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Motivated by concepts of classical electrical percolation theory, we study the quantum-mechanical
electrical conductance of a lattice of wires as a function of the bond-occupation probability p. In the or-
dered or ballistic case (p= 1), we obtain an analytic expression for the energy dispersion relation of the
Bloch electrons, which couples all the transverse momenta. We also get closed-form expressions for the
conductance g&L of a finite system of transverse dimension N ' and length L (with d=2 or 3). In the
limit L~ ao, the conductance is quantized similarly to what is found for the conductance of narrow con-
strictions. We also obtain a closed-form expression for the conductance of a Bethe lattice of wires and
find that it has a band whose width shrinks as the coordination number increases. In the disordered case

(p & 1), we find, in d=3 dimensions, a percolation transition at a quantum-mechanical threshold pq that
is energy dependent but is always larger than the classical percolation threshold p, . Near p~ (namely, for
small values of ~b, ~—:~p

—
p~ ~ ), the mean quantum-mechanical conductance (gL ) of a cube of length L

follows the finite-size-scaling form (gt (p)) =L ' '~'F(AL'~"), where the scaling function F and the
critical exponent v are different from their classical analogues. Our numerical estimate of the critical ex-

ponents is v=0.75+0. 1 and t =v in accordance with results of nonlinear cr models of localization. The
distribution of the conductance undergoes a substantial change at threshold. The conductance in the
diffusive (metallic) regime in d=3 dimensions follows Ohm s law (it is proportional to L). As p~1, the
crossover between the metallic and the ballistic regimes is governed by the scaling law

(gt(p)) =L K(L(l —p)). No percolation transition is found for d=2 but as p~l, the crossover be-

tween the quasimetallic and the ballistic regimes is governed by a similar scaling law.

I. INTRODUCTION

This work is devoted to the study of wave propagation
through binary inhomogeneous media. Specifically, we
intend to investigate quantum-mechanical transmission
through a binary lattice of quantum wires. This study
will naturally cover various transport phenomena due to
the intimate relation between transmission and
quantum-mechanical dc electrical conductance at zero
temperature. Our investigation will cover also wave
propagation and Bloch states of ordered systems such as
a regular lattice of wires (for which the energy-dispersion
relation and transmission coefficients are computed
analytically) and a Bethe lattice.

Guided by classical analog s, we model quantum-
mechanical transport properties of binary composite
media by considering a (d-dimensional) regular lattice
consisting of sites and links (also referred to as bonds).
These links are treated as very narrow waveguides (quan-
tum wires) through which a particle (usually an electron)
can move subject to the laws of quantum mechanics (the
assumption of independent particles is adopted
throughout). Part of the wires are free, in which case the
electron wave function is a linear combination of plane
waves with wave number k equal to the Fermi momen-
tum kz and energy E=kz. From a quantum-mechanical
point of view, these wires are good conductors. The oth-

er part of the wires are not free in the sense that on each
bond there is an attractive or repulsive potential v~. (here j
is the bond index; the potential v is constant in space
along each bond, but may be different from bond to bond)
such that the local wave number in these wires is not k
but k&. =(k —v. )'r . When v )k the wave number in
bond j is purely imaginary and the motion of the electron
is governed by quantum-mechanical tunneling. From a
quantum-mechanical point of view, these wires are poor
conductors (or insulators). In fact, we will focus our at-
tention on the special situation where v,. is so large that
an insulating bond does not carry any current. It can be
shown that this particular case corresponds to a model of
occupied and missing links. It can be realized simply by
removing part of the bonds with some probability,
whereas the remaining (occupied) bonds are considered as
clean waveguides. This model will be referred to as a per-
colating lattice of quantum wires. The underlying
geometrical framework of the present research is there-
fore percolation theory, and we will hence make use of
the associated concepts of critical behavior, scaling, and
fractality. Physically, such quantum-mechanical systems
belong to the category of (binary) disordered materials
(instead of binary disorder, we can introduce other types
of disorder by considering the potential v- as a random
number on each link). Therefore, the underlying physical
framework of the present research is localization theory
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and the Anderson metal-insulator transition. The main
goal of the present study is to combine the concept of
electrical-percolation theory (familiar essentially as a
classical phenomenon} with the concept of the Anderson
transition. To be more specific, imagine that the conduc-
tors are distributed randomly on all the bonds of the lat-
tice with probability p (hence the insulators or missing
links are distributed randomly with the complementary
probability q = I —p). Then there is a percolation thresh-
old for d ) 1, namely, a critical value p, of the occupation
probability of the bonds. For p &p, the conductors only
form finite clusters. When p is larger than p„ there is an
infinite cluster of conductors (which is known to be
unique in the usual thermodynamical sense). At p=p,
exactly, the infinite cluster (called the incipient infinite
cluster} is a fractal object. The quantum-mechanical elec-
trical conductance of such a system is the main object of
the present study.

In the present research we are inspired and motivated
by the substantial progress in the field of classical theory
of electrical percolation (see references below). The
essential difference between the classical and quantum-
mechanical conductances is related to the concept of lo-
calization. We therefore expect an Anderson metal-
insulator transition of the quantum-mechanical conduc-
tance for d )2 only, while such a transition occurs in the
classical case also for d =2. Moreover, the threshold for
quantum-mechanical conductance (denoted hereafter by
p~) will be in general higher than the threshold for classi-
cal conductance, which coincides with the geometrical
threshold p, introduced above. Indeed, because of
quantum-mechanical localization, the electron wave
function may fall off exponentially on the infinite cluster
and there will be no transmission even if the system is not
cut into pieces. To summarize, the quantum-mechanical
threshold probability p is nontrivial only in d )2 dimen-
sions, while p, is nontrivial for d ) 1. This difference be-
tween the classical and quantum-mechanical problems is
schematically depicted in Fig. 1. A second difference is
that, in the classical case, what counts is the backbone of
the infinite cluster (obtained by removing all the dead
ends), whereas in the quantum-mechanical case the whole
cluster is relevant since waves are reflected from the dead
ends. It should also be emphasized that in the quantum-
mechanical problem the electron's energy is an additional

P

P,

FIG. 1. Schematic phase diagram showing p, and p~ for a
fixed energy, as a function of dimension. CI, classical insulator;
QI, quantum insulator; and M, metal.

parameter and the transmission (conductance) occurs
only within an energy band.

Geometrical-percolation theory and its applications
have already been the subject of a vast number of topical
publications and review articles. A monograph by
Stauffer' provides a complete review of the geometrical
aspects of the percolation problem. We cite here briefly a
few results relevant for the present research. Consider
the percolation probability P(p ) defined as the probabili-
ty that a given bond of the lattice belongs to the infinite
cluster. As the variable h=p —p, approaches 0+, the
quantity P(p) vanishes as h~, where P is the pertinent
critical exponent. A second critical exponent v is related
to the two-point correlation function G(x ), defined as the
probability that two points of the lattice whose relative
distance is x are connected by at least one path of occu-
pied bonds. Then G(x) falls off exponentially with ~x~,
and the corresponding correlation length g(p ) diverges at
percolation threshold as ~b,

~

". It can be shown by
means of general arguments of universality that there are
only two independent critical exponents in the
geometrical-percolation problem, namely, P and v. For a
d-dimensional system, the fractal dimension of the inci-
pient infinite cluster at p =p, is df =d —P/v.

On the other hand, less is known about electrical per-
colation. Even in the classical case of a binary lattice of
resistors, there are only a few rigorous results concerning
the electrical properties of percolating systems. These
works and others are summarized in a recent review arti-
cle by Clerc et al. , in which many references can be
found. Here again we briefly cite a few results relevant
for the present research. If only the occupied bonds have
a finite conductance o., then for p ~p,+ the conductivity
X of the infinite system behaves as 6, where t is the criti-
cal exponent of the conductor-insulator mixture. On the
other hand, if the links of the missing bonds are now en-
dowed with a finite conductance o., while the occupied
bonds become superconductors, we have a random
superconductor-conductor mixture. In this case X
diverges as

~
b,

~

' when p approaches p, from below. The
critical exponents s and t are novel universal characteris-
tics of the percolation problem. They are not related in
any simple way to the geometrical exponents P and v.
Several approximate heuristic relations between s, t, P,
and v have been proposed, one of the most celebrated be-
ing the Alexander-Orbach conjecture.

Quantum-mechanical percolation effects in disordered
electronic systems have been studied by a number of au-
thors: de Gennes, Lafore, and Millot, Kirkpatrick and
Eggarter, Odagaki, Raghavan, Shapir, Aharony, and
Harris, Meir, Aharony, and Harris, Deutscher, Levy,
and Souillard, ' Levy and Souillard, " Root and
Skinner, ' Pimentel and de Queiroz, ' Lambert and
Hughes, ' and others. Most of these works are based on
the tight-binding Anderson model of electron localiza-
tion. To the best of our knowledge, percolation of
quantum-mechanical conductance on a binary network of
wires has not yet been studied. Beside its significance as
an as-yet unknown aspect of percolation theory and frac-
tal structures, the following work may be related to some
practical situations, namely, propagation of sound waves
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in a system of pipes or propagation of light in a network
of optical fibers.

So far, we have been unable to obtain analytical results
pertaining to the infinite random system. This is not
surprising, since analytical solutions for quantum-
mechanical problems in disordered systems are very un-
likely to exist for d ) 1. Therefore, we have to resort to
numerical calculations within finite systems of moderate
size. On the other hand, the scaling laws discussed above
are valid only in the thermodynamic limit. Thus, in or-
der to answer the questions posed above, we have to rely
on finite-size-scaling arguments which relate quantities
pertaining to a finite system to those of the infinite one
using renormalization-group concepts. The finite-size-
scaling hypothesis for the conductivity of the classical
problem can be stated as follows: For a cubic lattice with
lattice constant a and side La (where L is an integer) in d
dimensions, the mean classical conductivity XL (p) is ex-
pected to have the following behavior in the critical re-
gion ( (

b,
(

= (p
—p, (

small and L large):

(p)L/ /vF(QL I /v)

where F is a scaling function. The theory of finite-size
scaling, developed first on a heuristic basis, ' has been
applied to a very wide verity of physical problems in vari-
ous geometries. ' ' The finite-size-scaling hypothesis
(1.1) will play the central role in Sec. V, where we will an-
alyze the results of our simulations of the quantum-
mechanica1 conductance for which the threshold proba-
bility p and critical exponent v will be evaluated.

