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We report NMR second-moment measurements of '°F in crystalline Feg 4Zng s4F,. The inhomogene-
ous broadening was studied below and above the critical temperature T, =35.395 K. The line profile is

Gaussian for |tf|=(T—T,)/T.|23X1072 and approaches a Lorentzian for || <$3X 1072

In the

random-field region, the second moment was obtained from the fitting of an effective line shape to the ex-
perimental data. We assume that the line-profile second moment scales with the sublattice magnetiza-
tion in all ranges of temperature. Below T,, we observe a crossover from a random-exchange Ising mod-
el to a random-field Ising model, with the magnetization exponent $=0.35 and 0.125, respectively.
Above T,, the data can be treated according to a scheme proposed by Heller.

We obtained estimates for the 8 magnetization critical
exponent from NMR measurements of the resonance of
the F~ ion in crystalline! Fe, 4Zn, 5,F,. We worked in a
range of temperature where it is relatively easy to observe
the resonance associated with the F~ ions without mag-
netic nearest neighbors, the so-called F resonance.? The
NMR spin-echo amplitude was monitored in a phase-
coherent pulsed spectrometer, at 77 MHz fixed frequen-
cy, as the magnetic field is varied by 3-5 times the ob-
served linewidth, about the resonance value H;=19.3
kG. The tank circuitry was tuned up at almost all the
temperatures of measurement.

The linewidths AH, ,, (AH, ,,) at half (quarter) intensi-
ty were obtained directly from the experimental data.
The relations (AH, ,,/AH,,,)* vs T are shown in Fig. 1
for H parallel and perpendicular to the [001] direction (¢
axis), respectively. The plot of (AH,,/AH,, )ﬁ vs T
shows the change from a Gaussian [(AH, ,,/AH, ,;)*=2]
into a Lorentzian profile [(AH, ,,/AH,,,)*=3], as T be-
comes closer to the critical temperature T,. The spin-
echo intensity, which has been measured in an extra run
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FIG. 1. Thermal variation of (AH,,,/AH, ,,)* for Hjc, Hlc,
and echo intensity in an independent run. The solid lines are
guides for the eyes.

at fixed Hj, (parallel to the c axis), reaches a minimum at
the critical temperature T-=35.38 K (Hj|c), as shown
in Fig. 1. The relation (AH,,,/AH, ,,)} reaches a value
close to the Lorentzian prediction and stays constant
down to 34.6 K. For magnetic fields applied perpendicu-
larly to the c axis, the relation (AH, ,,/AH, )} is always
less than 2.6; above the critical temperature
T,=36.5510.05 K (Hylc), it becomes very close to the
Gaussian prediction. The critical temperatures are con-
sistent with the relation>*

T,—T.=bH}+T,(chip)?, (m

where H,=19.3 kG, bH} is the mean-field shift, hgg is
the reduced random field, ¢ (=1.40) is the crossover ex-
ponent, and c is a constant of order unity. For T, =36.55
K, Eq. (1) leads to T,=35.39 K. As T, was established
directly from the experimental data within 50 mK,
without any conditions about the line profile, the
critical-exponent parameters were then investigated try-
ing various values of T, between 35.35 and 35.45 K.

The determination of the second moment of the line
profile by a numerical calculation directly from the data
gives reasonable results only for a Gaussian line shape.
For 1| $5X 1072, where t =(T —T,)/T,, the direct nu-
merical integration leads to a miscalculation due to the
arbitrary cutoff of a line profile which goes toward a
Lorentzian. In this case it is not possible to perform a
power-law fit with a minimum of consistency. This mis-
calculation was overcome by fitting to the experimental
data an effective line shape of the type

—a¥(H—H)?
e

F(H)=Ij—4———— |
O b2+(H —H,)?

(2)

which goes to a Lorentzian profile for a —0.
The second moment of this effective line shape is given
by
M,={((H—H,)?)

e /aVr—b[1—®(ab)]

=b 1—®(ab) ’

(3)
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FIG. 2. Thermal variation of the fit parameters of the
Gaussian-Lorentzian line profile. The dots represent the a term
and crosses the b term. The solid lines are guides for the eyes.

where ®(ab) is the error function.

We have assumed that the second moment of the line
profile scales with the sublattice magnetization in all re-
gions of temperature (random exchange, random field,
and well above T, ), from 10 to 40 K, approximately.

In Fig. 2 we show the thermal variation of the fitting
parameters a and b for lt| 5% 1072 For T=35.7 K,
since the Lorentzian parameter b is a constant, the
changes in the line profile are given essentially by the
Gaussian parameter a. For T'<35.4 K the Gaussian pa-
rameter is a constant, and so the changes in the line
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profile are then given by the Lorentzian parameter. It
should be noted that these results are consistent with the
experimental data for the relation (AH,,,/AH, )ﬁ, as
shown in Fig. 1.

