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Phase separation in the large-N limit of the t-J model
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We study the phase diagram of the SU(1V) t-J model. The model has been investigated in the N= tx)

limit, analyzing various magnetic phases with cell doubling (dimer, fiux, and uniform). We find a phase
separation between a fully dimerized phase at half-filling and a hole-rich uniform phase supporting the
occurrence of phase separation in the t-J model between a Fermi-liquid phase and an insulating magnetic
phase.

The discovery of high-temperature superconducting
oxides' revived the interest in lattice models of electrons
with large on-site repulsion. In this context the t-J model
has received considerable attention. The t-J Hamiltonian
has three terms, an infinite local Hubbard repulsion, a
nearest-neighbor hopping, and nearest-neighbor Heisen-
berg magnetic coupling. At half-filling this model de-
scribes a Mott insulator. The character of the ground
state for very small doping is one of the most challenging
problems in condensed-matter theory. Several non-
Fermi-liquid phases with exotic magnetic order have
been conjectured to exist in this regime. A very different
alternative was suggested many years ago by Visscher.
He proposed that the Hubbard model in the small-doping
regime phase separates into a hole-rich phase and a hole-
poor phase. This scenario has been recently revived as a
generic feature of the t-J model close to half-filling. '

This was demonstrated by an exact cluster diagonaliza-
tion and a field theoretic approach using Hubbard pro-
jectors in the framework of a 1/X expansion. In this
Brief Report we show that phase separation also takes
place in the large-5 limit of the t-J model' close to half-
filling.

Phase separation is a rather common phenomenon in
models with short-range interactions. " Recently a close
connection between phase separation and superconduc-
tivity has been demonstrated in the Kondo-lattice mod-
el, ' and in the three-band Hubbard model with nearest-
neighbor repulsion. ' ' The fact that phase separation is
present in a region near where superconducting instabili-
ties occur, lends further support to the idea that phase

separation and superconductivity, two phenomena gen-
erally arising from attractive effective interactions,
should be analyzed on the same footing. Since the large-
N limit of the single-band t Jmo-del undergoes a d-wave
Cooper instability, ' it is worthwhile to investigate
whether a phase separation is also present in this limit.

We study the Hamiltonian

H= ——g 2; c, +po+V 0;.
t
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subjected to the constraint of no double occupancy
n; (qoN (with qo= —,') due to the U=ao limit for the
Hubbard repulsion. The constraint is then implemented
via a standard slave-boson technique by means of the sub-
stitution c~b~c and V ~bc~ leading to the following
form of the constraint:

This constraint is enforced by a Lagrange multiplier field
A,;. In the N = ~ limit the mean field is exact and static
uniform solutions b and I, are assumed for the b; and A,;
fields, respectively. The magnetic part of the Hamiltoni-
an is instead decoupled by means of a Hubbard-
Stratonovich transformation that introduces the bond
variables b, =(J/N)g c; c . The effective mean-field
Hamiltonian is

2th 2
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where p—=pa+A, and 6, . =(6; . ). Notice that in this
mean-field approach, b acts as a hopping multiplicative
renormalization, while A, shifts the chemical potential.

The global minimization of Hamiltonian (2) for arbi-

I

trary values of t/J and doping is a very difficult problem.
However at quarter filling progress has been made by
Sachdev. ' The local stability of the various minima has
also been recently analyzed. ' These investigations fo-
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cused on the stability of the different phases at a fixed
concentration of holes. Here we investigate the stability
of the different phases at fixed chemical potential; phases
which are absolutely stable when the concentration of
holes is fixed, could in fact be unstable once we allow for
density fluctuations if there is phase separation. We
confine our analysis to mean-field solutions with at most
double unit cell. Specifically we consider solutions where
the average 6;

&
has three different symmetries: uniform,

dimer, and staggered flux. In the uniform (u ) solution we
set (c;c;+„)=(c;c;z~) =b„while the dimerized (d)
solutions for arbitrary value of doping are given by
(c;c;+„)=b, , ; (c;c,+~) =b,2', (c;c; ) =b, 3 (here i has
to be chosen on a sublattice), with b, ; real. The staggered
flux (f) phase is given by (c; c;+~ ) = Ib, Ie

+—'~,

(c,tc, ~, ) = Ib, Ie*'&.

