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Static and dynamical properties of doped Hubbard clusters

1 MAY 1992-II

E. Dagotto, A. Moreo, F. Ortolani, * D. Poilblanc, ~ and J. Riera&

Department of Physics and Center for Materials Research and Technology, Florida State Uniuersity, Tallahassee, Florida 32306

(Received 25 July 1991;revised manuscript received 12 November 1991)

We study the t-J and the Hubbard models at zero temperature using exact-diagonalization techniques

on &10X&10 and 4X4 sites clusters. Quantum Monte Carlo simulation results on larger lattices are

also presented. All electronic fillings have been analyzed for the three models. We have measured

equal-time correlation functions corresponding to various types of order (ranging from "standard" stag-

gered spin order to more "exotic" possibilities like chiral order), as well as various dynamical properties

of these models. Upper bounds for the critical hole doping (x, ), where long-range antiferromagnetic or-

der disappears, are presented. It was found that x, is very small in agreement with experiments for the

high-T, superconductors. For example, in the t-J model, x, &0.08 at J/t=0. 4. However, short-

distance spin correlations are important up to much higher dopings producing a sharp well-defined

spin-wave-like peak in S(q=(m', m'), co). Regarding the possibility of phase separation in the Hubbard

model, we have studied the behavior of the density of particles, ( n ), as a function of the chemical poten-

tial, using the Lanczos method on a 4X4 Hubbard cluster, finding no indications of phase separation for

any value of U/t. Then, we conclude that the t-J model at small J/t should not phase separate. In order

to compare theoretical predictions with photoemission experiments, we evaluated the electronic density

of states, N(co), of the Hubbard and t Jmodels -at several doping fractions. We found that upon doping

the antiferromagnetic gap is filled for U-8t or smaller. The chemical potential moves across the insu-

lating gap as one goes from electron to hole doping of the half-filled cluster, in agreement with x-ray ab-

sorption experiments but at variance with photoemission experiments. We have also calculated the opti-

cal conductivity, o.&(co), of the Hubbard and t-J models at all dopings on 4X4 clusters. Results are com-

pared with experiments and the weight of the Drude peak is presented as a function of couplings and

dopings. Spectral weight found at small frequencies is associated with the mid-infrared band observed

experimentally in La~ Sr„Cu04, and with the states filling the insulating gap in photoemission experi-
ments. An overa11 good agreement with experiments in the normal state was found. Regarding the pos-

sibility of superconductivity in these models, we have studied s-, d-, and p-wave pairing correlations.

Naively, the d-wave channel seems enhanced near half filling while the extended s-wave channel seems

enhanced from half filling up to 40% doping. However, we found that the enhancement comes from
short-distance effects and, thus, no numerical indications of superconductivity were found in these mod-

els. We emphasize the importance of analyzing the pairing correlations as a function of distance to dis-

tinguish between short- and long-distance effects in the susceptibilities. We also observed that spral or-
der is enhanced at small Jit and low doping. Uniform chiral order is suppressed by dynamical holes

while staggered chiral order may be enhanced, although with a small plaquette order parameter. We
conclude with the observation that the simple one-band Hubbard model with intermediate values of
U-8t may account for many of the "anomalous" properties of the normal state of the high-T, super-

conductors.

I. INTRODUCTION

It is widely agreed that the insulating antiferromagnet-
ic state of the high-temperature superconducting Cu-0
materials' is characterized by a charge-transfer (CT) gap
of about 1.5 —2.0 eV while the nature of the "normal"
state (above the superconducting critical temperature)
which arises from the doping of the insulating state still
remains a puzzle. Many of the normal-state properties of
these superconducting materials have been labeled as
"anomalous. " Although the gap at half filling is not of
the Mott-Hubbard type but of charge-transfer origin, a
one-band Hubbard model may still qualitatively describe
the materials once the valence band, which has mainly 0
2p character, is identified with the lower Hubbard band
while the Cu 3d conduction band is associated with the

upper Hubbard band. An eQectiue coupling U/t can be
found that approximately reproduces the spectrum of a
more involved Cu-0 Hamiltonian. For this reason, the
two-dimensional Hubbard and t-J modes have recently
attracted considerable attention as simple phenomenolog-
ical models for the description of the CuOz planes of
high-temperature superconductors like La2 „Sr Cu04.
At half filling, these superconducting cuprates are insu-
lating and they present staggered spin order, facts well
reproduced by these models. It is particularly important
to understand the evolution of the ground state at half
filling (which has staggered spin order) when the system
is doped with holes or electrons. Many mean-field and
Hartree-Fock calculations have appeared in the literature
discussing different "standard" and "exotic" phases.
However, these approaches, which are intrinsically varia-
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tional, cannot properly analyze the global stability of the
proposed mean-field solutions since it is difficult in a sin-
gle calculation to compare free energies of all the possible
ground states. In addition, and specially at large cou-
plings, the many-body effects seem crucial to understand
the behavior of strongly correlated electronic systems.
Then, numerical results like those presented in this paper,
are very important to clarify the properties of these mod-
els in the intermediate- and 1 arge-(Ult) regions.

The one-band Hubbard model is defined by the Hamil-
tonian

H= —t g (c;,c;,+H. c. )+Urn;&n;&,
I

where c;, is an operator that creates an electron at site i
of a two-dimensional (2D) lattice with periodic boundary
conditions and N sites. s denotes spin, (ij) represents
nearest-neighbors sites, and n; is the number operator.
The t-J model corresponds to the strong-coupling limit of
the Hubbard model and is defined by the Hamiltonian

H= J g (S; S;——,'n;n;) t g (c;,—c;,+H. c. ),(),
where J is the exchange constant of the spin-spin interac-
tion and t corresponds to the hopping parameter of the
kinetic energy of holes. c;, are hole operators and
S;=—,'c; chic;. There is no double occupancy in this model.
It has been suggested that the t-J model may be more
fundamental than the Hubbard model since (under some
approximations) it can be derived from a general Cu-0
Hamiltonian and thus it should be independently ana-
lyzed.

How can we extract useful information from these
Hamiltonians? In the absence of exact results, the most
reliable way to describe the actual ground-state proper-
ties of strongly correlated models are numerical tech-
niques. Regretfully, these methods also have limitations.
For example, quantum Monte Carlo (QMC) techniques at
finite doping have the complication of negative fermionic
determinants and finite temperature effects. A technique
that avoids this problem is the exact diagonalization of
small clusters using the Lanczos method. Actually, with
this procedure interesting information has been produced
about dynamical properties of the t-J model, frustrated
models, and other systems where there are no efficient
Monte Carlo methods available. Of course, the main
limitation of the Lanczos technique is the constraint of
working on small clusters due to the rapid increase in the
size of the Hilbert space with the number of sites.

In this paper, we present a numerical study of static
and dynamical correlation functions of the 2D Hubbard
and t-J models at all doping fractions using lattices of up
to 4X4 sites. For both models, such an analysis was pos-
sible after a major computational effort due to the large
size of their Hilbert spaces. Many different types of
correlations were calculated including those correspond-
ing to superconductivity. We also compare our predic-
tions for the electronic spectral function and the optical
conductivity with experiments finding an overall en-
couraging qualitative agreement.

The organization of the paper is as follows. In Sec. II,

we briefly review some of the features of the numerical
technique used in the paper. Section III contains the
quantum numbers of the ground state of these models as
a function of doping and couplings. In Sec. IV we start
comparing theoretical predictions with experiments. The
section is devoted to the analysis of antiferromagnetic or-
der and its evolution as a function of doping. In Sec. V
we discuss the issue of phase separation as well as the be-
havior of the chemical potential with doping. Section VI
is devoted to the analysis of the electronic spectral densi-

ty, N(co), contrasting our results with those of x-ray ab-
sorption and photoemission experiments. In Sec. VII the
optical conductivity, o, (co), is evaluated and compared
with experiments. Section VIII reports on attempts to
search for superconductivity in these models while in
Secs. IX and X we analyze the possible existence of Aux,
chiral, or spiral order at finite doping. Our conclusions
are presented in Sec. XI.

II. NUMERICAL TECHNIQUE

The numerical technique that we will mainly use is the
Lanczos method that allows us to obtain exact results for
the Hubbard and t-J models on small clusters at zero
temperature. We also present additional data using the
quantum Monte Carlo method. With these techniques
some preliminary results for the Hubbard and t-J models
have been previously discussed, finding good qualitative
agreement between theory and experiment at low doping
in the normal state. Below, we present results for equal-
time correlation functions of different order parameters
(as well as spectral functions) of various operators related
with possible different phases of these models. We also
present dynamical correlation functions which are
difficult to obtain using other numerical methods. We
were able to study different values of the couplings U/t
and J/t, since our technique works equally well at strong
and weak coupling. We were also able to analyze all pos-
sible doping fractions on the 4X4 and /10X +10 clus-
ters since using Lanczos algorithm we do not have "sign"
problems as in a QMC simulation. However, the study of
the 4X4 Hubbard model is still a difficult task since its
Hilbert space is very large. In order to reduce the size of
the matrices to be diagonalized we have explicitly exploit-
ed various symmetries of the model, i.e., conservation of
the number of particles, conservation of the projection
along the z axis of the total spin, as well as invariance un-

der translations, rotations, reAexions, and spin inversion.
At half filling, the largest subspace we have studied con-
tains —1 350 000 states.