Some interesting questions arise in this context which
we discuss and answer: Is there a critical behavior of the
dc conductance near the percolation threshold? If so,
how are the critical exponents related to the classical
ones? Does the conductance near threshold obey a scal-
ing law? What is the dependence of the quantum-
mechanical threshold probability pq on energy? Is there
a percolation transition in two dimensions as some au-
thors argue? Is there a scaling law controlling the cross-
over between the diffusive and insulating regimes?

Our principal result is that the conductance follows a
finite-size-scaling hypothesis (1.1) compatible with the ap-
proximate equality of the critical exponents t and v. This
equality of the critical exponents (a special feature of the
quantum-mechanical problem) is not shared by the classi-
cal conductivity, but is consistent with the results of non-
linear cr models of localization theory. ' Furthermore,
our results are consistent with the absence of transition in
d=2, stressing the fact that the quantum-percolation
transition is nothing but an Anderson transition. When
the bond-occupation probability approaches 1, we de-
scribe the crossover between the disordered (diffusive or
metallic) regime and the ordered (ballistic) phase and sug-
gest a scaling law in this regime (p close to 1). We also
derive some analytical results pertaining to the ordered
system and to a Bethe lattice of quantum wires. Other in-
teresting questions which we do not study but discuss
briefly at the end concern the quantum-mechanical ac
conductance, the dependence of the ac critical behavior
on the frequency, and the influence of magnetic field on

all the pertinent quantities.
This paper is organized as follows: In Sec. II we intro-

duce the underlying model, a lattice of quantum wires,
which will be the basis for analytical and numerical simu-
lations of two- and three-dimensional ordered and disor-
dered percolating systems. In Sec. III we digress and de-
scribe the analytic solutions pertaining to the ordered lat-
tices. As it turns out, the ordered case is interesting and
illustrative by itself. It has a nontrivial Bloch dispersion
relation, and the conductance of quasi-one-dimensional
systems is quantized. An analytic expression for the
transmission through a Bethe lattice (Cayley tree) of
quantum wires is also presented in this section. The
reader who is mainly interested in the disordered case can
skip Sec. III without losing contact.

When the system is disordered or percolating, analytic
solutions do not exist and a numerical algorithm for the
evaluation of the conductance must be constructed. This
is carried out in Sec. IV. Special attention is paid to the
insulating regime, where the conductance is very small
and the use of a transfer matrix is not safe. Then in Sec.
V we analyze the numerical results and evaluate the
quantum-percolation threshold as well as the critical be-
havior of the conductance. A brief summary is given in
Sec. VI and some open questions are discussed therein.

II. LATTICE OF QUANTUM WIRES

The present model can be considered as a system of
narrow waveguides which intersect each other. We take
the limit in which the transverse size of each waveguide
tends to zero, so that the motion between intersections is
virtually one dimensional. In this limit there is no under-
lying simple Hamiltonian. The basic symmetry and con-
servation laws of quantum mechanics determine the
motion completely once the matching conditions at each
intersection are specified. Similar concepts have been
used by Avron et al. ' in their study of adiabatic net-
works. For simplicity of presentation, the number of
space dimensions is fixed at d =2 for the illustrative part
(figures, etc.). Our numerical calculations are carried out
for d =2 and 3.

Consider then a square lattice of one-dimensional wires
with lattice spacing a, through which an electron can
move subject to the laws of quantum mechanics. In the
most general case, there is a wave number k on each
bond j of the lattice. From this general case it is possible
to study several particular situations: (1) If all k are real
and random, we have a disordered system for which the
disorder induces phase randomization. (2) If some of the
k are purely imaginary, there is a combination of disor-
der and tunneling. (3) If part of the wires has a wave
number k, (with probability p) and the other part of the
wires has a wave number k2 (with probability q = 1 —p),
we have a binary disordered system. (4) If one part of
the bonds there are wires with wave number k =kF (with

probability p) and the other part of the bonds is missing,
we have a diluted or percolating lattice of quantum wires.
We will consider first the model in its general form [cases
(1) or (2) above]. The special system of percolating lattice
[case (4) above] will be studied in Sec. IV.
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t t~+r r~=t~t+r~r =I (2.2)

where Iz is the N XN unit matrix.
The linear-response theory now relates the dc conduc-

tance 6 to the transmission in a simple way. One ver-
sion which we adopt here is

2 ) e 2
G= Tr(t t )= g, —

h h
(2.3)

where g is the dimensionless conductance, which, in this
formulation, is identical with the transmission coefficient.

Thus, unlike the classical situation in which conduc-
tances combine rationally to one another (either in paral-
lel or in series), the situation here is much more compli-
cated, since at each intersection the wave function must

N

N-1

In Fig. 2 we depict a finite lattice of length I.a and
width Na. A site can therefore be labeled by a pair of
numbers (I,n). An electron can travel on each bond
(wire) subject to the laws of quantum mechanics. We will
employ the index j for a general bond (horizontal or per-
pendicular} and n for horizontal bonds only. Thus, if the
wave number on a certain bond j (j= 1,2, . . . , LN ) is kj,
the electron's wave function on this bond is a linear com-
bination of plane waves,

1( =a e ' +b e. (2.1)

where, for horizontal (vertical) bonds, the coordinate x is
measured from the left (down) site. Imagine now that the
N sites on the left of the lattice [these are the sites ( l, n)]
and the N sites on the right of the lattice [these are the
sites (L, n)] are connected to electron reservoirs by free
wires; namely, the electron's wave number on these wires
is k=kF, which is the Fermi wave number. Then we
have a quantum-mechanical system whose conductance
G (at zero temperature) can be defined in the following
way. Let an incoming wave e' of unit amplitude reach
a site (l, n} on the left column of the lattice. Then the
wave function at the mth exit wire on the right [namely,
to the right of site (L, rn)] will be t „e'"",where t „are
the elements of the complex transmission matrix t. Like-
wise, the wave function at the mth exit wire on the left
[namely, to the left of site ( l, m)] will be r „e '"", where
r „are the elements of the complex reflection matrix r.
Unitarity (current conservation) implies the equality

be matched according to the rules of continuity and
current conservation. Let $„$2, g3, and g4 be the wave
functions of the electron in the four links connected by a
given site. The four respective wave numbers are denoted
by k„k2, k3, and k4, respectively. Then, at this site, the
following continuity equation should be satisfied:

4=42=6=A. (2.4)

The relation between derivatives at the intersection is
somewhat arbitrary as long as it is compatible with
current conservation. For simplicity and consistence
with previous work, ' we will assume the relation

4+0'2= 6'+ 44

where, following Eq. (2.1),
ik.x —ik.x

g~=kj(aje ' b~e— ' ) .

(2.5)

(2.6)

T=TI.TI. )" T2T) . (2.8}

The transfer-matrix formalism is sometimes more con-
venient than a direct evaluation of the transmission ma-
trix. From the knowledge of the transfer matrix, it is
then possible to evaluate the dimensionless conductance g
using a formula introduced by Pichard, ' which is
equivalent to the expression of the conductance in terms
of the transmission matrix [Eq. (2.3}],

g =2Tr[(T T+J2NT T JzN+2Iz~) '], (2.9)

The relations give four equations relating the coefficients
a , b of .Eq.. (2.1) of the plane waves on each of the four
links.

The most natural algorithm by which one can evaluate
the conductance is the transfer-matrix method. After a
straightforward algebraic procedure, it is possible to re-
late the 2N coefficients a„,b„(n =1,2, . . . , N) pertaining
to the horizontal links at column I+1 with the 2N
coefficients a„,b„(n =1,2, . . . , N) pertaining to the hor-
izontal links at column 1 (l = 1,2, . . . , L —1). The
coefficients a„,b„pertaining to the vertical links
(n =1,2, . . . , N or N —1 according to the choice of
periodic- or free-boundary conditions) have thereby been
eliminated. This relation can formally be written as

a a
—1 b b (2.7}

I 1+1

where the 2N X2N matrix TI is the local transfer matrix,
while a stands for an N-dimensional vector
(a&,a2, . . . , an), and similarly b stands for an N
dimensional vector (b&, bz, . . . , b ).ttThe total transfer
matrix T relating the 2N coefficients a„b„
(n = 1,2, . . . , N) pertaining to the horizontal links at the
first column to those at the last column is the product of
all the local transfer matrices, namely,

L-1

FIG. 2. Two-dimensional lattice of quantum wires.

in which I2N is the 2NX2N unit matrix and J2~ is a
2N X 2N diagonal matrix with [Jz~ ]„„=1 for
n =1,2, . . . , N, while [J2N]„„=—1 for n =N
+ 1,N+2, . . . , 2N.

Sometimes, however, the transfer-matrix formalism is
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numerically unstable, and we prefer to make use of a
combination of transmission-matrix evaluation and
multiple-scattering algorithm developed within the
theory of waveguides and filters. Recently, it has been
adapted for studying conductances in the insulating re-
gime. " This algorithm is explained in Sec. IV.

III. ANALYTIC SOLUTIONS
FOR THE PERFECT CRYSTAL

22 22

b1Z

In this section we digress from the main line of the
present study and consider the ordered phase of the mod-
e1 for which all links are present. In Sec. III A we will as-
sume that the system stretches to infinity in all dimen-
sions and evaluate the dispersion relation e(q), expressing
the energy bands in terms of the lattice momenta within
the framework of the Bloch theory. In Sec. III B we will
start from a system of finite extent, 1V" 'XL, compute
its conductance, and then take the thermodynamic limit.
Finally, in Sec. III C we solve the problem of transmis-
sion through a Bethe lattice. Since we want eventually to
present analytical results, some of the steps below involve
tedious but rather straightforward algebraic manipula-
tions. We have therefore chosen to skip technical steps
when they are not necessary.