The mean-field free energy per spin and per site is writ-
ten as

F=g, +A, —
qo + pl n(1 +e "('"')~

) (3)
bz T
iV %$,te$

with E (k) representing the eigenvalues of the Hamiltoni-
an (2) and

6&+26~+ A3
guy =

J ~ gd=

The minimization of the mean-field free energy with
respect to b, k, , b,; (and P for the flux solution) leads to
self-consistency equations which can be solved numerical-

ly together with the equation for the chemical potential

p, which fixes the average number of particles per unit
cell and per spin n to the value (1—5)/2 (5 is the dop-
ing). The solution of the self-consistency equations yields
the set of mean-field parameters (b, l, , b,;, and P). Vary-

ing the doping and the coupling values of the Hamiltoni-
an one obtains different mean-field solutions.

Comparing the energies of the different solutions one
can identify which one is the most stable in the various
regions of parameters. We obtained the phase diagram
shown in Fig. 1.
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The phase diagram is qualitatively similar to the one
obtained by Aleck and Marston, who analyzed the
Hubbard-Heisenberg model in the weak-coupling regime
(U was scaled as I/N). We distinguish four different
phases. The uniform one, stable for large doping,
represents a Fermi liquid with AFM correlation. This
phase was extensively discussed in Ref. 10. The inter-
mediate flux region is given by the staggered flux phase
with the parameter P decreasing with doping starting
from the ~/4 value attained at half-filling.

The dimerized phase is, instead, split in two different
regions where the dimerization has a different character.
In the left region (dimer 1) the b,

&
bond is always much

greater than b2 and A3. In particular, at zero doping,
A, =J/2 and 52=63=0. The dimerized region to the
right of the phase diagram (dimer 2) is, characterized by
a remarkable one-dimensional character with

63)Ap This solution bears some resemblance to the
"kite" phase of Affieck and Marston.

The phases with nonuniform value of 6, are the
large-N analog of the Neel state. The presence of a dimer
order breaks the translational invariance leading to the
opening of a gap in the band structure at the boundary of
the reduced Brillouin zone in strict analogy with the
opening of a gap in a Slater insulator. At finite doping,
however, the system is metallic due to the fact that the
chemical potential is inside a band with finite dispersion
( —tb with b =5).

In order to investigate the thermodynamic stability of
the above phases we have analyzed the curvature of the
free energy. Figure 2(a) shows the behavior of the free
energy as a function of particle number (doping) for
J/t=0. 4. The dashed line is the energy of the dimer 1

phase and is lowest at low doping (5 (0.025). The dotted
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FIG. 1 ~ Phase diagram for various values of J/t as a function
of doping 6. The dashed line is the phase separation line.
J/t =0.02 is the minimum value here considered.

FIG. 2. (a) Free energy (in units 2t=1) as a function of parti-
cle number n, =1—5 and doping 6 for J/t=0. 4. The dashed
line is the energy of the dimer 1 phase, the dotted line reports
the energy of the system in the flux phase, while the uniform

phase free energy is given by the continuous line. A common
linear (0.37335) term has been added to the three curves in or-
der to make the curvature more visible. (b) Chemical potential
(in units 2t=1) of the most stable phase at different doping for
J/t=0. 4. The jumps in the chemical potential signal the pres-
ence of the first-order phase transitions (dimer-flux and flux-

uniform).
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line reports the energy of the system in the flux phase,
which is the most stable at slightly higher doping. At
larger doping (5&0.125) the uniform phase (continuous
line) has the lowest energy.

A common linear (0.3733 5) term has been added to
the three curves in order to make the curvature more
visible. It is then apparent that, whereas the uniform
phase always has an upward curvature (positive compres-
sibility), the dimer phase has a downward curvature (neg-
ative compressibility}. Therefore this phase is unstable
even in the small doping region (5&0.025) although it
has the lowest energy. The intermediate flux phase has
an upward curvature only for very small doping
5&0.0015, which turns downward at larger doping. This
latter behavior is not clearly distinguishable in Fig. 2(a),
but is made clear in Fig. 2(b), where the chemical poten-
tial of the most stable phase at difFerent doping is report-
ed: whereas the chemical potential of the uniform (di-
mer) phase is always increasing (decreasing) with the
particle number, the flux phase chemical potential has a
negative slope throughout the doping range
(0.025 & 5 & 0.125) where the fiux phase has the lowest en-

ergy for this particular value of J/t. '