The study of the t-J model on a 4 X 4 cluster is also a
difficult task. For this cluster most of the work previous-

ly reported in the literature was performed with 0, 1, and
2 holes. The reason is that the size of the Hilbert space
grows with the number of holes reaching a maximum at a
doping fraction —,', where the dimension of the matrices

we studied numerically is of —126000 states even after
the many symmetries discussed above were implemented.
A study for all possible dopings of different correlation
functions in the 2D Hubbard and t-J models has not been
previously attempted to the best of our knowledge. A11
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these calculations have been performed on a Cray-2
supercomputer.

III. QUANTUM NUMBERS OF THE GROUND STATE

In this section we present the quantum numbers of the
ground state of the Hubbard and t-J models as a function
of doping for the 4 X4 cluster. We report on the momen-
tum k, the quantum number under a n/2 rotation (s, d,
or p waves) for an even number of particles and, only for
the t-J model, the total spin S. In the case of the t-J rnod-
el, the results presented below have been obtained for
values of the coupling J/t between 0.1 and 2 while for the
Hubbard model we work with U/t between 4 and 20.
The reason is the following: As previously discussed in
the case of one hole, for J/t )2.0 there are many cross-
ing of levels in the ground state and its quantum num-
bers are tedious to describe (although they can be under-
stood by perturbation theory in t/J). Since large J/t is
not the most interesting physical regime, we will not pro-
vide in this paper information about level crossings in
that region. A similar situation occurs in the other ex-
treme of very small J/t As w.as also discussed for the
case of one hole, finite-size effects for a 4X4 lattice are
certainly important for J/t (0.1 and thus it is not clear
whether these additional level crossings will survive the
bulk limit. The physical reason for this problem is that
when J/t is decreased, the hole (thought of as a polaron)
increases its "size" until it reaches the boundary of the
4X4 clusters. Thus, below we present the quantum num-
bers of the t-J model only in the intermediate region of
parameters JC [0.1,2.0]. We follow a similar procedure
or the Hubbard model. In weak coupling (small U/t) it is
well known that finite-size effects are important, since
correlation lengths are large. In the other limit of very
large U/t, there are many level crossings similar to those
of the t-J model for small J/t. Then, as before, we re-
strict our analysis to the region UE [4,20] that contains
the phenornenologically important values of the cou-
pling U/t.

Unless otherwise stated, the quantum numbers present-
ed below for various doping fractions are valid for both
the Hubbard and t-J model. The hopping t is taken equal
to 1. Periodic boundary conditions were used. Degen-
eracies due to rotations of the lattice in n. /2 are not made
explicit. However, degeneracies produced by the special
shape of the 4X4 cluster (which is equivalent to a 2 hy-
percube ) are carefully discused for the t-J model.

0 holes: k= (0,0), S =0, s wave.
1 hole: k=(m/2, m/2) [degenerate with k=(0, ~)],

S=—'
2

2 holes: k=(0, 0) [degenerate with k=(O, m )], S =0, d
wave.

3 holes: For JR[0.4, 2.0], S=—,
' with k=(m'/2, m/2)

[degenerate with (rr, n.)]. For J=0.2, S=—,', k=(0, 0) [de-
generate with (O,w)]. For J=0.1, S=—,', k=(~, m. ) [degen-
erate with (m /2, n./2)]. For U E [4, 10], S=

—,
' with

k=(m/2, m/2) [degenerate with (n, vr)].
4 holes: For JE[0.4, 2.0], k=(0,0) [degenerate with

k=(O, n)], S=0, d wave. For J=0.2 and 0.1, k=(0, 0)
[degenerate with (m, m)], S =0, s wave. For UE[8,20],

k=(0,0), S =0, s wave, while at U=4, k=(0,0), S =0
but d wave.

5 holes: k=(m. /2, n. /2) [degenerate with k=(O, m)],
S=—'.

2

6 holes: k=(0, 0), S =0, s wave.
7 holes k=(O, m. /2), S=—,'.
8 holes: k=(0, 0) [degenerate with k=(O, m )], S =0, d

wave.
9 holes: For JE [0.6,2.0], k=(O, n. /2) [degenerate

with k = (m. ,~/2)], S=
—,'. For J=0.4 or smaller

k = (0,m/2) with S= —', . For the Hubbard model
k =(0, m. /2).

10 holes: For JR[0.8, 2.0], k=(0, 0) [degenerate with
k =(n, m )], S =0, s wave. For J=0.6 or smaller k =(0,0),
S =2. For the Hubbard model k=(0, 0) and it is odd un-
der both a reflection along the x or y axis. '

11 holes: For JC[0.8, 2.0], k=(O, n/2) [degenerate
with k=(n, m. /2)]. For J=0 6o.r smaller, k=(O, m/2),
S=—,'. For the Hubbard model k=(O, m/2).

12 holes: k=(0, 0) [degenerate with k=(0, n )], S =0,
d wave.

13 holes: k= (0,~/2), S=
—,'.

14 holes: k=(0, 0), S =0, s wave.
Many features of these quantum numbers are impor-

tant to discern.
(i) There exists a region where the ground state with an

even number of particles is s waue. This occurs at dop-
ings of x =0.25 and x =0.37 in both models (four and six
holes, respectively). Closer to half filling the ground state
is a d wave. This issue will be discussed later in Sec. VIII
and is related with the possibility of s-wave superconduc-
tivity in these models. "

(ii) Both models have very similar quantum numbers.
This gives support to the idea that the physics of the
Hubbard model at large coupling is well described by the
t-J model for small J/t. It also shows that there is a
smooth connection between the strong- and weak-
coupling regions of the Hubbard model and no singulari-
ties are found between those two regimes.

(iii) At large hole doping (small density of electrons),
the quantum numbers are in good agreement with a pic-
ture of noninteracting particles for both models.

IV. INFLUENCE OF DOPING
ON ANTIFERROMAGNETIC ORDER

We start our comparison of theoretical predictions for
Hubbard-like models in 2D with experiments for the
high-T, cuprates, by analyzing their magnetic properties.
It is particularly interesting to study the evolution of the
antiferromagnetic (AF) order present at half filling, when
the Hubbard and t-J models are doped by holes or elec-
trons. In the high-T, superconductors AF order is rapid-
ly suppressed by doping. For example, in La2 Sr Cu04
the Neel temperature is reduced' from 300 K at half
filling to below 10 K for a doping fraction x -0.02, while
for the electron-doped material Nd2 „Ce Cu04 ~ the
antiferrornagnetic order disappears' at an electronic
doping x -0.14

Can this effect be reproduced by the strongly correlat-
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ed models we are analyzing? To study this question we
have calculated various quantities with spin order. Con-
sider the spectral decomposition of the operator that
creates spin waves with momentum q, i.e.,
S+ =(I/&X ) g.e' ' c tc„& in the t Jm-odel. Its spec-
tral function can be written as

30

2.0

I I I

I
I l~ I I I ~T~T r

4 0

3.0

2.0

S(q ~)= & l(n ISq Io) I (co —(E„—&o)), (3)

where I In ) I are states connected to the ground state by
the action of S+ and IE„] are their energies. If the
ground state is a singlet with zero momentum, then the
states I In)I are triplets with momentum q. IO) is the
ground state of the model at the corresponding values of
doping and coupling under consideration and Eo is its en-

ergy. In Fig. 1(a)—1(d) we show S(Q, co) [Q=(m, n )] for
the t Jmod-el at J =0.4 (r =1 in the rest of the paper un-
less otherwise stated) and various doping fractions. The
momentum q =Q corresponds to the spin-wave excitation
of lowest energy at half filling (due to the staggered spin
antiferromagnetic order). In Fig. 1 we observed that up
to a doping fraction x -0.25 there is a sharp peak at the
bottom of the spectrum and the spin-wave excitation is
well defined. Increasing the doping further to x -0.37,
the peak is still well defined but its energy is higher (and,
thus, a clear and large spin gap develops). Finally, at
quarter filling x -0.50, the spectrum is already in-
coherent and there is no well-defined peak associated with
spin waves of that momentum. This behavior is qualita-
tively similar to that recently reported' for
YBa2Cu306+x, where it was found that spectral weight of
the magnetic scattering shifts to higher energies as the
oxygen concentration increases.