A. Bloch waves and dispersion relation

Analytic expressions for crystal energies in terms of the
crystal momenta are very rare. In one dimension the
most familiar result is the one due to Kronig and Penney,
corresponding to a sequence of rectangular potential bar-
riers. In more than one dimension, the most widely
known result is that based on the tight-binding model for
free electrons. For the cubic lattice (of constant a) in d
dimensions, the energy is given (in some units) by

d

e(q) = g cos(q„a ) .
n=l

(3.1)

This simple form results from the complete independence
of the motion in all d directions since there is no coupling
between the various modes. On the other hand, this is
not the case for the perfect lattice of wires since the
matching conditions at each site introduce coupling be-
tween the various modes. The authors are unaware of a
model where all modes are coupled whose energy func-
tion is given in a closed (analytical) form. For the present
model such a relation exists, as we are now going to
show.

Consider a tetragonal lattice in d space dimensions.
We will develop our formalism for an anisotropic lattice
with lattice constants u„(n =1,2, . . . , d). Let us concen-
trate on a site (illustrated in Fig. 3 for d =2). There are d
pairs of links meeting at the site such that the two links
in each pair lie on the same straight line. To any link we
then assign a pair of indices (n, i ). The first index corre-
sponds to the pair (n =1,2, . . . , d), and the second index
labels the link within the corresponding pair (i =1,2).
With the notation k = [e(q) j'~, the matching equations
(2.4) —(2.6) at the pertinent site now read

a 21 bZ1

FIG. 3. Intersection of four wires at a site.

iku —ikun"+b„ie "=t2n2+bn2 f
d iku —ikug (a„&e

" b„,e —"+an2 —b„2)=0,
n=1

(3.2)

where f is independent of n Th.e Bloch condition on the
wave function is equivalent to the relations

qn un
~nz n1 b =b en2 nl (3.3)

Equation (3.3) and the first of Eqs. (3.2) now yield

~n1
i(k —

q )u„
e

b„1
—i(k+q )u

e

2ie " "sin(ku„)
(3.4)

n=1

cos(q„u„)—cos(ku„)
sin(ku„)

(3.5)

Equation (3.5) is the desired dispersion relation for the
anisotropic lattice. If the lattice is isotropic (u„=a =1),
the result simplifies to

cos(k)= —g cos(q„),
d

(3.6)

from which s(q) can be expressed in an explicit form. As
a result of the coupling introduced in this model, the en-

ergy is no longer given by a simple sum as in Eq. (3.1).
The energy bands touch each other at the corners of the
Brillouin zone, so that there is no energy gap in this mod-
el. The density of states is maximal at the middle of each
band (k =~/2+ me. ) and vanishes at its end points
(k =mar). Note also that, as q~O, the energy

e(q)=k =q /d+O(q ) (3.7)

approaches the energy of a free particle whose momen-
tum is equal to the lattice momentum in appropriate
units.

We express all the coefficients in terms of the constant f
and substitute into the second of Eqs. (3.2), with the re-
sult
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B.Conductance of a finite system I +iA iA

a„z

b„2

~n1
M b, S=coM,

n1

'eikaI—N

0

0

e
—ikaI—N

(3.8)

where IN is the unit matrix in the pertinent space. Since
the system is ordered, the transfer matrix from one side
of the system to the other side is

T=S (3.9)

Conservation of current (unitarity} imposes the following
relation on T:

In this subsection we study the conductance of a per-
fect lattice of wires of finite size. The calculations below
will be demonstrated in two dimensions for a rectangular
lattice of length L (times a lattice constant a) and width N
(times a lattice constant b). Extension to d dimensions
(length L and transverse cross section N ') is straight-
forward. For an ordered system, the transfer-matrix ap-
proach is very useful since it requires the evaluation of a
power of a constant matrix.

To fix our notations, we number the horizontal wires of
the system from 1 to N and the vertical wires from 1 to L.
Let us concentrate on a fixed column of sites (a vertical
wire). The wave function on a horizontal link n to the
left of this wire is determined by the pair of coefficients

a„, and b„„while on the horizontal link n to the right of
this wire it is determined by the pair of coefficients a„z
and b„2. The 2NX2N matrix which transforms the

a n2column (b"') into the column (b"') is denoted by M and
nl n2

will be evaluated below. To implement the propagation
of the wave from column i to column i + 1

(i =1,2, . . . , L —1), one has to multiply the column (b"')
n2

by the phase matrix co to be defined below. The transfer
matrix transforming the wave function from vertical wire
i to its neighbor wire i+1 is just the product S=coM.
Thus we write

—iA I —iA (3.11)

where A is a real N XN symmetric matrix. If we adopt
free-boundary conditions in the transverse direction, we
find

A (n, n + I ) =—'csc(kb ) (n = 1,2, . . . , N 1)—,

A(n, n ) = co—t(kb ) (n =1,2, . . . , N) .
(3.12)

2 sin(kb )Av„= v„+&+v„,—2 cos(kb )v„

(n =1,2, . . . , N), (3.13)

and the free-boundary conditions are implied by the
equalities v~+&/vz=vo/v, =cos(kb). We now look for
N solutions for the eigenvectors v(q )

=[v, (q), v2(q), . . . , v~(q)], and the corresponding ei-

genvalues A, (q ) (where the index q, which labels the solu-
tion, can get N values q „qz, . . . , qz ). These solutions
are of the form

v„(q ) =a cos(nqb ) +P sin(nqb ),
cos(qb )

—cos(kb )kq =
sin(kb }

(3.14}

which leads to the following homogeneous set of equa-
tions for the constants a and p:

Note the similarity with the kinetic-energy matrix in the
tight-binding model, which has the value —2 on the diag-
onal and 1 near the diagonal, with all other elements be-
ing zero. We will now carry out the following manipula-
tions: (1).diagonalization of the matrix A defined in Eq.
(3.12); (2) diagonalization of the transfer matrix S=co M,
where co is the diagonal matrix of phases defined in Eq.
(3.8) and the matrix M is defined in Eq. (3.11); (3) find
T=S and T =(S ) and diagonalize the matrix T T
(4) use the eigenvalues of T T to compute the conduc-
tance.

Starting with step (1), we write the eigenvalue equation
Av=AIv as

IN
T J2N T=J~N J2N =

0
—I—N

(3.15)

=cos(kb }[acos(Nqb }+Psin(Nqb )] .

a =cos(kb )[a cos(qb )+P sin(qb )],
(3 10) a cos[(N+ 1 )qb ]+f3 sin[(N+ 1 )qb ]

Similar relations apply also to M and m.
From the knowledge of the transfer matrix of the sys-

tem, one can evaluate the conductance G = (e /h )g using
Pichard's formula (2.9). '

Our first task is to find the matrix M appearing in Eq.
(3.8). This is achieved by eliminating the coefficients of
the plane waves on the vertical links in terms of the cor-
responding coefficients on the horizontal links using the
matching equations on the wave function. After the re-
sult of this procedure is inserted in the equation for the
current conservation (relating the derivatives of the wave
function), the desired linear relation between the
coefficients of the wave function on the left side and those
on the right side is obtained. The result is then

sin(mqb ) =sin(qb )P (x ), x =2 cos(qb ), (3.17)

where the P (x ) are a polynomials of degree m —1 in x
[related to Chebyshev polynomials of the second kind Uk
through the relation P (x)=U, ( —,'x)]. They satisfy
the recursion relation

Eliminating the coefficients a and P, we then get a secular
equation for the momenta q:

sin[(N+ 1)qb ]—2 cos(kb ) sin(Nqb )

+cos (kb) sin[(N —1)qb]=0 . (3.16)

Now let us recall that
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P +)+P ) =xP (3.18)

Substitution of Eq. (3.17) in Eq. (3.16}yields the relation

P~+, —2 cos(kb )P~+ cos (kb )P~ )
=0 . (3.19)

The left-hand side of Eq. (3.19) is a polynomial of degree
N in x =2cos(qb ), whose N roots x define the corre-
sponding eigenmomenta q (m =1,2, . . . , N). Since the
matrix 3 is symmetric, its eigenvalues must be real and
x

~

~2. Following Eq. (3.14), we write the eigenvalues
of Has 1+ii. iX

where p are the eigenvalues of the matrix ~
Equation (3.19) and (3.21) then complete the first step,

namely, the diagonalization of the matrix A. Moreover,
from the structure of the matrix M [Eq. (3.22)], it is clear
that the task of the second step (diagonalization of
S=coM) is equivalent to the diagonalization of ~=cob,
[Eq. (3.23)]. This procedure as well as steps (3) and (4)
can be achieved by a separate algebraic manipulation on
any one of the N 2 X 2 matrices,

0

0
—ika —iA, 1 —iA,

Xm
y =

—,'x cos—(kb ) .
sin kb

(3.20)

A=V —A V V—V=V V =I

Before passing to the next step, we mention that if one
adopts periodic-boundary conditions in the transverse
direction, the evaluation of the eigenvalues A, is much
simpler with the result q =2m.m IN.