Figure 2(b) also shows the presence of jumps in the
chemical potential at the first-order phase transitions
(dimer-fiux and fiux-uniform). Both these facts, the
wrong curvature in the free energy and the chemical po-
tential jumps, lead to phase separation. Within the
mean-field solutions here considered, the phase separa-
tion region is the one above the dashed line in Fig. 1. It
was obtained using a standard Maxwell construction: for
each doping the chemical potential of the stable solution
was considered and a straight line was drawn in such a
way that the areas above and below it were equal. With
this procedure tmo values of doping mere determined: at
a given doping 5 the system separates into regions with
these two different concentrations of holes. In particular
the system always separates into insulating fully dimer-
ized regions at 5=0 and in uniform regions at rather
large doping 5„(e.g., 5„=0.2 for J/t=0. 4). Thus phase
separation preempts the formation of the intermediate
flux and dimer phases. We find that for the minimum
considered value J/t=0 02 the di.mer phase is still intrin-
sically unstable (it has negative compressibility} at least at
low doping. Extrapolation of our analysis at lower J/t
indicates that this feature is present at arbitrarily low
J/t At half-fillin. g the hopping term vanishes leaving J
as the only energy scale. Therefore at 5=0 the dimer
phase is always the most stable no matter hom large t is.
If the dimer phase would be the global minimum even at
5=0+, phase separation would take place irrespectively
of the value of J/t 'Of course t. he extension and the
form of the phase separation region may depend on the
phases, which are the most stable at various doping for
different J/t. Here we investigated magnetic phases with
a simple unit-cell doubling only. Using larger unit cells
would allow one to consider more complex (and perhaps
richer) mean-field solutions, which could, in principle,
have a lower energy than those here considered as me11 as
a lower energy than the phase-separated solution. For in-
stance, a solution with a quadruple unit cell was con-

sidered in Ref. 15 (many-hole bound state). This solution
turned out to be more stable than the uniform at 5=0.5
for large values of J (J & J, =3.333t), thus surely leading
to a modification of our phase diagram, which only in-
cludes dimer, flux, and uniform phases. However, the
many-hole bound state solution was degenerate with the
dimer one when t =0+ and 5=0, thereby indicating that
at half-filling the dimer phase is in any case a good candi-
date as the mean-field ground state of the large-N t-J
model. The analysis of Ref. 15 also showed that a first-
order phase transition takes place at 5=0.5 between the
many-hole bound state and the uniform phase at
J,=3.333t. This suggests that this latter solution is a
rather good candidate as the mean-field ground state of
the system when J &J, and/or the doping is large.

Of course this consideration does not rule out the pos-
sibility that the many-hole bound state or some other
state have a lower energy than the uniform phase at
5&0.5 and J &J„thus modifying the phase diagram of
Fig. 1.

We finally notice that the region where the supercon-
ducting instabilities have been detected in Ref. 10 lie out-
side (but near to) the phase separation line determined in
this paper.

In Ref. 8 a distinction was made between two distinct
mechanisms leading to phase separation. When J» t
holes are segregated in order to spare antiferromagnetic
bonds breaking. On the other hand, in the small-J regime
(J« t), the holes polarize ferromagnetically the spin
background in order to minimize their pwn kinetic ener-

gy and are, then, collected in large ferromagnetic bub-
bles. In our case, for J» t and small doping, the wrong
curvature of the free energy of the dimer phase arises
from frustration of the magnetic energy of the bonds due
to the holes added by doping. This is strictly analogous
to the mechanism considered in Ref. 8. For J« t the
phase separation is mainly driven by the frustration of
the kinetic energy in the magnetically correlated phases
near half-filling, even though, contrary to Ref. 8, no fer-
romagnetic bubbles are allowed in our 1/N analysis. The
spirit is however the same, the role of the ferromagnetic
phase being played by the uniform phase, where the ki-
netic energy is best minimized.

Finally we comment on the effect of the long-range
Coulomb force. If the phase separation would result in
the formation of highly charged regions, the Coulomb
force would surely prevent its occurrence. However, as
first noticed in Ref. 8, phase separation could take place
if negatively charged ions also phase separate compensat-
ing the hole-charge imbalance. '
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