First, consider the behavior below the critical tempera-
ture.

(i) T <T,. (with [t{>3X1072). For the region well
below T, the line is Gaussian and the line-profile second
moment /M, was obtained from a direct integration
from the experimental data. In a log-log plot, V' M, vs
|t] is shown in Fig. 3, for T, =35.395 K. To perform the
power-law fit (\/M2=m0|t|’3), we have chosen data be-
tween two temperatures, T,.,.=~34.4 K and T, =10 K
(top arrows in Fig. 3). A good fit to the experimental
data is obtained with 8=0.351. In order to verify the
consistency of this result, we have performed several fits,
changing the values of T, and Ty, . In the inset we
show these fits as a function of the fitting range
T=(T, — Tpear ) /(T,— T4, ) for three different values of
T,. For T,=35.395 and 35.45 K, the B values are not too
sensitive to the choice of T,. The average value is
B=0.348+0.010, in good agreement with the predictions
for the random-exchange Ising model (REIM) and with
other experimental values listed in Table I of Ref. 3.

(i) T <T, (with |t/ <3X107%). As stated before, in
the random-field region, we have used the effective line
shape, given by Eq. (2), to obtain the second-moment line
profile. .

In Fig. 4(a) we show /M, vs [t| in a log-log scale,
with T, =35.395 K, for 7=(T, — T, ) /(T, — T penr ) =159.
The solid line represents a reasonably good power-law fit
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FIG. 3 VM, vs |t| log-log plot, for T,=35.395 K and 7=25.5. The solid line is the curve fit of VM, =m,lt|%, with f=0.351.
The inset shows B vs 7, in a semilog form for three different values of T,. The dashed line is the average 3 value.
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to the experimental data in the region 1074 <[¢{ <1072,
with =0.121. The B fluctuations as function of the
range fit 7 are shown in Fig. 4(b). The average value from
these data is $=0.12510.015, in agreement with predic-
tions for the random-field Ising model (RFIM).3

To see the dependence on the choice of the value of T,
similar fits were done with T, between 35.35 and 35.45 K.
There is a discontinuity in the slope of the B-vs-T, curve,
as shown in Fig. 4(c). Thus the critical temperature was
chosen as T, =35.395+0.005 K.

Let us consider the behavior above the critical temper-
ature. Well above the critical temperature, the line-
profile second moment exhibits a Curie-Weiss behavior,
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FIG. 4. (a) VM, vs |t| log-log plot, for T,=35.395 K and
7=159. The solid line is the curve fit of V' M,=m,|t|?, with
B=0.121. (b) A semilog plot of B vs 7. The dashed line is the
average value. (c) Plot of B vs T,. The solid lines are the linear
fits, taking into account only the points marked by dots.
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FIG. 5. VM, vs |t| log-log plot, for T,=35.395 K and
7=63. The solid line is the curve fit of VM, = A|t|~?, with
p=0.298. The inset shows p vs 7in a semilog form. The dashed
line is the average p value.

as already reported in Ref. 2. In the random-field region,
Heller has proposed a model®® for the broadening of the
NMR line of the nucleus in a random magnet for T— T,
(with |t| $1072 at Hy~20 kG). His calculations for the
second moment give

((8H)2>1/2=Mé/2
=c(1_x)1/2|tl-v(l—21])/2H

=Alt|77, @

where v is the correlation-function exponent, 1 is the
correlation-length critical exponent, and x is the concen-
tration. To compare Heller’s prediction of the scaling of
the square root of the line-profile second moment, ob-
tained with the effective line shape, the experimental data
were plotted in a log-log scale, shown in Fig. 5, for
T,=35.395 K. A good fit to a straight line is found in
the range 1073 < |t <6X 1072, with a slope p=0.298 for
T=(Tg — T )/(Tpear —T.)=63. The p fluctuations in
the choice of the range fit 7 are shown in the inset. The
average value of p is 0.300£0.015, which can be com-
pared with the predictions for the d=3 pure Ising model®
(p=0.30), for the REIM (p=0.32), and for the RFIM
(p=0.25). The improvement in these results, obtained
with the effective line-shape function, can be checked
against the results of a direct integration from the experi-
mental lines, as shown in Fig. 3 of Ref. 2.

In conclusion, from our NMR measurements, we ob-
tain a critical exponent f3, indicating the crossover from
the behavior of a random-exchange to the behavior of a
random-field Ising model. Instead of the expected
random-field behavior, the test of Heller’s model is com-
patible with an exponent for the pure three-dimensional
Ising model.
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