Naively, Fig. 1 would suggest that long-range antifer-
romagnetic order is lost between x =0.25 and x =0.37,
which are dopings too large compared with experiments.
However, short-distance staggered fluctuations may still
induce large well-defined peaks in the spectrum even
without a genuine long-range order and thus the actual
critical doping may be much smaller. To clarify this is-

1.0

0 0 I I I I I I I I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0
X

00 I TT I | I I I T)
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 2. Spin gap (defined as the difference in energy between
the first excited state created by Sq and the ground state) as a
function of doping for different momenta: open squares denote

q = ( n. , ~); full squares q = ( m., m /2); open triangles are
q=(0, ~/2); full triangles have q=(0, ~); and crosses denote
q=(~/2, ~/2). (a) is at J=0.4 and (b) at J=1.0.

sue we have studied the (spin) energy gaps between the
ground state of the i Jmo-del (at different doping frac-
tions) and the first excited state that appears in the spec-
tral decomposition Eq. (3) when a spin wave of a given
momentum is created. ' The results are shown in Figs.
2(a) and 2(b) at J=0.4 and 1.0. We observe that near
half filling (x =0) the first excited state has momentum
q=(vr, m)(as exp. ected from the existence of antiferro-
magnetic long-range order) and it is well separated from
the rest of the spectrum. This state will become the
massless (zero-energy gap} spin-wave state in the bulk
limit at half filling. However, note that for a doping of
only two holes (roughly x -0.125) most of the spin-wave

states with different momenta have a comparable energy.
Moreover, for a doping of four holes (x =0.25) the
lowest-energy state has q=(vr/2, ~/2) rather than
q=(m, m }. This result suggests that AF order is lost fas-

ter than what the spectral decomposition (Fig. 1) would

imply. '

In Fig. 3 we show the equal-time staggered spin-spin
correlation function defined as

s
80

~ r r T r T
r
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3CC --; r

S

~t'T '
T
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!
' '

I

(b'r
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q
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T
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2.0 3.0 4.0 5.0

0 P

0.0 "
.0 2.0 3.0 4.0 5.0

0 I I !

0.0 1.0 2.0 3.0 4.0 5.0

FICx. I. S=S(Q,co) [Q=(m., m)] as a function of co at J=0.4
for different doping fractions and a 4 X4 cluster: (a) x =0.125,
(b) x =0.25, (c) x =0.375, (d) x =0.50. The units in the vertical
axis are arbitrary.

as a function of doping for various distances (i=(i„,i„),
iI='1/i„+i„). In principle, in our small 4X4 lattice

there is not enough space to make a proper study of the

decay of correlation functions with distance. However,
we can still analyze for what values of dopings and cou-

plings the antiferromagnetic correlations at the distances
allowed in our cluster change sign (suggesting the absence
of long-range staggered order). In Fig. 3(c) we find that
the correlation at the maximum possible distance on the
4X4 lattice, i.e., 2+2 lattice spacings, changes sign at
x -0.20 for J =1.0 and at smaller dopings when J is re-

duced. %'orking on larger lattices and for distances
larger than 2&2, it is reasonable to expect that the value

of x where the correlations change sign would be even

sma11er. On the other hand, the staggered spin correla-
tions at very short distances remain important up to
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I

I
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I
I-

(d)—

—0.10

—0.20
0.0

I I I I I I I

0.10 0.20

0.0

0.30 0.0 1.0 2.0 3.0

FIG. 3. Equal-time spin-spin correlation functions C(i) [Eq.
(4)] on a 4X4 cluster at distances: (a) IiI=1; (b) IiI=2; (c)
IiI =2&2 for J=0.2 (open triangles), J=0.4 (full triangles), and
J=1.0 (open squares) as a function of doping. The actual
dependence of C(i) with distance for x =0.0 (open triangles);
x=0.125 (full triangles); and x=0.25 (open squares); all at
J/t =0.4, is shown in (d).

d =1.43/J, which corresponds to approximately two
lattice spacings at J=0.4. On a disk of radius r =2 there
are —13 spins. Then, roughly, for a doping of
x, =

—,', =0.08 every spin of the lattice belongs to a certain
"spin bag" and LRO is lost. In general,

x, =J /[m. (1.43) ]=0.16J

which gives a critical doping fraction of x, =0.16, 0.08,
and 0.05 at J= 1.0, 0.4, and 0.2, respectively, in qualita-
tive agreement with the upper bounds quoted above from
Fig. 3(c).

Then, studying the staggered spin order in the t-J mod-
el we found that indeed the critical doping where AF
disappears is very small, which is compatible with experi-
mental results. The main intuitive explanation for this
effect is that "dressed" holes in a spin background are
larger than just one lattice spacing. Actually their size
diverges as J~O. Thus, it is not surprising that a very
small doping fraction is able to completely destroy the
antiferromagnetic LRO and the Hubbard and t-J models
can neatly explain this phenomenon. '

higher dopings [Figs. 3(a) and 3(b)]. For example, for
nearest-neighbor spins, Fig. 3(a), there is no change of
sign even at the relatively large doping of x-0.25 for
any value of J. This result is compatible with Fig. 1

where a sharp peak appears in the spectral decomposition
up to large doping fractions. We believe that the peak is
created by short-distance fluctuations rather than by
long-range order (LRO). As stated before, it is possible
to find upper bounds on the critical dopings necessary to
destroy AF order in the t-J model by analyzing at what
doping the correlation functions of, e.g., Fig. 3(c) change
sign. For example, at J=1.0 we find x, &0.20; at
J=0.4, x, (0.15 and at J=0.2, x, &0.12, approximate-
ly. These bounds on x, are better than those obtained by
analyzing the spectral function (Fig. 1) or the correlation
functions at zero momentum. ' Exploratory studies for
the Hubbard model in strong coupling on a 4X4 cluster
suggest results similar to those of the t-J model. Finally,
the explicit dependence of the spin-spin correlation func-
tion with doping is presented in Fig. 3(d) for various
filling fractions at J=0.4.

The existence of a very small x, for the t-J model is in
agreement with the following simple scenario. Suppose
that the holes are uniformly spread on the square lattice.
Each hole in its ground state is surrounded by a region
where antiferromagnetism is depleted. ' This region is
larger than just one site and it is produced by the com-
petition between the kinetic energy of the hole (which is
minimized increasing the "size" of the hole) against the
exchange energy (which tries to maximize the number of
antiferromagnetically aligned spins and thus reduces the
size of the hole). ' In previous studies of one hole in the
t-J model it was found that a hole injected in an antifer-
rornagnetic background is well described by a
Schrodinger equation in a linear potential (this potential
being caused by the "strings" created by the hole in its
movement). The "size" (d) of the one-hole ground state
in this linear potential depends on J (at t = 1) as

V. PHASE SEPARATION
IN STRONGLY CORRELATED SYSTEMS

At very large J/t and nonzero doping, it is well known
that the t-J model phase separates. This occurs because
the configuration of minimum energy is obtained when
the number of "broken" or missing antiferromagnetic
links is minimized. Suppose that the system is initially
prepared in a state with a given hole doping fraction x.
This state will evolve in time such that the holes will tend
to "cluster" into a giant nucleus, leaving the rest of the
system undoped. Then, the original doping fraction x
does not correspond to a thermodynamically stable state.
The equilibrium configuration consists of two separated
regions with different hole densities. Phase separation
may compete with superconductivity since both are in-
duced by energetic attraction of pairs of holes. Thus, it is
important to know to what extent this effect dominates in
the t-J model. Recently, it has been suggested that
phase separation occurs in this model for all values of
J/t On the oth. er hand, quantum Monte Carlo simula-
tions at finite temperature of the Hubbard model have
not found indications of phase separation. These results
seem contradictory since both models should show simi-
lar behavior in the large-(U/t) region.

In this section we study phase separation in the Hub-
bard and t-J models using exact diagonalization tech-
niques on a 4X4 cluster at zero temperature. A simple
way to study this problem is by monitoring the average
number of particles ( n ) per site as a function of the
chemical potential p of the system. If there is a discon-
tinuity in ( n ) vs p, at some particular value of the chem-
ical potential p*, it means that the densities inside the
gap in (n) are not stable. If a system is initially
prepared with these densities, it will phase separate. On
a finite system with N sites, the possible densities below
half filling are given by (N NI, )/N where Nh is—the num-
ber of holes (defined as the number of sites N minus the
number of electrons) that can take values ranging be-
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tween 0 and N .If the calculated density (n ) changes by
steps of 1/N as a function of the chemical potential, then
there is neither pairing nor phase separation. If the
change is given by 2/N, then we will say that there is
"pairing" of holes. These pairs may Bose condense lead-
ing to a superconducting state. Finally, if the change in
the density is larger than 2/N, we say that the system
phase separates.

We calculate the curve (n ) vs p for a finite system at
zero temperature in the following way: Using a Lanczos
algorithm we obtain the lowest-energy eigenvalues E& at
all possible fillings N&, for particular values of the cou-
plings J/t or Ult Th.ese results are obtained at zero
chemical potential using Hamiltonians Eqs. (1) and (2).
Adding a chemical potential will modify the energy levels
by —pN&. When @=0the energy of the t-J and Hubbard
Hamiltonians as written in Eqs. (1) and (2) is minimized
by a finite number of holes. Thus, in order to make stable
a half-filled ground state we need to introduce a negative
chemical otential to the Hamiltonian. Adding a term—(U/2) +(UI4)N to the Hubbard model (where N is
the number operator), makes the Coulombic interaction
explicitly particle-hole symmetric, i.e., the new Hamil-
tonian is

H= t g (c—;,ci, +c),c;, )+ Up(n;) —
—,')(n;i —

—,')
(ij),s 1

(6)
1,$

Now, for p=O the ground-state density is (n ) =1 as ex-
pected. Recalling that J=4t /U, we add a similar term
(t /J)(N 28') to the t J—model. T-his is the convention
that we have followed in the present paper.