In order to complete the diagonalization procedure, we
must also consider the matrix V which diagonalizes A,
such as

r

e'"'(1+i', )
—ika g

ei kai

e '"'(1—ik)
(3.26)

a=

where the dependence of the matrix g and the eigenvalue
k on m (m =1,2, . . . , N) is dropped henceforth. In or-
der to diagonalize the matrix o;, we note that it belongs to
the group SU(1,1) of 2 X 2 matrices with the structure

A=diag(A, »A, 2, . . . , A,~) .
(3.21) with det(a) =

~p ~

—
~q ~

= l. It is then useful to denote its
eigenvalues by e —+', where 8, defined by

V 0
M=U bU, U=

U U=U U =I2N,
IN+i A

—iA

iA

IN A

(3.22}

The same matrix U is also employed when we write the
transfer matrix S =co M [Eq. (3.8)], which is required to
transform the coefficients from one column of sites to its
neighbor. Thus

Fortunately, as we show below, the matrix of eigenvec-
tors does not enter into the expression for the conduc-
tance [Eq. (2.9)]. Indeed, we may use the N X N matrix V
to define a 2N X2N matrix U which transforms the ma-
trix M [Eq. (3.11)]into the polar representation

cos8= —,'tr(a) =cos(ka }—A, sin(ka ), (3.27)

ei8

0
a=P

e
—i8 P-'=—P eP-'. (3.28)

The matrices P and P ' are computed after somewhat
straightforward but tedious linear-algebraic manipula-
tions with the result

is real if ~tr(a)~ ~2. Recall that 8 depends on the index
m of the eigenvalue A, of the matrix A. It is then clear
that for a large system (L ~ ao ) only those values of m
for which t9 is real will contribute to the transmission,
since eventually we will need to consider the matrix a .
These are the open (intrinsic) channels of the system. A
channel m for which 0 is not real has an exponentially
small contribution as L ~~. We now proceed to diago-
nalize the matrix a and write

S=U v. U v.=coh . (3.23) ika+i 8 ika —i 8
1 —e

Hence, for the total transfer matrix T through L columns
of sites [Eq. (3.9)], we have

T= U /U Tt= U 7
t U TtT= U 7t gU . (3.24}

—ika+i8 1+ —ika —i8

1
—ika —i8 a ika —i8

p —1

4 sin( ka )sin8 —1+e '"'+ ' —1+e '"'

(3.29)

Therefore, the conductance [Eq. (2.9)] is equal to

g=2tr[r r +(~ r ) '+2I2N]

Following the discussion preceding Eq. (3.27), we have
to evaluate the eigen values of the matrix
a a =(P ) '(e ) P P B P '. Actually we can find
these eigenvalues p from the similar matrix

2N Pm

i (p +1)
(3.25)

w=(e')'p'p e'(p p)-'

The explicit expression for %is

(3.30)
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8'= 1

sin(ka )[(1—}(, )sin(ka )+2k, cos(ka ) ]

—iLB p

O
iLB

sin(ka )+A, cos(ka )

A,e

—Xe '
sin(ka )+A, cos(ka )

eiLB p
X

p LB
sin( ka )+A, cos( ka )

A,e' sin(ka ) +A, cos(ka )
(3.31}

Restoring back the dependence on m through A, , it is verified that det( W~ ) =1 and therefore the contribution of a
specific channel m to the conductance g according to Eq. (3.25) equals 4/[2+tr( W )]. Thus, after tr( W ) is evaluated
from Eq. (3.31), we obtain

) 2+tr( W )

[sin(ka )+A, cos(ka ) ] —
A,

=t [sin(ka)+A, cos(ka)] —
A, cos2(LO )

m=1

sin (LH )

sin(ka )[(1—
A, )sin(ka )+2k,icos(ka )]

(3.32)

The sum is taken on all channels, but as we have indicat-
ed, only the open channels defined after Eq. (3.27) con-
tribute significantly for large L. The general result ex-
pressed in Eq. (3.32) takes a simpler form in the isotropic
case (a square lattice of constant a =b =1, say). Then we
get from Eqs. (3.20) and (3.27) the relations

gN: gNL. (L—

(cosq —cosk )

2 sin k [1—(2 cosk —cosq ) ]
(3.35)

Ym
y =

—,'x —cosk,
sink

'

cosO =cosk —
3/ =2 cosk —

—,'x
(3.33)

Restoring the length and width dependence, the conduc-
tance gNL becomes

y sin(LO )

gNL 1 +
sinO sink

(3.34)

which is our final result as far as the finite system is con-
cerned.

It is interesting to approach the thermodynamic limit
starting from Eq. (3.34). This procedure is meaningful if
the order of the two limits on L and N is first L ~~ and
then N~ao. In the L ~Do limit, in the isotropic case,
the sum on the open channels is restricted to those values
of m such that the inequality cosO =2cosk —cosq ~ 1

holds. It is then useful to define a number vz(k ) of open
channels for an infinitely long system of width N at a
given energy k . We will see below that vN(k) gets its
maximum near k =m. /2. Note also that if k is replaced
by vr —k, then y changes sign [see Eq. (3.33)], but
v~(k)=v~(~ k). As L~~ in —Eq. (3.34), we replace
sin (L 8 ) by —,'. For the term sin 8 in the denominator,
we use Eq. (3.33}and recall that x =2 cosq . Thus

vN(k) 1 1=—arccos(2cosk —1)—:—
qo .

N
(3.36)

Hence vz(0) =0 and v~(m /2) =N. In between, the func-
tion v~(k) increases monotonically. We now effect the
large-N limit which (for a single sum over lattice momen-
ta} is done through the usual substitution

,F(q )~(1/~}fF(q)dq. Thus

The conductance of an infinitely long sample at a fixed
finite width N is plotted in Figs. 4(a) and 4(b) as a func-
tion of k between 0 and n/2. The conductance is quan-
tized in the sense that it jumps by roughly one unit each
time a new channel is opened (although the steps are not
sharp). This result shows that quantization of conduc-
tance occurs not only in the ballistic propagation through
narrow constrictions, but also when the electron motion
is effected in periodic samples. We also remark that the
conductance band starts at k=p and is centered at
k =a/2, in accordance with the result obtained in Sec.
IIIA concerning the energy bands in the framework of
Bloch theory.

Before taking the limit N~ ~, it is necessary to esti-
mate the number v~(k) of open channels at energy k in
the large-N limit. In this case it can be shown that the
solutions q of Eq. (3.19) are uniformly spread on the in-
terval [O, n] and hence



1082 Y. AVISHAI AND J. M. LUCK 45
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FIG. 5. Conductance I per unit transverse width of a two-

dimensional ordered lattice of wires of infinite length and large
width as a function of the Fermi wave number.

This quantity is plotted as a function of k in Fig. 5. Note
that this I (k) is not strictly monotonic. Yet a rough esti-
mate of the form g =vN(k) for finite N and infinite length
L is quite reasonable. We also remark that the quantiza-
tion steps are smoothed out and the conductance per unit
width is a smooth function of energy. Its value at the
band center (k =n/2) is ea.sily found to be

0
0

I

0,1

I

0.2
I

0,3
I

04 k/H 05

FIG. 4. {a) Conductance g5 of a two-dimensional ordered lat-
tice of wires of finite length and finite width N =5 as a function
of the Fermi wave number. {b) Same as (a) with N = 10.

I ( k =m. /2) =—f dq
1 —cosq

0 3 cosq

=2 —&2 =0.585 78 . (3.38)

I =— (N )
gx

(L~ ao, N ~ ce )

1 ~o (cosq —cosk )
dq 1+

2sin k[1—(2cosk —cosq) ]

(3.37)

We stress that all the results obtained in this subsection
pertain to two-dimensional systems. Extension to d )2 is
straightforward once the eigenvalues A, are given. Thus
the sum on all channels in Eqs. (3.32) and (3.34) will in-
clude (d —1) transverse indices, while the sum in Eq.
(3.35) will extend on all open channels out of the total
N '. Integrals such as the one appearing in Eq. (3.37)
will be d —1 dimensional. Thus, for d=3, we assume
NM transverse channels and get

NM
1

(2m. )
f dq f dq, e(1

~
3 cask cosq —cosq—, i ), (3.39)

where e(x ) is the Heaviside unit-step function. Finally, the conductance (per unit transverse cross section) of a three-

dimensional isotropic lattice in the thermodynamic limit reads

I = (L~co, N, M~~)= f dq f dq, e(1—~3cosk cosq» —cosq—, i)
NM

' ' {2~)2

X 1+
(2 cosk —cosq» —cosq, )

2sin k[1—(3cosk —cosq —cosq, ) ]
(3.40)
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C. Transmission through a Bethe lattice

It has been established that when the system is or-
dered, the transmission coefficient of a quasi-one-
dimensional structure has a band structure; namely, it
equals zero for some energy intervals, and it is greater
than zero for other intervals. These intervals are identi-
cal to the bands in the pertinent geometry. It has also
been demonstrated that when the system is disordered
the transmission coefficient for d & 2 is zero in the ther-
modynamic limit. The question of what happens "in be-
tween, "when the system is not ordered but not complete-
ly random either, is not yet answered. As an example, we
note that for a two-dimensional Penrose tiling, it is be-
lieved that the situation is similar (but not identical) to
the disordered case in the sense that the transmission is
zero for "almost all energies. " From this point of view,
it is then of some interest to study the transmission
through a fractal object. Within the model of quantum
wires, the Bethe lattice (equivalently the Cayley tree) is

especially easy to investigate. It is found that the
transmission coefficient has a band structure which
shrinks to zero as the coordination number increases.

We consider (Fig. 6) the problem of quantum wires in
the geometry of a symmetric tree with L generations and
N branches (N=z —1, where z is the coordination num-
ber). The generations are counted from each side of the
tree toward its axis of symmetry. The number of
branches in the lth generation is N'. If an incoming wave
e' " reaches the system from the leftmost branch, it will
be partly reflected back with a reflection amplitude p and
partly transmitted into the rightmost branch with
transmission amplitude 7. Our aim is to compute the
transmission coefficient ~r~, which is determined through
the Pichard formula by the 2 X 2 matrix S transforming
the vector ( l,p) to (r,0):

ik —ikare +b e =aI+, +bI+, ,

a(e'" b(—e '"=N(a(+, b—(+, ) .
(3.42}

From these equations the matrix T is easily determined:

ai+I

bI+

T

aI

b 1

(3.43)
(N+ 1)e'" (N 1)e—

2N (N 1)e'"—(N+ 1)e
T=

Anticipating the need to compute T, we carry out the
diagonalization of T. The eigenvalues of T are

k+= —e ', cos8= —cosk .1 gg N+1
&N 2&N

(3.44)

The range of values of k for which 8 is real determine the
energy band, namely,

N+1—cosk ~ 1,
2 N

(3.45)

which is symmetric and centered at k =m/2. It is then
sufficient to consider the interval 0& k ~m. As the order
N increases, the energy band becomes narrower and
shrinks to zero. We then write

e' 0
with 4=

N
(3.46)

symmetry, the coefficients of the wave e' on all
branches belonging the same generation are equal (and
similarly for the wave e '""). Note that if
(ao, bo) =( l,p), then (co,do) =(r,0). The matrix T is cal-
culated using continuity- and current-conservation re-
quirements at the vertex I separating generations I and
I+1 (1=0,1, . . . , L —1):

2+tr(S S)
(3.41) and find for the matrix P and its inverse P ' the expres-

sions
The matrix S can be evaluated by the transfer-matrix al-
gorithm, which involves a successive application of ma-
trices T (T ') transforming the wave function from gen-
eration 1 on the left (right) of the symmetry axis to gen-
eration 1+ 1 (1—1). On a branch of generation 1 to the
left (right) of the symmetry line, the wave function is
written as a(e'""+b(e '"" (c(e'""+d(e '""). Because of

(N 1)cos8e '—" (N 1)cos8e-P=
i (N + 1)sin(8 —k) i (N+ 1)sin(—8+k )

(3.47)
ike

i (N 1)cosk sin—(28)
T

i (N+ 1 }sin(8+k } (N 1)cos8e-
i (N + 1 }sin(8—k) (N 1)cos8e— —

The propagation of the wave function from the leftmost
branch of the tree to the Lth generation situated on the
left of the symmetry axis is therefore achieved through
the transformation

() bo do
T

ag

bl

ao
z L

b 0
(3.48)

To cross the symmetry axis, an additional phase should
be added, namely,

FICz. 6. Bethe lattice with its mirror image for z=4, N =3,
and L =2.

