferromagnet-
IC state,

|¥) =exp [hZi(n”—n,-l)]Wo), 3)

where a fictitious magnetic field & serves as a variational
parameter to enforce antiferromagnetic order. For the
flux phases, |¥) is the eigenstate of the tight-binding
Hamiltonian for electrons in a uniform magnetic field B: "

H()= _(Z>6Xp(i¢ij)CiLng. (4)
)

g
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For electrons on a lattice in a magnetic field with flux
p/q=Ba? per plaquette in units of the flux quantum,
¢,-j=2n:f,jA-dl, where A is the vector potential, and p, ¢
are integers. In the mean-field limit, Afleck and Mar-
ston> have shown that the Heisenberg Hamiltonian can be
reduced, by a Hubbard-Stratonovich transformation, to a
tight-binding model with a nonuniform hopping parame-
ter, the solutions of which include the uniform z phase. In
this model, the magnetic field is dynamically generated
through the interaction of the hole with the background
spins, but does not appear explicitly in the Hamiltonian.
The inconsistency of having an external magnetic field in
the wave functions but not explicitly in the Hamiltonian
leads to a gauge-dependent energy spectrum. To deter-
mine the optimal gauge, we follow Liang and Trivedi® to
exploit an extra degree of freedom in the wave function by
introducing additional phases associated with the location
of the holes. This procedure is equivalent to a gauge
transformation. The resulting kinetic energies resemble
the Hamiltonian of the uniformly frustrated classical XY
model. The ground state of this model '® gives the optimal
gauge that minimizes the kinetic energy. The Landau lev-
els are rescaled by a factor of 1/v/2 for the + flux state
and by % for the § flux state.

The staggered flux phase breaks the lattice up into two
interpenetrating square sublattices (i.e., a checkerboard),
each of which encloses an equal but oppositely directed
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FI1G. 1. (a) The kinetic energy per site and (b) {X;n;n;)) per
site as a function of g, at half filling, for 6 X6 lattices. The sym-
bols are open squares (paramagnetic), solid squares (CFP,
=1), asterisks (CFP, ¢=1%), and solid triangles (SFP,
=1). Lines drawn through the points are guides to the eye.
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flux energy. In this case the optimal gauge is obtained '®
by simply taking all |¢;;| =(z/2)¢, with opposite sign for
the two neighboring plaquettes. The resulting SFP wave
functions are identical to that of the CFP for ¢ = 1.

We used a stochastic algorithm developed by McQueen
and Wang'” that maps the Gutzwiller matrix elements
onto a statistical model, which can be evaluated in a way
similar to finite-temperature Monte Carlo simulations.
This approach has been applied successfully to the Ander-
son model.'® Our results for the Hubbard model will be
presented for the antiferromagnetic state, for the CFP
with + and ¥ flux, and for the SFP with & flux.

Introducing a CFP into the variational wave functions
effectively renormalizes the band width so that electrons
become more localized. This lowers the Hubbard energy
(i.e., the probability of double occupancy) at the expense
of the kinetic energy. These results can be seen from Fig.
1 which shows (a) the kinetic energy per site and (b)
(Xiniyn;)) per site as a function of g, at half filling, for a
6x6 lattice. (The remaining figures are all for 12x12
square lattices.) The Gutzwiller states are denoted by
open squares, the CFP are solid squares (¢ =% ) and as-
terisks (¢ = ¥ ), and the SFP is solid triangles (¢=§ ). It
is interesting to compare them with the recent calculations
of Hasegawa et al.,"? who studied the ground-state energy
of spinless electrons in two dimensions, in an external
magnetic field. The magnetic field splits the parabolic
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FIG. 2. g as a function of particle density for (a) U =0.8¢ and
(b) U =81, for 12x12 lattices. Symbols have the same meaning
as in Fig. 1. The crosses represent antiferromagnetic states.
Lines drawn through points are guides to the eye.
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bands into Landau levels which are ¢-fold degenerate.
The periodic potential broadens the Landau levels into
subbands, and the energy has an absolute minimum if the
chemical potential falls in the gap of the Landau sub-
bands. This behavior is similar in spirit to the Peierls in-
stability. For a square lattice, they find the = phase is the
ground state at half filling, which is in close agreement
with our results. In the Hubbard model, there is some
cancellation between the kinetic energy (raised by the flux
phases) and the Hubbard energy (lowered by the flux
phases), because the magnetic field is hidden within the
Hubbard term. The cost in kinetic energy is higher in the
CFP than in the SFP, and is the highest in the nonin-
teracting limit (g =1), since the flux phases represent a
poor variational state when the internal field is missing.
Double occupancy is prohibited in the infinite-U (g =0)
limit, so that the kinetic energies for all flux phases be-
come zero.