The particular values of p that correspond to a change
in the density are obtained in the following way starting
at half filling. When Ez —

pN& =Eo, the ground state in
the subspace with N& holes crosses the half-filled ground
state whose energy is Eo. This, obviously, occurs at a
value of p that satisfies

p(Na )=(Ea Eo)/N—
The level that first crosses Eo, i.e., for the smallest value
of p, is the one that becomes the new ground state. Thus,
we have to calculate the minimum p [Eq. (7)] as a func-
tion of Nz. Suppose that the state that crosses Eo for the
smallest p has N&=2. Then, in this particular case a
state with N& = 1 cannot become the ground state and we
say that the system has "pairing" of holes. If, on the oth-
er hand, the next stable state after half filling has Nz
larger than 2, this means that all the states with a number
of holes smaller than this Nz cannot be the ground state
of the system and this is what we call phase separation.
This is completely equivalent to the Maxwell construc-
tion presented by Emery, Kivelson, and Lin that allows
the study of phase separation between the half-filled and
a doped state. They find the minimum in (Eq —Eo)INq
as a function of N& and if this minimum is obtained for
any Nz & 1, they claim that there is a phase separation
(they include our definition of pairing in their definition
of phase separation).

The evaluation of the whole curve (n ) vs p allows us

I

[

& & ~

t

tg —20

—30

I I i I I

0.0 0.2 0.4 0.6
I

0.8 1.0

FIG. 4. Energy of the ground state of the t-J model on a 4X4
lattice for J =0.2 (crosses); J=0.4 (open squares); J=1.0 (full
triangles); J =2.0 (open triangles).

to look for the possibility of phase separation even away
from half filling. We proceed in the following way. If EH
is the energy at p=0 of a state with NH holes that be-
comes the ground state at some value of @=AH, we can
find at what value of p this state is itself replaced as
ground state and the doping of the new state. This is
done by solving the following equation:

P=(Eh EH)I(NH

for all values of N& larger than N&, and obtaining the
minimum p with respect to Nz. The Maxwell construc-
tion can also be applied to the study of phase separation
away from half filling. It can be restated in the following
way: If the curve ground-state energy vs (n ) has nega-
tive curvature between two different values of (n ), then
phase separation occurs between these two densities.

In Fig. 4 we show the energy of the ground state of the
r Jmodel on a -4X4 lattice as a function of x =N& /N for
many values of J/t. The actual values of the energy are
presented in Table I. For J/t =2.0 the curvature is
slightly negative between x =1 and x =

—,', indicating that
there is phase separation into two regions with these two
densities. Increasing further J/t the region of negative
curvature is even larger. On the other hand, for
J/t =0.4 and 0.2 the curvature is negative only close to
half filling (x =0) between neighboring densities indicat-
ing pairing but not phase separation. This is in agree-
ment with previous studies of hole binding in this mod-
el, which showed that phase separation only starts at
J/t &0.6 at least on a 4X4 lattice while in the interval
0.2 & J/t & 0.6 there is hole binding (pairing).

In Fig. 5 we present the density as a function of the
chemical potential for the r-J model (after shifting ap-
propriately p, such that (n ) =1 for p=O). At J/t=0 4, .
there are no sharp discontinuities in the results. Close to
half filling the ground states with two, four, and six holes
are stable (they "exist" by appropriately tuning p) while
the states with one, three, and five holes are unstable (no
matter what value p takes, they never become the ground
state of the system). This means that there is "binding of
holes" in this region but not phase separation. On the
other hand, for J/t = 1.0 and 2.0 the state with ( n ) =

—,",
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is the first stable one after half filling. The curve (n ) vs

p has a discontinuity of h(n ) =0.375 indicating the ex-
istence of phase separation. Increasing Jit the jump in
the density also increases. At J/t =10, it is already at its
saturation value b, ( n ) = 1.

Now let us contrast our results for the t-J model with
those for the Hubbard model. In Fig. 6 we show exact
results for the ground-state energy of the Hubbard model
Eq. (6) at p=0 on &10X &10 and 4X4 lattices for vari-
ous values of U/t ranging from intermediate to strong
couplings. The actual values of the ground-state energies
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FIG. 6. (a) Energy (per site) of the ground state of the Hub-

bard model on a &10X&10cluster. (b) Same as (a) but for a
4X4 cluster.

TABLE I. Ground-state energy of the t-J model on a 4X4 cluster at different values of J (t =1).
The energy of one electron is —4.

2.0
1.0
0.8
0.6
0.4
0.2
0.1

0 holes

—38.456 97
—19.228 48
—15.382 79
—11.537 09
—7.691 39
—3.845 70
—1.922 85

1 holes

—34.929 66
—18.573 68
—15.352 83
—12.161 25
—9.013 63
—5.944 10
—4.467 86

2 holes

—33.18023
—18.806 14
—16.029 17
—13.312 17
—10.683 92
—8.211 81
—7.13478

3 holes

—30.510 55
—18.531 89
—16.273 46
—14.087 25
—11.996 85
—10.088 39
—9.315 65

4 holes

—29.076 65
—18.852 63
—16.952 96
—15.11765
—13.365 73
—11.91198
—11.252 32

2.0
1.0
0.8
0.6
0.4
0.2
0.1

2.0
1.0
0.8
0.6
0.4
0.2
0.1

5 holes

—26.779 31
—18.763 71
—17.290 27
—15.874 22
—14.530 95
—13.287 18
—12.714 55

10 holes

—17.406 64
—15.133 16
—14.731 16
—14.387 64
—14.185 43
—13.990 39
—13.895 57

6 holes

—26.062 65
—19.372 38
—18.131 82
—16.935 76
—15.796 05
—14.729 52
—14.229 83

11 holes

—14.700 14
—13.245 58
—12.989 37
—12.772 24
—12.622 69
—12.479 54
—12.410 35

7 holes

—23.478 14
—18.315 37
—17.385 01
—16.498 98
—15.663 23
—14.883 01
—14.514 74

12 holes

—12.685 85
—11.639 60
—11.457 31
—11.283 77
—11.11883
—10.962 31
—10.887 14

8 holes

—21.638 68
—17.557 02
—16.834 68
—16.149 62
—15.504 96
—14.903 58
—14.619 80

13 holes

—10.00000
—9.554 99
—9.476 52
—9.401 33
—9.329 32
—9.260 38
—9.227 03

9 holes

—19.141 85
—16.19686
—15.676 22
—15.17979
—14.782 38
—14.411 48
—14.233 49

14 holes

—8.00000
—7.760 89
—7.719 15
—7.679 22
—7.641 04
—7.604 51
—7.586 84
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are presented on Table II for the 4 X 4 cluster. As can be
observed from Fig. 6 there is no qualitative distinction
between the weak- and strong-coupling regions regarding
the curvature of the plots. This is a clear difference with
respect to the t-J model where the actual value of J/t is
important for phase separation. For the Hubbard model
the curvature is mostly positive, being slightly negative
only very close to half filling and between neighboring
fillings, which indicates possible pairing (with a small
binding energy) but no phase separation. Results for the
two lattice sizes are very similar and thus the finite-size
effects for the ground-state energy seem small.

In Fig. 7 we present ( n ) vs p at, e.g. , Uit =4. Results
for other values of Ult are qualitatively similar. In the
case of the calculation performed using exact diagonali-
zation techniques, the values of p that make a given den-
sity stable are found as for the case of the t-J model. As
observed in the figure, the states with odd number of par-
ticles cannot be made stable by tuning the chemical po-
tential. The states with even number of electrons are all
stable, showing that there is no phase separation in the
model and that instead we having binding of holes. In
the same figure we also show QMC results on a 4 X 4 lat-
tice obtained directly in the grand-canonical ensemble
where p is the input parameter and ( n ) is measured as
an output (and thus carries error bars). The Monte Carlo
results have been obtained at finite but small tempera-
tures. The agreement between the two techniques is
good. For small densities we have also performed QMC
calculations on larger clusters (up to 8 Xg sites), showing
that finite-size effects are small (although the "steps" ob-
served at zero temperature are smeared out at finite tem-
perature).

Then, we conclude that, within the limitations of our
calculations, there are no numerical indications of phase
separation in the Hubbard model. An additional evi-
dence in favor of this conclusion is provided by the
analysis of the one-dimensional case. For the 1D t-J
model, it is well known that at large J/t the system phase
separates. On the other hand, for the Hubbard model
in 1D it has been shown in the bulk limit that there are

V/t=4

Exact, N=4x4, T=O.O

MC, N=4x4, T=0.083

MC, N=6x6, T=0.125
E

MC, N=8x8, T=0.125—

I

—5

FIG. 7. Density ( n ) vs p for the Hubbard model at Ult =4
using different techniques and clusters (Tdenotes temperature).

no discontinuities in the density of particles as a function
of p even at strong coupling and thus the system does not
phase separate. We believe that the same happens in
two dimensions. Then, since the Hubbard and t-J models
should describe the same physics at large U/t, our con-
clusion is that the t-J model does not phase separate at
small J/t contrary to the results of Ref. 23. In the
present analysis we find that phase separation for the 2D
t-J model starts at J/t —1, in good agreement with re-
sults obtained from a high-temperature expansion.

VI. ELECTRONIC DENSITY OF STATES

The analysis of the electronic density of states in the
new high-T, superconductors as a function of doping is
controversial. Photoemission spectroscopy (PES) and in-
verse photoemission spectroscopy (IPES) suggest that as
the insulating state is doped, the gap region appears to be
gradually filled in, with spectral weight transferred from
both the lower valence band and the upper conduction
bands of the undoped insulator. ' The chemical poten-
tial p of the doped metal was found to lie in the insulat-
ing gap, with p roughly the same, relative to the valence

TABLE II. Ground-state energy of the Hubbard model on a 4X4 lattice at different values of U

(t = 1). The energy of one electron is —4.