CI —al e (3.49)

On the other hand, we may reach the wave function at
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points of the generation L situated to the right of the
symmetry axis starting from the rightmost branch and
propagating backward (from right to left). This back-
ward propagation is again carried out in terms of the ma-
trix T, but the role of leftward and rightward waves is
interchanged. Taking account of the relevant phases, the
desired backward transformation reads

0.8

0.6

0.4
—ikd

eik
L

eik
0

TL ik
0

(3.50) 0.2

Thus we can write the transformation from the leftmost
branch to the rightmost branch as

T

0
0.1 0.15

L~I
0.2 0.25 0.3 0.35 0.4 0,45 0.5

k/vt

C0 a0
=S

b (3.51)
(b)

0.8—

where the matrix S is explicitly given by

p
—ik p e

—2ik

T—L
eik p — e 2ik p

(3.52)

0.6

Using Eqs. (3.46} and (3.47), the successive powers of T
can easily be evaluated and the product of matrices on
the right-hand side of Eq. (3.52) is then carried out. The
result is

0.2

0 I I I I

0.2 0.25 0.3 0.35
k/n

0.4 0.45 0.5

F GS=
4N sin (28)

F=4(N+1) e'"[cosk sinHcos(LH)

+i sink cosHsin(LH)]

4(N 1) e—'"cos—Hsin (LH),

FIG. 7. (a) Conductance of Bethe lattice of coordination num-
ber z =N+ 1 and L generations as a function of energy within
the band. The oscillatory function corresponds to finite L,
while the smooth line corresponds to L infinite. Here N =2 and
L =6. (b) Same as(a) with N=5.

(3.53} Hence we get

SS= 1

(4N) sin (28)

FF +GG*
2F*G

2FG *

FF'+ 66'

6 =16i&N (N 1)sinke —'"cos 8 sin(LH)sin[(L+ 1)8] .

According to Eq. (3.41), we need the product S S, which
1s

(N 1) sin k(1+—2cos 8)
8Nsin 6

(3.58)

We note that this result does not make much sense, since
the left-hand side of Eq. (3.57) oscillates between 0 and —,

'

(1+~cosH~ ) . Hence, for L large, R oscillates very rapid-
ly between 0 (corresponding to perfect transmission
~r) =1) and

Therefore, we have
(N 1) sin k (1+

~

c—osH
~

)

4N sin 8
(3.59)

2+tr($ $) 1+R
(3.55)

GG*

(4N) sin (28}

(N 1) sin k sin (L 8—)sin [(L + 1 )8]
csin 0

Equation (3.55) is our final result concerning the
transmission through a system of finite length L. We will
now investigate the limit L ~~ by replacing the rapidly
oscillating function by their average values (denoted by

) ). Thus we set

(sin (LH)) =
—,', (sin (LH)) =—', ,

(3.56)
( sin (L 8)cos (L 8) ) =

—,
'

for which the transmission is maximally reduced by in-
terference effects. Figure 7 displays the transmission for
several values of N, L as a function of k.

We have thus established analytical solutions of the
problems pertaining to the ordered system and move on
to discuss those related to the disordered system. Inevit-
ably, these solutions will not be analytical, and therefore
we need a numerical procedure to solve the scattering
problem. This procedure is discussed in the next section.

IV. NUMERICAL SQLUTIGN

A. General considerations

and find

(sin (LH)sin [(L+1)8])= —,'(1+2cos 8) . (3.57)
In this section we will explain how the conductance of

the disordered system is evaluated. First, we shall work
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it out for the case of random wave numbers on the links,
and then we will study the case of missing links (the per-
colating network). In the first case, the similarity with
the tight-binding model may lead us to the desired algo-
rithrn for the numerical solution. The most commonly
used is the transfer-matrix method. Here, however, we
intend to study the system also in the far insulating re-
gime. A transfer-matrix approach is hence dangerous
since the product of many matrices will blow up. Fur-
thermore, we intend to study a cubic system with N up
to 1000 sites. The size of the (complex) transfer matrix
will then be 2N =200, which is quite large. It is then in-
dispensable to invent a method which does not rely on a
divergent product of large matrices and at the same time
will employ matrices of smaller size. This method is ex-
plained below in a heuristic manner. Its rigorous
justification goes back to the theory of waveguides. It
involves the algebra of transmission and reflection ma-
trices whose size is N . The disadvantage here is that
each step requires an inversion procedure instead of a
simple multiplication as is required by the transfer-matrix
algorithm. The advantage of the present procedure is
threefold. First, as we have noted, it involves matrices of
size N and not 2N . Second, the transmission and
reflection matrices are bounded through the unitarity re-
lation, and hence there is no danger of exponential
Lyapunov divergence. Third, it can also be applied in the
case of missing links in which the concept of a transfer
matrix is ill defined.

Consider then a wave approaching a system of two bar-
riers 1 and 2. The transmission and reflection amplitudes
for each individual barrier i (i =1,2), independent of the
other one, are assumed to be given by t; and r; if the
wave approaches the barrier from the left and by t,' and
r,' if the wave approaches the barrier from the right. For
a multichannel problem, the transmission and reflection
amplitudes are complex matrices. The situation where
the number of incoming channels (N) is different from
the number of outgoing channels (M) requires some care.
We stick to the notation in which the right (left) index of
a matrix corresponds to an incoming (outgoing) channeL
The dimensions of t, , r, , t,', and r,' (for a given barrier i)
are then M XN, N XN, N XM, and M XM, respectively.
They are usually arranged in an S matrix pertaining to
barrier i:

S;= (4.1)

The S matrix is unitary: S;S;=I S;S; =I (the unit ma-
trix in the appropriate space). Time-reversal invariance
implies the relation t, (m, n)=t, '(n, m) and the symmetry
of the matrices r,- and r,'-.

The transmission and reflection amplitudes pertaining
to the combined system are t,2, r,2, t', 2, and r', 2. Our
task is then to express these four amplitudes in terms of
the amplitudes of the individual channels. Let us start
with t,2. The transmission of the combined system can
be computed as the coherent sum of a11 waves traveling
and bouncing between the two barriers. This series of
waves can be arranged according to an increasing num-

P)2 =P( +r )f'2(1 Pg2) (4.2b)

(4.2c)

(4.2d)

Equations (4.2) still hold, even when the transmission
matrices are not square, corresponding to the case in
which the number of incoming channels is different from
the number of outgoing channels (the reflection matrices
are always square). This is one of the advantages of the
present method compared with the usual transfer-matrix
approach. In terms of the S matrices, we then write

S)2 =S)e S2, (4.3)

where the star-product operation defined through Eqs.
(4.2) has been applied by Redheffer in the theory of
waveguides. It is then possible to add the barriers one
after the other until the entire system is worked out. The
unitarity bound on the reflection and transmission ma-
trices assures the existence of the inverse (1—rIr2) ' and
guarantees the convergence of the procedure for any
number of steps. It is worth mentioning here that if the
barriers are infinitesimally close to each other, the star
product is transformed into a nonlinear differential rela-
tion, which eventually leads to a matrix Riccati equation
for the reflection amplitudes.

From a practical point of view, it appears that the
most economic way is to use Eq. (4.2d). If one includes
under barrier 1 the collection of L barriers whose

ber of internal reflections between barriers 1 and 2.
We will use matrix multiplication corresponding to a

propagation of the wave between barriers 1 and 2. For
the single-channel case, the amplitudes are c numbers and
the order in which they appear is not important. In the
multichannel case, the amplitudes are matrices and the
order is crucial. We have above adopted the convention
that a matrix element t „ is the transmission amplitude
for the outgoing wave of mode m due to an incoming
wave of mode n. With this convention the order of arn-

plitudes in any product is opposite to what appears in the
schematic description in terms of successive scattering
events.

The first term in the multiple-scattering series for t,2

represents a wave which just goes through the two bar-
riers without any reflection and gives the contribution
t~t, to t&z. The second term consists of the following
events: (1) transmission through barrier 1 with amplitude
t&', (2) reflection from the left on barrier 2 with amplitude

rz, (3) reflection from the right on barrier 1 with ampli-
tude r't, (4) transmission through barrier 2 from left to
right with amplitude t2. Combining all four steps, the
contribution of the second term to t&2 is t2r', r2t, . It is
now easy to deduce the contribution of the next term,
which is simply t2(r &rz ) t t and so on. The contribution
from the infinite series is evaluated as a geometrical pro-
gression with the result t,2=t2(1 r', r2) 't, . Simi—lar re-
lations hold for r&2, t&2, and r&2. These relations are
given explicitly as

(4.2a)
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reflection amplitude from the right has already been cal-
culated, and barrier 2 is a new one added to the right of
these L barriers, then only Eq. (4.2d) has to be employed.
Once r&z is computed, the total transmission coefficient
t &2t

', z is evaluated from the total reflection r', 2r', z through
the unitarity relation.

