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Debye-Wailer factor of sodium: A comparison of theory and experiment
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%'e have compared the Debye-%aller factor of sodium calculated by three different theoretical
methods with the recent measured values in the temperature range 80-295 K, using the Mossbauer y-
ray-scattering technique. The Mossbauer results are also compared with the two sets of earlier x-ray

measurements, one of which extends to 365 K. The three theoretical methods are the following: the
lowest-order anharmonic perturbation theory, a Green's-function method that includes anharmonic con-

tributions of the lowest-order perturbation theory summed to infinity, and the molecular-dynamics

method, which includes the anharmonic contributions to all orders. In all three methods the Ashcroft
pseudopotential with the Vashishta-Singwi screening function is employed to generate the real-space
two-body potential function whose range is cut ofF at the sixth-neighbor distance. Excellent agreement is

found between the results of these three methods and the Mossbauer experimental results. The x-ray re-

sults are also in very good agreement with the Mossbauer data where the temperatures overlap in the
measurements.

Over the past ten years, several calculations of the
atomic mean-square displacement (MSD) have been re-
ported in the literature' for the short- and long-range
potential functions in monatomic fcc and bcc lattices, re-
spectively. These calculations have been carried out by
the molecular-dynamics (MD} method, the Monte Carlo
(MC) method, and the lowest-order (A, ) perturbation
theory. The results from the last method, when com-
pared with the MD and MC methods provide an assess-
ment of the adequacy of the lowest-order (cubic and
quartic) perturbation theory because all anharmonic con-
tributions are represented in the results of the MD and
MC methods. Quite recently, the results of these three
methods have also been compared with a Green's-
function method for both the above types of potential
function. ' The latter calculation represents the most
successful comparison of the results obtained from an
analytical method and a numerical procedure (i.e., the
MC method) for a short-range potential (a 6-12 Lennard-
Jones interaction potential for a nearest-neighbor model
of a fcc lattice). On the other hand, the improvement in
the results for the long-range potential (a sixth-neighbor
interaction model for the bcc alkali metals) by the
Green's-function method was slight over the A. theory.
In other words, the A, theory, Green's-function method,
and MD method results compared with each other quite
well.
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measurements of the Debye-Wailer factor (DWF) in Na
where no comparison was yet made between the above-
mentioned theoretical calculations and the experimental
values of the D%'F. The isotropic part of the Debye-
Waller factor is very simply related to the MSD.

In what follows we present a summary of the calcula-
tions from the above three methods and a comparison of
the results with the experiments. Since it has been shown

earlier by Shukla and Hiibschle that the A,
2 perturbation

theory (A, PT) results for the MSD can be obtained from
the Green's-function method, we will summarize this
method first, to avoid repetition of derivations of some
equations of the MSD from the A, PT.

The atomic displacement in a monatomic lattice at a
site I and time t in direction ct (a =x,y, z) is given by

' 1/2
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employing the following two relations:
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where a and a are the usual creation and annihilation
operators, to is the phonon frequency, e (q,j) is the ath
component of the eigenvectors for the wave vector q and
branch index j, N is the number of unit cells in the crys-
tal, M is the atom mass, R is the Planck constant divided
by 2m, and r& is the vector of the direct lattice. The sum-
mation over q is over the first Brillouin zone (BZ}.

Squaring both sides of the above equation and sum-
ming over a, we find the following expression for ( u ):

where the angular brackets indicate the thermal average.
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and

(A At ')= f JPj&(co)de .

In the above Green's function, II .(co) is the so-called
self-energy term which is related to the cubic and quartic
terms of the anharmonic Hamiltonian. The contribution
to H from the quartic term is independent of m, but the

cubic contribution is frequency dependent. However, in
the high-temperature limit (T)8D, 8D is the Debye
temperature), Shukla and Hiibschle have shown that
correct expressions for ( u ) are obtained by putting
m=0 in this contribution to II. Referring the details of
the calculation to Ref. 5, we find in the high-temperature
limit the following expression for ( u ):

(u') = k~T
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where the 4 function in general is defined by
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In the above equation, the prime over the I summation indicates the omission of the origin point, P s(lrII)
represents the tensor derivative of the pair potential P(r), and A, ; collectively represents the wave vector q; and branch
indices j; (i =1,2, . . . , n) The b. , function in Eq. (7) is unity if the sum of arguments is zero or a vector of the recipro-
cal lattice and zero otherwise.