Ne

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

U =20
—3.739 91
—6.068 01
—8.461 48

—10.478 59
—12.453 30
—13.920 19
—15.451 50
—15.468 14
—15.357 16
—14.788 07
—14.265 47
—12.688 34
—11.082 01
—9.375 17
—7.674 97

U =10
—7.029 00
—8.893 01

—10.807 01
—12.463 13
—14.164 38
—15.513 72
—16.903 56
—16.551 23
—16.143 21
—15.345 37
—14.595 84
—12.932 26
—11.256 21
—9.493 70
—7.740 18

U=8
—8.468 88

—10.147 24
—11.868 84
—13.381 26
—14.925 31
—16.204 37
—17.51037
—17.001 90
—16.460 63
—15.569 10
—14.723 54
—13.026 48
—11~ 321 50
—9.538 29
—7.76409

U=4
—13.621 85
—14.665 24
—15.744 59
—16.727 00
—17.729 58
—18.648 33
—19.580 94
—18.553 63
—17.534 90
—16.320 54
—15.13601
—13.332 83
—11.530 29
—9.681 24
—7.838 93
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and conduction band peaks, for both the electron and
hole-doped materials. In other words, as the antiferro-
magnetic insulating state is doped, p does not move
across the gap if the doping is changed from holes to elec-
trons. ' On the other hand, oxygen x-ray absorption
spectra measured on La& Sr Cu04 have been interpret-
ed in terms of a picture in which hole doping introduces
carriers into the lower band. The observed two-peak
absorption structure is identified as an upper peak arising
from transitions into the upper band, while the lower
peak is associated with holes doped into the top edge of
the lower band. Similar experiments have been carried
out for electron-doped Nd2 „Ce Cu04 where only the
upper band is observed. Then, x-ray absorption suggests
that the chemical potential moves across the gap when
the doping is changed from holes to electrons, in
disagreement with PES experiments. ' As was shown in
the previous section, at zero temperature, we observe that
a finite negative or positive shift of p (approximately half
the gap) is required to add holes or electrons to a half-
filled Hubbard model. Once these values are exceeded,
(n ) appears to vary continuously with IM as the cluster
size is increased. Then, from the analysis of the previous
section, the Hubbard model gives results in agreement
with x-ray experiments ' rather than with PES experi-
ments. '

Using Lanczos techniques, we have calculated the elec-
tronic density of states at finite doping on a &10Xv 10
cluster for positive values of U in the Hubbard model.
Results for the t-J model are also presented on a 4X4
cluster while results for the attractive Hubbard model
were discussed elsewhere. More specifically, we have

calculated

N(+)(ni) ——y [(yM+ ~ct I/M)
) /{to —(E +' —E ))

1

k, n

and

N' '(co)= —g((f '~c ~P ) ) 5(co+(E ' —E ))
k, n

(10}

N,'+'(co} is the density of states for adding an electron
with spin s and energy ni and N,' '(co) is the density of
states for removing an electron with spin s from a ground
state with M electrons. N denotes the number of lattice
sites, and the operator c t& =( 1 l~N ) gje'"'cI, creates a
state with momentum lt and spin s. ~/II") is the ground
state of the subspace with M electrons and Eo is its ener-

gy. ~IQ„*')I denote states in the subspace with I+1
electrons and energies IE„*'I.Figure 8 shows NI+'(co}
(solid) and N(t '(co) (dashed) vs co for Uit =10 (results
for Ult =20 and 8 have been presented elsewhere ).
The chemical potential IM (obtained from the previous sec-
tion) is shown as a vertical line and moves from zero at
half filling (ten electrons), Fig. 8(a), to the top edge of the
lower Hubbard band, Fig. 8(a), when two electrons are
removed (results for s= $ are identical to Fig. 8 for an
even number of electrons in the ground state). Compar-
ing Figs. 8(a) and 8(b), we observe that the effects of hole
doping are to remove spectral weight from both the
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upper and lower Hubbard bands and to create additional
density of states in the gap, starting at the edge of the
lower Hubbard band. Results for further dopings are
shown in Figs. 8(c) and 8(d). With this additional doping,
the chemical potential moves slowly down from its value
with eight electrons, and further spectral weight is re-
moved from both the upper and lower Hubbard bands,
towards the gap region above the lower Hubbard band.
When U is of the order of the bandwidth 8t, we found
that the spectral weight created in the gap region by dop-
ing fills the gap (although with small spectral weight).
A connection between these results and those found for
the optical conductivity will be made in the next section.
For smaller values of Ult (Fig. 9) the gap disappears and
there is no distinction between the upper band and the
new band immediately after the chemical potential. Due
to particle-hole symmetry, the results for adding elec-
trons to the half-filled cluster are given by simply
rejecting Figs. 8 and 9 about the co=0 axis.

How is the spectral weight distributed in Fig. 8? The
spectral weight of N'& '(co) is exactly (1—x)/2 since

J ™„denN'T '(co) is equal to the number of particles in

the state ~$0 ) with spin 1 per site. The spectral weight
in the IPES region of the spectrum is identically equal to
( 1+x ) /2 since the sum rule states that

J +"dco[NI '(co)+NI+'(co)]=1. We observed numeri-

cally that for large U/t, the spectral weight per spin of
the new states (I„,„)created in the gap immediately after
the chemical potential increases approximately linearly
with x. The slope of the curve I„,„vs x converges to one
as U/t is increased in agreement with predictions in the
strong-coupling limit. For finite U/t the slope is larger
than one (at small x) and increases when Ult is reduced,
at least for U!t large where a genuine gap exists in the
IPES spectrum.

Thus we find, as seen in PES experiments, ' that dop-
ing a half-filled Hubbard cluster does not simply produce
a rigid shift of the density of states relative to the Fermi
level, but rather, new states are created in the gap. How-
ever, in contrast to the same PES experiments ' and in
agreement with x-ray absorption experiments, ' the
chemical potential for the Hubbard model moves across
the gap when the doping is changed from holes to elec-
trons, lying near the top of the lower Hubbard band when
holes are added and near the lower part of the upper
Hubbard when electrons are added. A similar (n ) vs p
behavior as observed in Fig. 7 exists when the gap is a
charge-transfer gap. Then, we believe that the jump of
p from the top of the lower band to the bottom of the
upper band as holes or electrons are added to a half-filled
band is a general property of strongly correlated electron-
ic models with repulsive Coulomb interactions. This
disagreement with PES experiments ' could mean that
the n-type materials are actually producing hole doping
on the Cu-0 planes or that Hubbard-like models are
missing some essential feature needed to describe proper-
ly the physics of the superconductors.

For completeness, we have performed a similar calcu-
lation for the t-J model on a 4X4 cluster. ' In Figs.
10(a)—10(c) we show results at J/t =0.4 and various dop-
ing fractions. In the t-J model double occupancy is not
allowed and thus there is no upper Hubbard band in our
results. The qualitative behavior of the chemical poten-
tial is similar to that found in the Hubbard model.
With respect to the distribution of spectral weight, for
the t-J model the sum rule is modified to

1 +"dco[NI '(co)+NI+ I(co)]=(1+x)/2, due to the
constraint of no double occupancy. Since

J
"

dcoNI '(co) =(1—x)/2 (i.e., the number of particles
in the ground state with a given spin), then the IPES
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spectral weight right above p is exactly equal to x, in
agreement, with the strong-coupling results of
Sawatzky. As remarked above, the double occupancy
in the Hubbard model introduces more spectral weight in
the region immediately after the chemical potential than
what is allowed in the t-J model.

VII. OPTICAL CONDUCTIVITY

The real part of the optical conductivity, cr, (co), pro-
vides useful information about the electronic structure of
the cuprate superconductors. The reflectivity is mea-
sured over a wide frequency range and the results are
Kramers-Kronig transformed to obtain the optical con-
ductivity as a function of co. Typical results show that in
the insulating phase (x =0), o &(u7) has negligible absorp-
tion below the CT gap of —1.5-2.0 eV. When the Cu02
plane is doped with holes or electrons, there is a rapid
growth of spectral weight at low frequencies creating a
to=0 Drude-like peak due to mobile carriers (that grows
like x) and a broad mid-infrared (ir) feature in the region
0.1 eV & co &0.5 eV (approximately doping independent),
while the spectral weight in the CT band decreases.
The reported integrated conductivity in La2 „Sr„Cu04
up to 4 eV remains approximately constant with doping
showing that spectral weight is redistributed from the
charge-transfer band to lower frequencies. A measure of
this transfer of spectral weight used in several experimen-
tal papers, ' is a normalized effective carrier density
N, tt proportional to the integral of crt(to) up to the gap
(-1.5 eV). This quantity was found to rise more rapidly
than would be expected from the doped carrier con-
centration alone. This qualitative behavior was found
in both p-type (La& „Sr„Cu04) and n-type
(Pr2 „Ce„Cu04) superconductors. These experimental
features of the optical conductivity have been described
as "anomalous. "

Can these results be understood within the framework
of the theoretical models presently used to describe the
Cu-0 superconductors? In this section we study this
question for the one-band Hubbard model where, as stat-
ed before, it is assumed that the lower (upper) Hubbard
band corresponds to the 0 2p (Cu 3d) band of the
cuprates and thus the CT gap can be described by an
"effective" Hubbard coupling U/t. Monte Carlo calcula-
tions of the momentum occupation (nk ) in the doped
region are consistent with a large Fermi surface enclosing
1 —x electrons. A natural question is whether such a
model can exhibit the observed doping dependence of
tr, (n7). Using Lanczos techniques, we calculate o, (co)
and the Drude weight for finite clusters. We find that
the behavior of the doped Hubbard model is similar to
the experimental results clearly exhibiting a transfer of
spectral weight from above the gap to the Drude peak
and the mid-ir region.