B. Random-link model

tude t „. The matching equations [Eqs. (2.4)—(2.6)] now
imply the following relations (the dependence of the
transverse coefficients c and d on the incoming index n
will not be indicated; the lattice spacing is denoted by a
as before):

(4.5)

1((y)=c e +d e (4.4)

where the coordinate y is measured from link m.
An incoming wave of unit amplitude reaching site n

from the left will provoke, in any site m, leftward
reflected waves with reflection amplitude r „, as well as
rightward transmitted waves with transmission ampli-

]+r kn P„
nn nn

Although this paper is mainly concerned with the per-
colating (missing-link) model, it will be useful to present
also the numerical algorithm for the random-link model.
In this case all the links are present, but the wave number
on each link is random. In order to include also the effect
of tunneling, the disorder is introduced as link potentials
U, giving rise to the wave number of the link
~ =(k —

U )' . In Sec. IV A we have explained how the
transmission of individual units is combined to give the
transmission of the whole system. Now we have to ex-
plain what the pertinent units are and how the transmis-
sion and reflection through each unit is computed. The
illustration will be carried out on the two-dimensional
lattice, but the extension to a three-dimensional lattice
presents no difficulty.

Transmission and reflection occur at each column of
sites followed by the accumulation of phases as the wave
propagates between two such columns. Thus each unit
consists of a column of sites together with the links locat-
ed on its right side (see Fig. 8). In order to evaluate the
transmission and reflection at a given column of sites, we
number the sites from 1 to N and consider a site m

(m =1,2, . . . , N. The wave number to its left is k
while the wave number to its right is p ~ The wave num-

bers in the transverse direction are q (above the site)
and q, (below the site). We adopt here periodic-
transverse-boundary conditions so that qo

=qz. On a
transverse link between sites m and m +1, the wave func-
tion is given by

=p r „+q (c —a ),
where 5 „ is the Kronecker delta function. The equality
5 „+r „=t „results simply since reflection and
transmission occur at the same point in space. From the
first set of equations in (4.5), one can now eliminate the
coefficients of the transverse motions pair by pair using
the relations

c +d =t, iq a —iq a
Cm +dme =tm+] n (4.6)

We now substitute the solution of Eqs. (4.6) into the
second set of equations in (4.5) and replace r „by
t „—5 „. As a result, we get a set of equations for the
transmission matrix t=I~t„} of the pertinent site of
columns, which reads

At =2K, (4.7)

where the N X N matrices A and E are given by

A(m, m)=k +p +i[q cot(q a)+q, cot(q, a)],
A (m, m + 1)= —iq csc(q a ),
A (m, m —1)= iq, c—sc(q, a ),
K =di ga(k»k , 2. . . , k~),

(4.8)

with m =1,2, . . . , N and N+1 or 0 are defined modN.
The solution of Eq. (4.7) yields the transmission matrix
from left to right, and then the corresponding left to left
refiection matrix r =t I~ (I~ is th—e unit matrix) is ob-
tained. To get the matrices pertaining to waves ap-
proaching from the right, one has to interchange the
roles of k and p . Since the matrix A is not affected by
this swap, it does not require any additional matrix-
inversion procedure.

It is worthwhile noting here that in the presence of a
constant magnetic field perpendicular to the direction of
propagation, the only change in the above formalism con-
cerns the nondiagonal elements of the matrix A. If the
columns of sites are numbered as 1,2, . . . , L, and the
magnetic fiux per plaquette is P ($=Ba in units of
hc/e), then at column I (I = 1,2, . . . , L) one has

k P

A(m, m +1)~A(m, m+1)e

A(m, m —l)~ A(m, m —1)e
(4.9)

k) P)

FIG. 8. Typical unit (column of sites) of a disordered lattice
of wires.

These phases are identical to those multiplying the hop-
ping integrals (the Peierls substitution) used, e.g. , in
tight-binding models.

What is left in order to complete the calculations of the
individual unit shown in Fig. 8 is to take account of the
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phase between two units. This is easily accomplished us-

ing the matrix P=diag(p„pz, . . . ,pN) and the substitu-
tions a b

L~e '+], r ~r, t'~te'~, r' e I'r'e L (4.10)

We have thus explained how to evaluate the transmis-
sion and reflection amplitudes for each individual unit in
the random-link model. Together with the composition
law explained in Sec. IV A, we have at hand an algorithm
for a numerical study of the full system. We repeat here
that our approach will mostly be used in three dimen-
sions, for which the relevant equations are slightly more
complicated.

C. Percolating network

Unlike the former case in which all links are present,
we will now study the case where part of the links are
missing, while the others have a fixed wave number k.
Such a lattice is schematically shown in Fig. 9. Within
this figure a typical unit is shown (enclosed in a dashed
rectangle), which is obtained by removing links from a
complete unit discussed in connection with Fig. 8. In
particular, the number of entrance channels, N, , is
different from the number of exit channels, Nf. Further-
more, the unit may be cut off at several points.

Before explaining how to evaluate the transmission and
reflection amplitudes in this case, it is worthwhile men-
tioning that the transfer-matrix algorithm is ill defined in
this context. To illustrate it let us consider (Fig. 10) a
fork-shaped configuration where there is one incoming
and two outgoing channels. In the transfer-matrix algo-
rithm, each link is characterized by two coefficients and
one is required to express the four coefficients pertaining
to the two outgoing channels in terms of the two
coefficients belonging to the initial channel. There are,
however, only three matching equations at the vertex,
which are not sufficient for this purpose. On the other
hand, in the transmission reflection formalism adopted
here, the incoming channel has an incoming wave of unit
amplitude and an outgoing reflected wave with an un-
known reflection coefficient, while each of the outgoing
channels has an outgoing wave whose transmission am-
plitude is unknown. These three unknowns are complete-
ly determined by the three matching equations.

It is possible to obtain the amplitudes of our unit in the
missing-link system as a special limiting procedure on the
matrix A defined by Eqs. (4.8). If a transverse link m is

r —
I

I

I

I

I
I

I

I

I

FICx. 9. Percolating lattice of wires with a typical unit.

FIG. 10. Fork-shaped intersection of wires which cannot be
described by a transfer matrix.

missing, the coupling term involving q is omitted from
the matrix A. In this way each subunit is decoupled
from the others. Note, however, that reflection from
dead ends in the transverse direction is not neglected. If
a longitudinal link n is missing on the left, this channel is
missing from the calculations at this specific step. If a
link I is missing on the right, we put p =0 in the corre-
sponding diagonal element of A. This procedure will
guarantee in particular a correct treatment of the follow-
ing two situations: (1) In case all the transverse links are
also missing, the system reaches a longitudinal dead end
and the reflection is complete with a phase equal to one;
(2) in case some of the transverse links are present, the
wave propagates as if the missing link did not exist. Note
that if we require complete reflection with phase —1,
then property (2) above will not 'be fulfilled. The size of
the matrix A is equal to the number of occupied links on
the left side of the unit. After Eqs. (4.7) are solved, the
reflection matrices are computed simply by subtracting
the unit matrix from the transmission matrices. Then the
elements t „ for which the link m is missing on the right
are thrown away. The resulting square reflection ma-
trices and the (not necessarily square) transmission ma-
trices enter the calculations of the full system using the
composition law Eq. (4.2).

V. RESULTS FOR THE DISORDERED SYSTEM

A. Quantum-percolation threshold p~
and critical exponent v

In this section we will demonstrate that the model
presented above exhibits a bona fide percolation transi-
tion in three dimensions, while there is no such transition
in two dimensions. We stress here that the calculations
presented below do not pretend at being very accurate as
far as several digits and error-bar determination of the
exponents and threshold probability is concerned. Rath-
er, they intend to provide a quantitative global picture of
the problem.

Our arguments are mainly based on numerical calcula-
tions pertaining to a three-dimensional cube or a two-
dimensional square of side La. Actually, the lattice con-
stant a enters only through the dimensionless parameter
ka, where k is the Fermi momentum and the electron's
energy is simply equal to k . In the thermodynamic lim-
it, the occupation probability p and ka (mod@) are the
only relevant parameters. For finite-size samples, the sys-
tem size L is an additional parameter. We recall that if L
is finite, the quantum-mechanical conductance g has
some probability distribution. If L is infinite, the conduc-
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tance (away from p ) is self-averaging. The localization
length g can be expected to be the relevant crossover
length for the self-averaging behavior.

Our first task is to find out whether the model present-
ed above exhibits a phase transition in three dimensions
and to decide whether this transition is a percolation
transition. If the answer is positive, we can continue and
determine the scaling behavior of the conductance as well
as the critical exponents. As we have explained in the In-
troduction, it is expected that the critical probability p
for the quantum-mechanical system will be larger than
the corresponding classical quantity p, =0.248 812 (see
Ref. 2) as a result of localization. Furthermore, the criti-
cal probability is not a universal quantity and is then ex-
pected to be energy dependent. At the same time we
want to show that, according to the scaling theory of lo-
calization, there is no Anderson transition in two dimen-
sions. We now explain three methods for studying the
critical behavior if it exists.

The most naive way by which p may be estimated
would consist in plot ting the quantity —ln( (g ) ) as a
function of ln(L) for several values of the occupation
probability p [up to a sign, this function is the primitive
of the celebrated renormalization-group scaling function
13(g)]. If an insulator-conductor transition exists for
d =3, it should show up as a sign change of the scaling
function f3(g)=d[ln((g))]/d[ln(L)]. Thus, for p &p,
we expect the function —ln((g)) to have a positive
slope, while for p )p the slope should be negative. For
d =2, however, we expect all the lines to have a positive
slope except near p = 1, where a crossover to the ordered
case occurs.

Second, we may borrow the finite-size-scaling argu-
ment for the conductivity of the classical network. We
recall from Eq. (1.1) that for a cube of side L in d dimen-
sions the mean classical conductivity Xt (p) is expected
to behave in the critical region ( ~b.