If after substituting for Q~ from Eq. (7) into Eq. (6) and expansion is carried out in powers of A, , we find the follow-
ing lowest-order (A, PT) anharmonic contributions to ( u ):
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where the subscripts qh, Q, and C in Eqs. (9)—(11) stand
for the quasiharmonic, quartic, and cubic contributions
of the k PT.

The DWF expression 2M(Q), where Q is the scattering
vector, is obtained by multiplying with Q /3 the above
listed expressions for ( u ). The corresponding contribu-
tions from the Green's-function method and the A, PT
are obtained from Eqs. (6) and (9)—(11), respectively. We
denote the Green's-function result by a subscript "ren",
because, the renormalized frequency Q ., as given by Eq.
(7), is used in this method. For the A, PT, there are in to-
tal three contributions to the DWF and these are denoted
by the subscripts qh, Q, and C, respectively.

Now we turn our attention to the numerical procedure
used in obtaining the results from the Green's-function
(GF) method, the A. PT, and the MD method. In the GF
method, for a given q and j, Q . is calculated from Eq.
(6), which includes the contributions from the cubic and
quartic shifts of the phonon frequencies. By substituting

Eq. (8) into Eq. (7) and the plane-wave representation of
the 5 function, the whole BZ sums needed in the calcula-
tion were expressed in terms of the S & tensors. These
tensors can be calculated for the irreducible sector of the
BZ and, from the expressions given in Shukla and Wilk,
can be obtained for the whole zone. The calculations
were done for step lengths as low as L =6 (432 wave vec-
tors in the whole BZ) to as large as L =11 (2662 wave
vectors in the whole BZ), and the final results were ob-
tained by graphical extrapolation which corresponds to
the limit L~ao. A similar procedure was used in the
calculation of the A. PT contributions from Eqs. (9)—(11).
For MD calculations described in much more detail in
Shukla and Heiser, a 250-particle sample size, initia11y
located in a cube containing 5 X 5 X 5 bcc unit cells, was
used as a starting point. Periodic-boundary conditions
were used in the calculations to minimize the surface
effects. As in our previous calculations, ' the Beeman al-
gorithm was used in the integration of the equations of
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motion of the 250 particles, and 3000 time steps were
used in obtaining the final MSD results.

In all three methods, a real-space sixth-neighbor in-
teraction potential was employed in the calculations.
This potential was obtained from the Ashcroft pseudopo-
tential with Vashishta-Singwi screening function. The
calculations were carried out for the temperatures in the
range 93 ~ T 365 K, and appropriate volumes for the
four temperatures in this range were chosen. The lattice
constants are 4.234 A (93 K), 4.251 A (163 K), 4.288 A
(294 K), and 4.309 A (365 K). The Debye-Wailer slope
[2M(Q)lQ ] calculated by the above three methods
along with the experimental data of Crow et al. is
presented in Fig. 1. It is clear from these results that the
agreement between the calculated and experimental
values is very good for all temperatures.

There are two earlier x-ray measurements of the DWF
in Na by Dawton' and Field and Medlin. " It might be
of some interest to compare these with the most recent
measurement of Crow et al. by a Mossbauer y-ray-
diffraction technique.

Since Crow er al. have not made this comparison, we
present in Fig. 2 these experimental results along with the
MD results. We note here that Field and Medlin" only
did a room-temperature measurement. The results
presented in Dawton's paper' are ratios of intensities at
180, 291, and 368 K, with a reference temperature of 117
K. We used an average of the intensities for the 310 and
400 rejections and the calculated intensity at 117 K.
Once again, we find that the agreement is quite good be-
tween the MD and x-ray results except at the highest
temperature. The x-ray results are also in very good
agreement with the Mossbauer data where the tempera-
tures overlap in the measurements.