Near the half filled limit, the variation of the kinetic en-
ergy with respect to g highlights a fundamental difference
between the ¢-J model and the Hubbard model: in the ¢-J
model g is artificially set at zero, while in the Hubbard
model g is a variational parameter. The density depen-
dence of g is shown in Fig. 2 for (a) U=0.8¢ and (b)
U =8t. At half filling, for the paramagnetic ground state,
we find g =0.9 and 0.29 for U =0.8¢ and 8¢, respectively.
Also included in Fig. 2(b) is the antiferromagnetic states
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FIG. 3. Kinetic energy as a function of particle density for
(a) U=0.8¢ and (b) U =381, for 12x12 lattices. Symbols have
the same meaning as in Fig. 1. Lines drawn through the points
are guides to the eye.
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(crosses). At half filling, antiferromagnetic order pro-
motes electron hopping which increases the probability of
doubly occupied sites (g is raised from 0.29 to 0.52).
However, (X;n;1n;)) per site is actually lowered at the ex-
pense of kinetic energy. The discrepancy can be under-
stood in the mean-field limit:
An,-
Xl =%))

0’ [<n,->2—<éﬂ>2] , (5)

i 2

An,—
mt

(Znma)=2(

where n; and An; are the average density and the spin den-
sity at site i, respectively. Thus, antiferromagnetism may
lower (X;n;1n;)) even though the probability of double oc-
cupancy is enhanced.

The calculated kinetic energy per site as a function of
electron density is shown in Fig. 3 for (a) U =0.8¢ and (b)
U =8t. As the density increases, the kinetic energy de-
creases in case (a), but increases in case (b). The
difference arises from the choice of g. In the large-U lim-
it, case (b) is somewhat closer to the ¢-J model (g=0),
the kinetic energy of which vanishes in the half filled limit
for all phases. The major effect of introducing the flux
phases into Gutzwiller wave functions is to raise the kinet-
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FIG. 4. (X;nitn;)) per site as a function of particle density for
(a) U=0.81 and (b) U =8¢, for 12x12 lattices. Symbols have
the same meaning as in Fig. 2. Lines drawn through the points
are guides to the eye.
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FIG. 5. Total energy per site as a function of particle density
for (a) U=0.8¢ and (b) U =38, for 12x12 lattices. Symbols
have the same meaning as in Fig. 1. Lines drawn through the
points are guides to the eye.
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ic energy for any density due to rescaling of the band
width. Accordingly, the corresponding Hubbard energies,
shown in Fig. 4, are lowered because electrons hop less
frequently. In particular, there is a locking behavior of
the flux states with density. We find a minimum in the ki-
netic energy whenever the Fermi energy lies in a gap be-
tween Landau subbands similar in spirit to the Peierls in-
stability. At a given number of electron per site n, the
minimum occurs whenever p/q ~n/2. Qualitatively, these
results are consistent with those of the ¢-J model.®~'°

The total energy as a function of particle density is
shown in Fig. 5 for (a) U=0.8¢ and (b) U=38¢. In all
cases studied, the cost in kinetic energy when flux phases
are introduced is so high that the ground state is either
paramagnetic, or in the half filled limit, antiferromagnet-
ic. Lee and Chang'® have shown that the nonsupercon-
ducting ground state is SFP (¢=0.1) for a lattice of 82
sites with a hole concentration of 3 and J/t=2. We
have repeated these calculations for the Hubbard model.
The energy differences are smaller in this case because the
flux is so small. However, the qualitative behavior
remains unchanged.
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