~

=
~p

—
p~ ~

very small

and L large) as Xt(p)=L '~'F(bL'~"), where F is a
scaling function. Relating the conductivity Xl to the
conductance (gz ) as Xt =(gt )/L", we get (under
these special conditions) the following behavior of the
mean quantum-mechanical conductance in the critical re-

gion:

(g (p))-L ' ' F(&L") (5.1)

where the scaling function F and the critical exponent v

are, of course, different from their classical analogs. We
recall that unlike the classical situation in d =3, the
equality t =v is predicted by nonlinear o. models. How-
ever, we can locate the critical quantum probability p
even without knowing t or v (or relying on the equality
t =v) by noticing that in computing the ratio
y(p)—:Var(g)/(g) between the variance and square of
the average of the conductance g, the prefactors multiply-

ing the scaling function Fcancel, and hence, near the per-
colation threshold, we have

yt (p)= = —1=H(bL' ), (5.2)Var(g) (g')
(g)' (g)'

where H is another scaling function. Thus all graphs of

yt (p) as a function of p for different values of L should
meet at the same point p =p corresponding to H(0).
Using relation (5.2) slightly away from the percolation
threshold will enable us to estimate the critical exponent
v and [through relation (5.1)] test the prediction t =v.

Finally, if the equality t =v is adopted at the outset, we
see from Eq. (5.1) that the prefactor of the scaling func-
tion F disappears for d =3. Hence, if the quantum-
mechanical conductance gz(p) undergoes a percolating
transition at p =p~, all the quantities (gz (p) ) for
different values of L should cross each other at p=p .
Furthermore, since the percolation transition is also an
Anderson transition, we expect (gt (p)) to decay ex-

ponentially with L for p &p and to increase as L for

p)p . In other words, the slope d[(gt(p))]/dp at

p=pq is positive and must grow with L. It follows from

Eq. (5.1) that this quantity approximately equals
L ' "F'(0) (for t =v) and hence F'(0) )0. A stringent test
of the equality t=v is therefore provided by a plot of
some function of (gt (p ) ) (say, in[ (gt (p ) ) ] ) for several

values of the parameter x =EL' . With an educated
guess of p and v, all the points must fall on a smooth
curve, which is the graph of ln[F(x)].

We are now in a position to analyze our results pertain-
ing to the critical probability pq as well as the critical ex-

ponents t and v. Some information concerning our nu-

merical computations is in order. The discussion in Sec.
IV implies that the size of the matrices involved is L and
the number of operations is proportional to L. Thus the
computing time grows very fast with the system size. We
have generated an ensemble of at least several hundreds
of samples for each value of p and L. For d =3 the maxi-
mal system size was L =10; namely, we had to perform
operations on complex matrices of dimension up to 100.
Each realization of a 10X 10X 10 cube required about 4 s

on a Cray 1 computer. It is also reasonable to limit the
lattice side from below at L =4, say. For d =2 the length
L can assume much higher values.

It has already been shown that the pure system (p = 1)
has a band for 0& k & m, which is symmetric about ~/2.
Our main results are presented for k at the band center
(actually, we shift it slightly to avoid dealing with a ra-

tional multiple of n) Later on, .w. e will discuss the depen-
dence of p on energy (in this special investigation, the

value of k will, of course, be varied).
Starting with the dependence of ln((g ) ) on ln(L), we

begin by demonstrating the absence of an Anderson tran-
sition in d =2 and plot in I'ig. 11 the function —ln( ( g ) )

as a function of ln(L) pertaining to squares of length
L =8—22 for p between 0.75 and 1. For p (0.9 all the
lines have positive asymptotic slope, and therefore they
correspond to a negative P function, as expected for An-

derson insulators. For p =0.9 the slope is close to zero.
Since we know that for p= 1 (an ordered crystal) the

slope is exactly —1, we interpret the zero slope at p =0.9
as a finite-size correction. In other words, the slope is

negative as long as we remain in the (quasi)metallic re-

gime L & g, but we expect it to be positive once we cross
into the insulating regime as L increases further. As p
approaches 1, we are tempted to describe the crossover
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and v. This can be done directly by noticing the relation
dy I /dp =L ' 'H'(0) at p =p, so that a plot of
ln(dyI /dp) vs ln(L) should have a slope 1/v. Unfor-
tunately, the error bar on p and the need to compute nu-
merical derivatives make this approach impractical. The
procedure we adopt is to guess values for both p and v
and to plot ln[yi (p )] for all available values of the argu-
ment x =AL' . If the choice of p and v is correct, then
a plot of the values of In[yz (p)] corresponding to the
respective points x should fall on a smooth curve which
represents the scaling function ln[H(x)] appearing on the
right-hand side of Eq. (5.2). In fact, we have already es-
tablished an approximate value ofp, and so we may fix it
at 0.45 and concentrate on the value of v. Figure 15(a) is
an (intentionally unsuccessful) attempt to trace the scal-
ing function ln[H(x)] for p =0.45 and v=0. 5, while
Fig. 15(b) is a much better attempt with p~=0. 45 and
v=0. 75. From this analysis we may again conclude that
p =0.45+0.02 and v=0. 75+0. 1 (see our remarks con-
cerning error bars and accuracy at the beginning of this
section). Any deviation from these values beyond reason-
able error bars strongly reduces the success of the fit, as
we may judge from the difference between Figs. 15(a) and
15(b). The value of the critical exponent v=0. 75 is con-
sistent with a rigorous bound by Chayes et al. that pre-
dicts the relation dv& 2 for random systems. Note that
the value of v found here is smaller than the classical
value in 3D geometrical percolation, which is equal to
0.875. It is much smaller than the numerical value
(v= 1 —1.5) often found for the Anderson model.

We now analyze our results according to the finite-
size-scaling hypothesis [Eq. (5.1)], but this time we take
the equality t =v as given from the onset. This leads in
d =3 dimensions near p to the reIation
(gl (p ) ) =F(hL ' '). In Fig. 16 we plot the average con-
ductance (gL (p ) ) of our 3D L XL X L bond percolating
lattice of wires for L =5, 6, 7, 8, and 10. It has been
demonstrated in the previous discussion that the relevant
domain for the probability p (as far as the critical value

p is concerned) is 0.4 &p &0.5, namely, 0. 15

-3
-2

I

-1,5
I

-0.5

)
L1/O. VS

0.5 1.5

&p —p, &0.25. The behavior of the conductance at
higher values ofp will be discussed separately.

It is evident from Fig. 16 that the functions (gL (p) )
for the five different values of L nearly coincide for
p —p, =0.20+0.01. This result indicates that within the
finite-size-scaling hypothesis with t =v the present transi-
tion is indeed a percolation transition with a threshold
probability p& near 0.45. Note also that the derivative
d [(gL (p ) ) ]/dp at p =pq is positive and grows with L, as

3
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FIG. 16. Averaged conductance (g ) for a three-dimensiona1

percolating lattice of wires as a function ofp —p, for L =5, 6, 7,
8, and 10, indicating the existence of a quantum transition based
on the finite-size-scaling hypothesis and equality t =v.

FIG. 15. (a) Quantity ln[yL(p)] for a three-dimensional per-
colating lattice of wires as a function of the scaling parameter
x=(p —p~)L' ", displaying the scaling function ln[H(x)] for
pq=0. 45 and v=0. 5 (poor fit). (b) Same as (a) with v=0. 75
(better fit).
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expected for an Anderson transition. As indicated in
connection with Fig. 1, the value of the quantum-
mechanical threshold is indeed much higher than the
classical value p, =0.25. The numerical estimate of p
evaluated above is also much higher than the value 0.33
found by Meir, Aharony, and Harris in some version of
the Anderson model adapted for the study of quantum
percolation. As we have already stated, the value ofp is
not universal and depends on energy. The behavior of p
as a function of energy will be studied later on. Here we
just indicate that for energies near the center of the band
(for which our calculations are performed), the value of
p is found to be exceptionally high.

To further employ the finite-size-scaling hypothesis
(5.1) with the assumption t=v, we suggest the value

pq =0.45 for the critical probability and v=0. 75 for the
critical exponent and plot in Fig. 17 the quantity
in[ (gL, (p ) ) ] for several values of the parameter
x =EL' . As we can judge, the points fall on a smooth
curve, which, as we have asserted, is the graph of
ln[F(x)], where F(x) is the scaling function appearing in
Eq. (5.1).

At this point it is of interest to relate the value of the
critical exponent found here (v=0.75) to the result of
Meir, Aharony, and Harris regarding the size depen-
dence of a quantity [T(r,E)] defined as the average
transmission of a wave with energy E between two points,
a distance r apart. Using an entirely different model (a
binary form of the Anderson model), they have found the
behavior [T(r,E)]-r"e "~~( ', where g(E) is the locali-
zation length and x is a critical exponent. They have in-
vestigated the series for the transmission coefficient and
concluded that it behaves near threshold like [f(E ) ]"+ .
To get a numerical value for x, they have looked for a
singularity of the form

~
6

~

r. Since the localization
length diverges as b ", one has y=v(x+d). In three di-
mensions they report the numerical estimate y =0.5. To
test if this result is consistent with our estimate of v, we
recall that the conductance of a cube of length L in d di-
mensions is proportional to L '" "[T(r,E)], which, at
theyercolation threshold [g(E)~ 00 ], is proportional to
L ' "+ ". On the other hand, the finite-size-scaling ar-
gument leads, at the percolation threshold, to a conduc-

tance proportional to L '~" (the proportionality con-
stant is irrelevant here). Thus we get x= —

—,'(d+t jv),
which, for d=3 and t=v, gives x = —2. This yields

y =v(x +d ) =0.75 compared with 0.5 reported by Meir,
Aharony, and Harris. Given the fact that the two models
and numerical procedures are entirely different, the two
results for y are comparable.

B. Energy dependence
of the quantum-percolation threshold p~

So far, we have limited ourselves to the center of the
band k =n /2. At this energy we concluded that the crit-
ical occupation probability p is about 0.45. It is also ex-
pected that at the end of the band near k =0 the
quantum-mechanical threshold approaches the classical
one, that is, pq =p, . Indeed, if k is very small, the phase
of the wave function is almost zero and the matching
conditions at the sites coincide with those of the classical
Kirchoff laws. To study the energy dependence of p for
k between 0 and m /2, we used the procedure developed in
connection with Eq. (5.2); namely, for a fixed value of k
we looked for the common intersection of all the curves

yL (p). The intersection point has been taken as our eval-
uation of the energy-dependent threshold p . Since our
main goal here is to get a rough estimate, we have first
limited ourselves to four values of L, namely L =4, 5, 6,
and 7, and evaluated p (k ) for k =m/6, m /3, and 6n /13.
Later on, we added the points m. /13 and m/4 based on
calculations with L =6 and 8. Together with the values
available at the end of the band at k =0 and at the middle
of the band at k =n /2, we can get a clear global picture.
This is demonstrated in Fig. 1S. From this figure we see
in particular that the value of pq at the center of the band
is maximal.