o &(co) can be decomposed into a zero-frequency Drude
weight 5 function and a regular part,

1&nlj. l0&l'
rJ, (co)=D5(ro)+ g 5(ro (E„—Eo) ) . —

N „~o E„—Eo

FIG. 10. (a) Electronic spectral density of the t-I model
[N(ro)=Nt*'(rj7)] on a 4X4 cluster at J=0.4 (t =1). The dot-
dashed lines correspond to N'~+'(co) while the solid lines denote
N'~ '(co). The hole doping is x =1—M/N=0. 125. The solid
thick vertical line indicates the position of p. (b) Same as (a) but
for x =0.25. (c) Same as (a) but for x =0.50.

where j„is the paramagnetic current operator

j =it g (c;+ c„. —c;,c;+„,),
17$

e is the electric charge, and N is the number of sites of the
lattice. I ln ) I denote states of energy IE„l, which are
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excited when the current operator acts on the ground
state IO) (whose energy is Eo). Using the f-sum rule for
the Hubbard model,

2

2 J ~,(co)d~= (OI( —T)IO),
o

' 2N
(12)

where the kinetic energy operator T is the first term in
Eq. (1), one obtains

D 1
&0I( —T) I0& ——y2me' F-n —~0

Using Lanczos techniques on /10 X +10 and 4 X4
periodic clusters, we have independently calculated the
regular part of o, (co) [whose integral corresponds to the
second term on the right-hand side of Eq. (13)] and the
kinetic energy, obtaining D from Eq. (13).

Results showing cr, (co) vs co for U/t=10 on a 4X4
cluster as various dopings are shown in Fig. 11. The re-
sults for the &10X /10 cluster are qualitatively similar.
At half filling, the insulating Hubbard gap is clearly visi-
ble. There is no spectral weight in the interval
0 ~ co ~ 6.3t. Upon doping, spectral weight is transferred
from the region above the Hubbard gap to the Drude
peak at co=0 and to the midgap region. For doping
x =0.125, 36% of the total weight is below the gap while
for higher dopings of x =0.25 and 0.375, the percentages
are 87% and 94%, respectively.

The presence of the mid-infrared band is clear in our
results and thus its existence can be accounted for within
the context of a simple one-band Hubbard model in two
dimensions as previously remarked. Note that similar

calculations in 1D have not observed such a large spec-
tral weight in the mid-gap region '* and thus its pres-
ence is a two- (or higher-) dimensional effect. At
x=0. 125 the insulating gap is almost filled since the
mid-ir region has a total width comparable with the gap
itself. Actually, this is similar to the results for the
single-particle spectral weight, N(co), in Sec. VI, that
showed that hole doping removed single-particle spectral
weight from both the upper and lower Hubbard bands
and created additional states in the gap extending up-
wards from the lower Hubbard band. %e believe that the
new states found in X(co) and those found in the mid-gap
region of 0,(co) have a similar origin, i.e., the distortions
created by holes in an antiferromagnetic background,
"string states, " which only exist in two or higher dimen-
sions. ' Variational states having the correct short-
distance correlations should be able to reproduce these
results.

For small values of the coupling U/t-4, we found
that the upper Hubbard band and the mid-ir band can
hardly be distinguished upon doping. Thus, in order to
reproduce experiments [where the upper and midgap
bands appear as separate features of 0,(co)], it is neces-
sary to work roughly in the region Ult)4. Another
constraint on U/t is set by the observation that the total
spectral weight below 4 eV is approximately independent
of doping. The kinetic energy of the Hubbard model
which determines this spectral weight through the f-sum
rule is shown in Fig. 12(a) for various values of U jt. For
large values of U/t, there is a significant change in the to-
tal spectral weight with doping which is not compatible
with experiments. For example, at U/t =20 the kinetic

( ): (.) :
x=Q.Q 20

iIiiiiIiiiiIiiiiIiii:/XD (b) :
x=Q. 125

0 i i i i i l,.iiJi I I il Iill i,l. . . ,l i i i 0 i i i. isiLlaJ. .. . i i
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I I I I I I I I I I I I I I I I I
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x=Q.250
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x=Q.375
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i i i, l. l. i i i i I i, i i„i,J. .i.i. i i
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FIG. 11. The real part of the optical conductivity o. , (co) for a 4X4 cluster with U/t =10 and band fillings (a) x =0 (half-filled

band), (b) x =0.125, (c) x =0.250, and (d) x =0.375. A small shift from the real axis (a=0.01) was used to plot the 6 functions. The
peak at co=0 represents the Drude peak (D). Its intensity in the figure is not proportional to its real magnitude, but it is included only
for illustration.
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energy changes by more than a factor of 2 with respect to
half filling, when the system is doped to (n ) =0.6. This
change is even larger if U/t is further increased. Thus, to
satisfy both the structure in o, ( co) and the behavior of
the spectral weight one is led to an intermediate coupling
U of order the bandwidth. "

Figure 12(b) shows the Drude weight D„=D/2vre vs

(n ) for various values of U/t and /10X +10 and 4X4
site clusters. As discussed by Kohn, one expects that in
an insulating phase D will vanish as exp( N„—/g) as the
linear size X of the system increases, as recently seen for
1D Hubbard rings. ' This is in agreement with our results
at half filling where ~D~ is a small number. Figure 12(b)
shows that as the system is doped towards quarter filling
(n ) =0.5, the Drude weight grows rapidly. Increasing
the doping further, the system becomes a gas of nonin-
teracting electrons and the Drude weight follows the ki-
netic energy. For very large couplings (but not as large
as to induce a transition to a ferromagnetic phase), the
Drude weight approximately converges to the result
shown in Fig. 12(b) for U/t =100. Note that the curve
D„vs doping is smooth and the results for &10X&10
and 4 X4 sites are close to each other and thus we believe
its qualitative shape will survive in the bulk limit. Note
also that Fig. 12(b) tells us whether the conduction is
made by holes or electrons. Near half filling, D grows
proportional to x, which is compatible with a picture of
weakly interacting holes being the carriers. On the other
hand, for large doping of holes, D is proportional to
1 —x, this time compatible with a gas of noninteracting

N~tt &

—f cr(co)dc' .
m.e t

(14)

Here co, is a frequency just below the upper Hubbard
band. The dependence of N, ~ vs x is shown in Fig. 13 for
several values of U!t. For smaller values of U/t, more
spectral weight is transferred upon doping. An impor-
tant feature, clearly seen in Fig. 13, is that as the system
is doped away from half filling, it is the number of holes x
that determines the spectral weight and not the total
number of electrons as would be the case for the nonin-
teracting system. The dependence of N,z vs x is qualita-
tively similar to that observed experimentally, ' al-
though the experimental results rise more rapidly with x.
Since the data presented here are a first-principles calcu-
lation with only one free parameter U/t of a very
simplified model, we consider Fig. 13 as an encouraging
step forward in comparing experiments with Hubbard
model predictions.

For completeness, we have studied the optical conduc-
tivity of the t-J model at all doping fractions. The sum

electrons. Then, we believe that the change in the sign of
the slope of D vs x at approximately quarter filIing may
be taken as an indication that the nature of the carriers
changes. Although this is not a rigorous statement, we
believe that the Hall coefficient will change sign also in
the neighborhood of quarter filling.

In Fig. 13 we show the sum of the Drude spectral D
and the midgap spectral weight under o, (co) N.ormaliz-
ing this weight by dividing it by m.e t gives an effective
carrier density in which the unrenormalized mass is
m =(2t) ', i.e.,

1.5
0.40

0.30

1.0

0.20
eff

0.5
0.10

0.20

0.0 0.0
1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0

(n)
0. 'I 0

FIG. 12. (a) Kinetic energy per site of the Hubbard model
K= (0~{—T}~0)/N on a 4X4 cluster as a function of doping
for U/t =4 (full triangles), U/t =8 (full squares), and U/t =20
(full pentagons). We also show results for a &10X&10 sites
cluster at U/t =100 (full hexagons). The solid line without
points corresponds to results for U/t =0 in the bulk limit. (b)
D„=D/(2m. e ) vs x for various couplings U/t. Full triangles,
squares, and pentagons denote results for U/t =4, 8, and 20, re-
spectively, on a 4X4 lattice. Open squares, pentagons, and hex-
agons indicate results for a &10X&10 site cluster at U/t =8,
20, and 100 respectively. The solid line without points denotes
the results for U/t =0 in the bulk limit. The fact that D is neg-
ative near half filling is a known finite-size effect previously dis-
cussed in the literature (see Refs. 51 and 55).

p p
0.0 0.10 0.20 0.30

FIG. 13. 1V,& (i.e., the sum of the Drude weight and the rnid-
band weight) vs doping for various values of U/t. Open squares
corresponds to U/t =8, open triangles to U/t =10, open hexa-
gons to U/t=20, and the circles to U/t=200. Doping of
x=0.25 (x =0.20) corresponds to a 4X4 (&10X&10) sites
cluster. The full squares correspond to the experimental results
for La, Sr Cu04 taken from Ref. 43. Not shown in the figure
are results for larger dopings that produce the "kinks" in the
curves at x =0.25.
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I / I where ( . ) denotes the expectation value in the
ground state corresponding to a given coupling and dop-
ing fraction x. The pairing operator for the t Jm-odel is
b, (i)=gsc; tc,.+g l f(S) and 5=+x,+y (x and y being
unit vectors in the crystal directions). f(5) (which
defines the rotational symmetry of the operator) takes the
values f(+y)=1, —1 Lf(+x)=1] for extended s waves
and d waves, respectively, while for p„waves f(+y) =0,
f(+x)=El.