Crow et al. have chosen to compare their results with
two theoretical calculations of the DWF based on the
quasiharmonic formula. In the first calculation, they
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FIG. 2. Slope of the Debye-Taller factor in Na vs tempera-
ture. Open circles and dot represent the MD results and the ex-
perimental data of Crow et al. , respectively, and squares and di-
amonds are the x-ray results of Field and Medlin and Dawton,
respectively.

used fixed-volume (5 K) phonon frequencies and calculat-
ed the slopes of the DWF for different temperatures, and
in the other calculation they used temperature-dependent
frequencies. Both calculations were done from the Na
potential used previously in anharmonic calculations by
Glyde and Taylor' and Shukla and Taylor. ' How well
the results of the DWF of Na for a fixed-volume (5 K)
calculation from the Ash croft pseudopotential and
Vashishta-Singwi screening function compare with the
Glyde and Taylor potential as used by Crow et al. can be
seen from Fig. 3. In this figure the quasiharmonic,
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FIG. 1. Slope of the Debye-%'aller factor in Na vs tempera-
ture. Squares are the A, PT results, crosses are the Green's-
function (GF) results, and open circles and dots represent the
MD results and experimental points, respectively.
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FIG. 3. Slope of the Debye-Wailer factor in Na vs tempera-
ture for the fixed volume {5 K). Open diamonds, squares, and
circles represent the quasiharmonic (qh), perturbation theory
(PT), and molecular-dynamics (MD) results, respectively, and
dots represent the 5-K qh calculation of Crow et al.
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quasiharmonic plus the lowest-order (A, ) anharmonic
contributions, and the MD results, all for the 5-K
volume, are compared with the quasiharmonic values as
given in Table I of Crow et al. The MD values were in-
terpolated from the results of Ref. 2 using a spline
method, and the cubic anharmonic contribution was cal-
culated from the best-converged sum given in Table II of
Ref. 2. It can be seen that the quasiharmonic results by
Crow et al. differ from our quasiharmonic result at high
temperature. It is not clear how meaningful a coxnpar-
ison of theoretical values at 5 K with experiment is, be-
cause the experimental data is not reduced to the 5-K
volume.

Finally, two points should be noted: (i) We have not
allowed any polarization mixing j and j' in Eqs. (3) and
(4). The Green's function is exactly diagonal in the har-
monic approximation, and when the anharmonic terms of

O(A. ) are included, the corrections arising from the mix-
ing of j and j terms to the MSD are insignificant. This is
based on the unpublished results by one of the authors
for the MSD calculated in the nondiagonal approxima-
tion for a Lennard-Jones potential. ' (ii) We use the Ash-
croft pseudopotential and the Vashishta-Singwi screening
function to compare our various theoretically calculated
values of the DWF with the experimental data of Crow
et al. because this potential has been used extensively be-
fore in the harmonic and anharmonic calculations of al-
kali metals. '

ACKNOWLEDGMENT

One of us (R.C.S.) wishes to acknowledge the support
of the Natural Sciences and Engineering Research Coun-
cil of Canada.

R. C. Shukla and R. D. Mountain, Phys. Rev. B 25, 3649
(1982).

R. C. Shukla and G. A. Heiser, Phys. Rev. B 33, 2152 (1986).
H. Hubschle and R. C. Shukla, Phys. Rev. B 40, 11 920 (1989).

4G. A. Heiser, R. C. Shukla, and E. R. Cowley, Phys. Rev. B 33,
2158 (1986).

5R. C. Shukla and H. Hiibschle, Phys. Rev. B 40, 1555 (1989).
R. C. Shukla and C. A. Plint, Phys. Rev. B 40, 10337 (1989).

7M. L. Crow, G. Schupp, W. B. Yelon, J. G. Mullen, and A.

Djedid, Phys. Rev. B 39, 909 (1989).
R. C. Shukla and L. Wilk, Phys. Rev. B 10, 3660 (1974).
P. Vashishta and K. S. Singwi, Phys. Rev. B 6, 875 (1972).
R. H. V. M. Dawton, Proc. Phys. Soc. London 49, 294 (1937).
D. W. Field and E. H. Medlin, Acta Crystallogr. A 30, 234
(1974).
H. R. Glyde and R. Taylor, Phys. Rev. B 5, 1206 (1972).
R. C. Shukla and R. Taylor, Phys. Rev. B 9, 4116 (1974).

'4R. C. Shukla (unpublished).