C. Behavior of the conductance
in the metallic regime (p &p~ )

The following discussion is not directly related to the
investigation of the electrical conductance at the percola-
tion threshold, but for the sake of completeness we find it
useful to study the behavior of the conductance at p &pq.
For large values of the occupation probability (p ~1),we
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FICx. 18. Dependence ofpq on energy for a three-dimensional
percolating lattice of wires (evaluated at eight points within the
energy band). The solid curve is meant as a guide for the eye.
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which is the analog of Eq. (5.3) for d=3. The scaling
function K(y), y =L(1—p), should behave like I/y for
large values of y in order to assure the L" behavior of
the conductance in the metallic (weakly localized) regime.

37
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27—
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-'8
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I
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PP,

0.6 0.65 0.7 0.75

FIG. 19. Averaged conductance (g ) for a three-dimensional

percolating lattice of wires in the diffusive region p~ (p (1 for
L =5, 6, 7, and 8, indicating the existence of a crossover domain
between the diffusive and ballistic regimes.

are in the weak disorder regime. From the discussion of
Fig. 13 (related to the P function), we have seen that
above threshold the slope of the function —ln(g ) vs ln(L)
is 1, so that for p &p the conductance grows linearly
with L in accordance with Ohm s law. It is also predict-
ed by the diagrammatic approach to the Anderson locali-
zation problem in the weakly localized regime. The
crossover picture between the metallic and critical re-
gimes in d )2 is clear. The L" behavior in the metal-
lic regime is changed to an L" ' behavior as p —+p
from above, in accordance with the finite-size-scaling hy-
pothesis. On the other hand, we have seen in Sec. III
that for the perfect lattice (p = 1) the conductance is pro-
portional to the number of channels, namely, L"
Thus there is an additional crossover between the metal-
lic and ballistic regimes.

As far as we know, the behavior of the conductance in
the crossover region p~1 has not been investigated in
detail so far. Most of the results derived from the scaling
theory of the conductance in the weak disorder regime
are applicable to any amount of disorder. Hence, in the
thermodynamic limit, p = 1 must be a singular point. For
finite size we expect the crossover between ballistic and
diffusive regimes to be sharper and sharper as L in-
creases. We demonstrate it in Fig. 19, in which we plot
the conductance as a function of p in the domain
0.4&p & 1 for L =5-8. At intermediate values of p, the
conductance is linear, its value being proportional to L.
As p approaches 1, the conductance grows at a higher
power of p and the crossover region is smaller for larger
L.

It is reasonable then to assume that the singularity at
p =1 in the thermodynamic limit is translated for a large
but finite-size L (near p =1) to a new scaling law of the
form

(g~(p)) =L K(L(1—p)) (d=3, L &&1, 1 —p &&1),

(5.4)

0.6

0.5II-

0.4—
fV

A 03—
V

0.2—

0

0
~0

Jh ~

Nw

o L=6
~ L=7
~ L=8
~ L=10

0
0

y=L(1 — pi

FIG. 20. Function (g ) /L ' (for a three-dimensional percolat-
ing lattice of wires) as a function of the scaling variable
y=L(1 —p) for p close to 1, displaying the scaling function
E(y) in Eq. (5.4).

Qn the other hand, the scaling function K(y) must have a
finite (nonzero) limit as y~0. This is indeed the case, as
we can judge from a glance at Fig. 20, where we plot the
quantity (gl (p ) ) /L as a function of the scaling variable
y=L(1 —p). Within reasonable error bars all the points
lie on a smooth curve, which represents the scaling func-
tion K(y). The finite limit as y ~0 is manifest as well as
the approximate behavior K(y)-y ' for large values of
y. We have thus confirmed the occurrence of a sharp
crossover between the diffusive and ballistic regimes in
d =3. Note that in d =2 dimensions the situations looks
identical, although there is, in principle, no diffusive re-
gime, strictly speaking.

D. Distribution of the conductance
in the neighborhood of the percolation threshold

There has been much interest in the distribution of the
conductance in the metallic regime (where the disorder is
weak) and in the insulating regiine (where the disorder is
strong). In the first case one of the most celebrated re-
sults is the occurrence of universal conductance fluctua-
tions. Both the diagrammatic approach and random-
matrix theory predict that in the metallic regime the
transmission has a normal distribution whose variance is
a universal number which depends only on the symmetry
(universality class) and the dimension of the system (but
rather weakly). In the second case the results are less
definitive. Most investigations indicate that the conduc-
tance obeys a log-normal distribution, but the variance of
ln(g) is not universal. The length dependence of
Var[in(g)] has been studied recently using the method of
directed paths. It is claimed in some recent works that
Var[in(g)]-L, where the exponent ro is universal and
depends only on the dimension of the system. It is also
conjectured that in the insulating regime the two quanti-
ties Var[in(g)] and —(In(g)) are of the same order of
magnitude. This can be checked explicitly in 1D, where g
obeys a log-normal distribution with ( ln(g ) ) —L and
also Var[in(g ))-L.

It is then of great interest to study the distribution of
the conductance in the transition region, i.e., around
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p=p . The results of this study are not universal, but
they can indicate about the general trend. We can
suspect that the distribution of the conductance at the
percolation threshold becomes very wide. Therefore, we
propose the following picture concerning the distribution
of the conductance: (i) Below p, we are in the insulating

regime, neither (g) nor its variance are universal, and
Var[In(g)] is of the order of magnitude of —ln(g); (ii) at
the percolating point, the variance is anomalously large
(the conductance has a wide distribution); (iii) above the
percolation threshold, we are in the metallic regime and
the variance is a universal number of order 1. These pre-
dictions have already been manifested in connection with
Fig. 14, where it is evident that the function yz(p) [intro-
duced in Eq. (5.2) as the ratio between the variance and

the square of the averaged conductance] becomes very
steep as a function ofp around the percolation threshold.

A much better illustration can be presented by showing
the distribution of the conductance itself [in the present
model it is not practical to study the quantity (ln(g) ) for
p, &p ~p since for many samples the conductance is
strictly zero because the system is cut off'. Figures
21(a)—21(e) display the distribution of the conductance
below, at, and above the quantum-mechanical percolation
threshold for a three-dimensional system of length
L = 10. The dramatic change between these three
domains when p is varied on a relatively small scale is
very convincing. The normal distribution above thresh-
old and the wide distribution at threshold are very well
reproduced.

200

o 150

100

120

100
O

80

60

150-
I I I I I I I I I I

p-p =0.175

40
50

a) 20

0 0
0 0.4 0.8 1.2 1.6 2 2.4 2.8

g

04 1.20.8 1.6

60co 50 I I I I I I I I I

V

rn 40
O

30
z

I I I

p-p =0.200 Y4

O

z

25
50—

40—

30—

20
20—

10

0 I I I I I I I I

0 0.4 0.8 1.2 1.6
g

10—

5
I I I I

2 2.4 2.8
0

4

cn 50 I

Y4
E
Pn 40—
O

E 30—
z

20—

10—

0

FIG. 21. (a) Distribution of the conductance for a three-dimensional percolating lattice of wires of length I =10 around p =p,
showing the violent change in the variance and in the shape of the distribution. Here p —pq= —0.050. (b) Same as (a) with
p —

pq 0 025 (c) Same as (a) with p=p~=0. 450. (d) Same as (a) with p —pq=0. 025. (e) Same as (a) with p —
pq 0 050.
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VI. SUMMARY AND OPEN QUESTIONS

We have developed a model based on a lattice of quan-
tum wires which is especially useful to study the percola-
tion transition of the quantum-mechanical electrical con-
ductance. Before investigating the disordered case, we
presented nontrivial solutions for ordered systems. First,
we have presented an analytic expression for the energy-
dispersion relation. Second, we have evaluated in a
closed form the transmission through a square or cubic
sample, and through a Bethe lattice.

We have then studied the disordered (percolating) situ-
ation. It has been confirmed that there is no transition
for d =2, while in d =3 dimensions there is an Anderson
transition in which the probability q = 1 —p plays the role
of disorder strength. The quantum-mechanical threshold
probability p is energy dependent, but always larger
than the classical threshold p, . At the center of the band,
we have the estimated value p =0.45+0.02. The critical
exponent v has approximately been evaluated at 0.75 and
the equality of the exponents t and v for the quantum-
mechanical conductance at d=3 has been confirmed.
We have also analyzed the crossover between the
quasimetallic and ballistic regimes in d=2 dimensions
and between the metallic or diffusive and ballistic regimes
in d=3 dimensions. In both cases we suggest a new
finite-size-scaling law. The distribution of the conduc-
tance around the transition has been studied, and its vari-
ance undergoes a violent change at this point.

Interesting questions which deserve more attention are
the following. (l) How these results are affected when a
magnetic field is applied? Recent works by Pichard
et al. and Bouchaud ' indicate that in the insulating re-
gime the application of a weak magnetic field increases
the localization length by a universal factor for quasi-
one-dimensional systems or by a nonuniversal factor for

bona fide two- and three-dimensional systems. The
demonstration is based either on the transfer-matrix ap-
proach or on an analysis of the essential role played by
close electron orbits. The application of a strong magnet-
ic field on a two-dimensional electron gas in a disordered
system leads to the quantum Hall effect. It is then of in-
terest to find out what will be the response of a two-
dimensional electron gas in a percolating system to the
application of an external (constant and strong) magnetic
field. (2) What will be the response of the system to an
applied external ac field? In the classical case the depen-
dence of the ac conductance on the frequency co is of spe-
cial significance. Its singularities in the complex ice plane
(particularly those with small negative real and zero
imaginary parts) are related to the response of the system
to an electrical pulse. These phenomena are shown to be
related to the concept of Lifshitz tails. It is hence very
significant to find out whether Lifshitz tails appear also
in the quantum-mechanical ac conductance.
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