It is important to subtract from y,„ the contribution
of disconnected diagrams ' given by

0.0
0.0 0.2 0.4 0.6 0,8 1.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0 X...=—& (c; tc,'l&(c, ;, tel„-, &f(&)f( ') .

i, j,5,5'

FIG. 14. (a) Kinetic energy per site of the t-J model
K= (0 (

—T)~0)/N on a 4X4 cluster as a function of doping
for J!t=0 1 (G), J/t =0 4 (A), and J/t =1 0 (6). (b)
D„=D/(2me ) vs x for various couplings J/t. E, A, and
denote J/t = 1.0, 0.4, and 0.1 respectively, on a 4 X4 lattice.

rule Eq. (12) is valid also for this model. In Fig. 14(a) we
show the kinetic energy per site on a 4X4 cluster as a
function of doping for different values of J/t. In Fig.
14(b) we show the Drude weight D/2m. e also a function
of doping for various couplings. The general trend of
these results is similar to those of the Hubbard model at
large U/t although the presence of three-site terms in the
t-J may be important to account for the U/t dependence
of the Drude weight. D increases with doping, at small
x. For example, with two holes (x =0.125) the spectral
weight at co=0 is 38.4% and 24.2% for J/t =0. 1 and
0.4, respectively. Note that since at half filling there are
no carriers, the kinetic energy vanishes at x =0. In gen-
eral the Drude weight and ( T ) have a very similar be-
havior. The results are almost independent of the cou-
pling J/t.

Summarizing this section, we have calculated the opti-
cal conductivity of the two-dimensional Hubbard and t-J
models on clusters of &10X+10 and 4X4 sites. For
U & 0, we found in the undoped case a gap in the spec-
trum. Upon doping, spectral weight is shifted to the
Drude peak and the rnid-infrared region. The intensity of
the Drude peak grows quickly with doping. These
features are in good qualitative agreement with experi-
ments if a coupling constant U/t of the order of the
bandwidth is selected. Then, our results provide addi-
tional evidence that the intermediate region of parame-
ters U/t is the most relevant for describing these super-
conductors.

(16)
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The difference between g,„and y,„ is defined as the
"connected" part (y,'„)of the correlation function and it
is the quantity of physical interest. If y,„)0, then pair-
ing correlations are said to be "enhanced, " although this
is not enough to show the existence of a superconducting
phase in the model. If such a phase exists then y,'„
should grow like the volume of the lattice in a finite-size
scaling analysis. In Fig. 15 we show g,'„„atJ/t =0.3 for
s and d waves as a function of doping x. Results at other
couplings between J/t =2.0 and 0.1 are qualitatively
similar. y,'„„corresponding to p-wave order is suppressed
at all values of J/t and doping. The most important
features of Fig. 15 is the enhancement of y,'„at small and
intermediate doping fractions. At low doping, both s and
d waves are enhanced, while for dopings roughly be-
tween 20% and 40% only the s wave is attractive. The
enhancement of the d-wave correlation near half filling is
in agreement with previous calculations. Beyond
-20% doping the existence of a different region where
only the s-wave correlations are enhanced is in agreement
with recent QMC results for the Hubbard model. '"
Since experimentally these high-T, materials seem to
have s-wave superconductivity, it is important to explore
this type of pairing symmetry in simple models. Al-
though the doping at which this s-wave region exists is

VIII. SEARCHING FOR SUPERCONDUCTIVITY

The most important feature of these new high-T, ma-
terials that we expect to understand theoretically is their
superconducting phase. There are many ways to search
for indications of superconductivity in the t-J or Hubbard
models. In this section we will consider the equal-time
pairing correlation function y,„defined as

y,„=—g (&(i)&'(j)),1
{15)

i, j

05

0.0
0.0 0.2 04 0.6 0.8 1.0

FIG. 15. Connected pairing correlation y,'„p at J =0.3 and

t =1 on a 4X4 lattice. Results are shown for s- and d-wave

correlations.
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large, we do not know if the t-J model is a quantitative
model of high-T, materials. Experimentally, it is only
when the AF correlations are mostly suppressed that su-
perconductivity appears.

Is Fig. 15 an indication of superconducting LRO? Al-
though only studies on larger lattices can conclusively
answer this question, we believe that Fig. 15 does not im-

ply LRO superconductivity for the following reasons: (a)
for 0 and 1 hole we have explicitly studied the function
C(i —j)=(b, (i)h(j)) vs ~i

—j~. We found that C(i —j)
quickly decays with distance. Actually the contributions
coming from short distances, i.e., ~

i —j ~

=0 and 1 account
for 100% (97%%uo} of y,'„~ in the zero hole (one hole) sub-
space. Note also that there is no enhancement of y,'„ in-
creasing doping at a fixed J/t, but rather the s- and d-
wave correlations drop with x (the d wave faster than the
s wave). Since at x =0 we know that the system does not
superconduct and away from it, g,'„ is not enhanced,
then there are no obvious indications of LRO supercon-
ductivity due to doping; (b) we have compared our results
with recent QMC simulations for the Hubbard model. '

At U/t =10 (i.e., J/t =0.4) the agreement between the
two techniques is excellent on a 4X4 lattice. With QMC
it has been found ' that the pairing correlations for a
4X4 lattice at U/t =4 and 10 are qualitatively similar
and that results for 4X4 and 6X6 lattices are almost
identical showing no increase in y,„„with the lattice size.

Then, we believe that the large pairing correlations we
have found are a short-distance effect. Actually it can be
easily shown that C(i —j) at short distances (especially
the case i=j} can be rewritten in terms of spin-spin or
spin-hole operators which are unrelated to superconduc-
tivity. These operators are related with spin order and
they are enhanced when the temperature is reduced sim-
ply because short-distance spin correlations are
enhanced. We believe that a similar problem occurred in
earlier QMC calculations performed in the Hubbard
model where claims of enhancement of d-wave pairing
susceptibilities at low temperatures were reported. This
enhancement came from short-distance spin-spin correla-
tions rather than actual long-range pairing correlations.
To further support these results, we shown in Fig. 16 the
actual decay of the pairing-pairing correlation C(r) as a
function of distance for different lattice sizes using a
QMC simulation. From this plot it is clear that al-
ready at distances of two lattice spacings, the signal is
zero within the statistical error bars and thus no indica-
tions of long-range order can be observed. We remark
that analyzing the actual decay of the correlation func-
tion [rather than its zero momentum component, which
is the sum Q,C(r)] is very important and has not been
properly emphasized before. Some operators may show
enhancement at short distances as a function of different
parameters producing a net enhancement in +,C(r),
while at large distances their behavior is unchanged or
even suppressed. In the next section we discuss an exam-
ple related with chiral order.

Thus, this numerical analysis for the 2D t-J and Hub-
bard models does not show clear indications of supercon-
ductivity. Different groups working with different mod-
els and techniques are reaching similar negative con-
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FIG. 16. Pairing-pairing correlation functions of the Hub-
bard model at U/t =4 and temperature T=t!6 on lattices of
different sizes. (a) corresponds to d-wave symmetry, while (b) is
s wave. The doping fraction (n ) is 0.83, 0.90, and 0.84, for the
4X4, 6X6, and 8X8 clusters, respectively.

clusions. ' We would like to conclude this section com-
menting on possible ways to circumvent our results re-
garding superconductivity in the Hubbard and t-J mod-
els. One obvious criticism is that the lattices used in our
study are too small to look for superconductivity. That
certainly applies to the t-J model on a 4X4 lattice where
few pairs can be accommodated. The argument is less
solid for QMC simulations on the Hubbard model where
8 X 8 lattices have been analyzed, although they have
been performed at finite temperature and it may occur
that the critical temperature of these models is very low.
However, recently it has been claimed that a Monte Car-
lo simulation performed at strictly zero temperature has
produced also negative conclusions regarding supercon-
ductivity. These results suggests that perhaps we have
to introduce modifications in the Hubbard model to pro-
duce a truly superconducting phase at low temperature
and finite doping. Nonetheless, it is puzzling to observe
that while many of the normal state properties of these
superconducting materials are at least qualitatively repro-
duced by Hubbard-like models (as shown in Secs. IV, VI,
and VII), the superconducting phase is still missing.

Recently, another possibility has been presented in or-
der to explain the absence of positive numerical results
for superconductivity in the Hubbard model. The idea
is that the pairing operators used in Monte Carlo simula-
tions produce a very weak signal that may be hidden in
the statistical noise. Suppose that the fermionic opera-
tors cz, acting over the ground state of the system
creates a state which has a very small overlap Z with
states created by dressed "quasiparticle" operators y&, .
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In such a case, there will be an intrinsic suppression fac-
tor Z in the Monte Carlo signal for pairing-pairing
correlation functions when "bare" rather than dressed
operators are used. It has been shown numerically that
the overlap Z is indeed small. Thus, additional quasi-
particle operators should be constructed producing a
larger Z factor and different pairing operators
gj, ,f(k)yj, ,y I, , should be used in Monte Carlo stud-
ies Lf(k) being a properly selected function of momen-
tum]. We strongly encourage a careful study of this pos-
sibility.
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IX. SEARCHING FOR FLUX AND CHIRAL
STATES IN THE t-J MODEL
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Among the many candidate ground states for strongly
correlated electronic models at finite doping, the ex-
istence of states that break time reversal and parity sym-
metries has been raised. Although there are no clear ex-
amples of realistic Hamiltonians having ground states
with these properties, it is nevertheless interesting to
search for indications of this exotic type of spin order in
the t-J model. For that purpose we have considered
different order parameters starting with the uniform
chiral state. Define

r, (8,8') =s,'(s, -, xs, -„-,, ), (17)

Oj =™Tr(Xj, j+z/Yj+ x, j+x+yXj+x+y, j+yXj+y, j )

=I;(x,y)n;+y+ I;+„(y,—x)n;

(18)+I;+y( —y» j+x+y+ j+y+x(
—»y) +.

where X;,=g,c;,c&, ', Tr means that we sum over the
four equivalent plaquette operators obtained by a cyclic
permutation of indices and its associated correlation is
X~I=((1/N)( g;0;) ). A nonzero value of (0) would
signal a symmetry breaking pattern similar to ( I ) with
the advantage that it is explicitly rotational invariant
(while I breaks rr/2 rotations). In Figs. 17(a) and 17(b)
we show y, h and y ~

vs doping for different values of J/t.
We know that at half filling (or with static holes) there is
no chiral order since the ground state is Neel-like (thus
the value of X,h at x =0 is considered a "small' number).
Then, if this type of order is actually enhanced with dop-
ing, we should expect an increase in g,h. However, Fig.
17(a) shows that chiral order is actually suppressed by
doping. This tendency is even stronger reducing J/t as
suggested by mean-field studies. ' The uniform plaquette
operator is more involved. Note that in Fig. 17(b) at
x-0. 12, g ~

seems enhanced at J/t =0.3. However,
consider the correlation function C j(i, j)= ( —,'(0;0&
+0;0;)) vs ~i

—j~. We found that the increase of X, for
two holes is a short-distance effect produced by an in-
crease in a factor of -2 and 3 of the zero-distance corre-
lation C j(0,0)= (0; ) between the limits of t =0 (static
holes) and t ))J in the one- and two-hole subspaces, re-

and its associated zero-momentum correlation
X, =j((1/N)(g;I;) ). If (I )WO then parity
(reflections) and time-reversal symmetries are spontane-
ously broken. Consider also the plaquette operators
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FIG. 17. (a) Uniform chiral correlation y, h vs x (doping) at
different values of J (t =1); (b) uniform chiral correlation pp] vs

x (doping) at different values of J (t =1).

spectively. In other words, if instead of g ~
we would

consider X j=X j
—C(0,0) we would obtain a result quali-

tatively similar to Fig. 17(a), i.e. , X I decreasing when t /1
or x are increased. This result, together with similar con-
clusions for the frustrated Heisenberg model, shows
that there are no numerical indications that frustration
(explicit or by holes) favors the uniform chiral state in
simple models of high-T, superconductivity.

However, the situation is not clear for staggered chiral
order. Recently, some mean-field calculations have
shown that while the uniform chiral state is suppressed
decreasing J!t, the corresponding staggered state is
enhanced. To analyze this possible order we generalized
the chiral and plaquette correlations to a finite momen-
tum q=(n, rr), by defining

[y,„(~,~) is analogously defined]. In Figs. 18(a) and
18(b) we present X,h(n, a) and X j(vr, ~) vs x for different
values of J/t. In the case of X,h(~, vr) the results are al-
most independent of J/t, which is qualitatively different
behavior from that observed for the uniform case. At
fixed J/t the correlations are still suppressed by doping.
However, for X j(n, 7r) there is an enhancement with dop-
ing having a maximum near x-0. 12. At half filling a
near cancellation in x j(tr, tr) between correlations at dis-
tance 0 and 1 strongly suppresses X j(m, 7r) This effect.
disappears with doping due to the previously mentioned
increase of C, (0,0). X j(~,~) increases when J/t is re-
duced in agreement with the mean-field predictions and
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X. SEARCHING FOR SPIRAL ORDER

Finally, we have also studied the possible existence of a
"spiral" phase. It has been argued that mobile holes in-
duce a dipole distortion of the spins. Then, the spins are
effectively ordered in an incommensurate (IC) pattern
and to study this order we define the vector operator

T,=S,X(S, „+S, „), (19)

and its associated correlation y,~;= ((1/N)(g;T;) ).
The spin structure factor S(q) was previously studied'
finding that when doping is introduced in the t-J and
Hubbard models, the AF peak at (~, m. ) decrease its inten-
sity and moves towards (O, n. ),(n, O), at least for small
values of U/t. ' For large U/t the splitting was also
observed although it is not clear if it is along the diagonal
in momentum space or towards (O, m. ), (n, O). However,
the intensity of this peak is small and there were no signs
of divergence of the IC correlations. In Fig. 19 we
present y,p

vs x, showing that at small J/t and x -0.12
there is an enhancement of the spiral order of about 25%
with respect to half filling. This is the region where the
shift in the AF peak with doping was found. '

in contrast to the uniform case. Of course, the existence
of staggered chiral LRO is diScult to analyze. Studying
the correlation function C ~(i, j) we found that at a dis-

tance of one lattice spacing the plaquette correlations are
mostly "ferromagnetic. " However, at a distance &5 and
realistic values of J/t, they become "antiferromagnetic, "
although very small in absolute value.

In this paper we have presented a numerical study of
the Hubbard and t-J models in two dimensions at all dop-
ing fractions. We have used exact diagonalization tech-
niques on clusters of v 10X+10 and 4 X4 sites and QMC
simulations. We found that many of the features ob-
served experimentally in the high-T, compounds are
qualitatively reproduced by models of strongly correlated
electrons. In particular, we found that only a tiny frac-
tion of holes is enough to destroy antiferromagnetic
long-range order (although short-distance correlations
remain important up to large dopings). This is due to the
fact that a "dressed" hole has a finite size that increases
as J~O in the t-J model. Regarding the electronic densi-
ty of states, N(to), we observed that the chemical poten-
tial moves across the antiferromagnetic gap when holes
or electrons are added to a half-filled system. In addition,
new states appear in the gap and they fill it completely
when U is smaller than or comparable to the bandwidth
8t. These results are in agreement with x-ray absorption
experiments but not with photoemission experiments, '

where the chemical potential was found to remain con-
stant regardless of whether the doping is produced by
holes or electrons. We have also analyzed in detail the
optical conductivity, o, (c0), of the Hubbard and t-J mod-
els, finding many features in qualitative agreement with
experiments. In particular, we found that the Drude
peak increases its weight with doping (at small doping)
and a mid-infrared band exists as observed experimental-
ly. Another encouraging result that we observed numeri-
cally is the absence of indications of phase separation in
the Hubbard model.

With respect to the possibility of superconductivity in
these models our conclusions are the following: d-wave
pairing correlations are enhanced near half filling where
there are strong AF correlations. The extended s-wave
equal-time pairing correlation is enhanced between half
filling and 40% doping. However, we believe these re-
sults are mostly related to short-distance eS'ects rather
than with a genuine LRO in the superconducting opera-
tor. We based this conclusion in the study of the pairing
correlations as a function of distance. If superconductivi-



10 758 E. DAGOTTO et al. 45

ty actually exists in this model then (b, ) is very small
(the critical temperature would also be small) and its nu-
merical analysis would be dificult even for larger lattices
or using QMC methods.

What about more exotic forms of spin order? We did
not observe evidence of uniform chiral order in this mod-
el. Correlations associated with triangle and plaquette
operators do not show enhancement with doping. On the
other hand, staggered chiral order seems enhanced by
dynamical holes. However, we can show numerically
that if the order parameter ( 0 ) is nonzero then it has to
be very small. Finally, there is a tendency to spiral order
at small J/t (i.e., -0. 1 —0.3) and doping about 10—20%,
which seems to be of short range.

Summarizing, our extensive numerical studies of the
Hubbard and t-J models have shown that many features
of the normal state of the superconducting cuprates con-
sidered anomalous have a natural explanation within
these models. The electronic density of states, optical
conductivity, and behavior of antiferromagnetism with
doping are qualitatively reproduced by our small cluster
results. On the other hand, a robust signal of supercon-
ductivity is still missing in these calculations. Although
there is enhancement in particular pairing channels, it
seems to arise mainly from short-distance effects.

Thus, we believe that there are two main directions for

further work in the Hubbard model. The first one is to
improve the pairing operators used in the numerical
search for superconductivity. It has been argued that it
is necessary to consider extended quasiparticle operators
rather than the standard fermionic operators to observe a
susceptibility diverging with the volume. A second possi-
bility is to modify the Hubbard model by the addition of
phonons or longer-range interactions such that the
short-distance properties tested by photoemission and op-
tical conductivity remain but the long-distance behavior
is changed to a possible superconducting regime. Work
is in progress along both lines.
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