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Nuclear-spin relaxation in the boson-fermion model of superconductivity
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The nuclear-spin-relaxation rates in high-T, cupric oxide superconductors are calculated from the

(phenomenological) boson-fermion model. It is shown that the model is consistent with the experimental
data for both Cu and 0 sites, in the superconducting as well as in the normal phase.

I. HAMILTONIAN

2e ~$~2e;
this replaces the t-channel reaction

2e ~2e +phonon (or other excitation) ~2e (1.2)

in the BCS theory. The strong Coulomb repulsion be-
tween 2e makes an individual P unstable:

P~e(v)+e(v), (1.3)

NMR measurements' of the nuclear-spin-relaxation
rate T&

' on the high-T, superconductors show a super-
conducting phase temperature T dependence different
from that given by the standard BCS theory. It has been
suggested' that this deviation from the normal behavior
could be due to a d-wave pairing. In this paper, we wish
to analyze the same phenomenon in the context of the
boson-fermion model (the s-channel theory) of supercon-
ductivity. ' We find the observed behavior to be con-
sistent with the hypothesis of having a nonspherically
symmetric internal resonant wave function of the P quan-
tum, either a p wave or a d wave.

In addition, the normal-phase behavior of T& at the
Cu sites is found to be different from that at the 0 sites, '
with the Korringa product [defined to be (T, T) '] de-

creasing with increasing temperature for the Cu sites, but
approximately constant for the 0 sites. This is difficult to
understand if there is only a single fermion component, as
in the BCS theory. In the boson-fermion model, as we
shall see, the bosons and fermions give different tempera-
ture variations of the Korringa product. The observed
difference can be phenomenologically accounted for by
assuming different probabilities for finding bosons at the
Cu and 0 sites.

To gain a perspective on this approach, we begin with
a brief summary of the model: The small coherence

length in the high-T, superconductors has led to the as-
sumptions that the pair-state can be represented phenom-
enologically by a local quantum bosonic field P(r) and
that the dominant underlying reaction of superconduc-
tivity is the s-channel process

where v denotes the energy of e in the rest frame of P.
However, because of the exclusion principle, such a P be-
comes stable when there is a Fermi sea of e of top energy

(2mf ) 'kF =v, (1.4)

with kF being the corresponding momentum and mf the
fermion mass. The coexistence of these two types of car-
riers, bosons and fermions, is the main feature of the s-

channel theory.
We concentrate on the Fermi contact interaction Harn-

iltonian between the nuclear spin I at rz and the spin as-
sociated with the electron field

Qt(r, )

tlat)(r, )

at r, (with 1 and $ denoting the spin indices):

H= ,'y, yttp (r—tv)—trtlt(rtv) I,

(1.5)

(1.6)

where o. is the Pauli spin matrix, —,'y, cr denotes the mag-

netic moment of e, and y~I that of the nucleus. This in-

teraction applies to both the "bound" electrons in the res-
onance state P and the "free" electron field gf, whose
Fourier expansion can be written as

eik r (1.7)

can be caused by changing either the "free'* electron spin
or the "bound" one. In the latter case, the switching of

Here, 0 is the volume of the system, and the subscript f
emphasizes the difference between P of (1.5) and the phe-
nomenological fermion field gf [see Eqs. (1.13) and (1.14)
below]; ak& and ak& denote the annihilation operators of

As we shall see, the effects of the "bound" and "free"
electrons on the nuclear-spin-relaxation rate are quite
different.

Take the z axis to be perpendicular to the Cu02 planes,
and assume that the resonance P is in a 2e channel with
antiparallel spins l l. The transition in which the z com-
ponent of nuclear spin decreases,

(1.8)
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the "bound" electron spin from $ to f puts the final 2e in
the f f channel. Since there is no resonance in that chan-
nel, we have the boson-dissociation reaction

P(r)=g —b e'q',1

, &n ' (1.12)

P(q)+I, ~e&(p&)+et(pz)+(I, —1), (1.9)

where P(q) denotes a P quantum with momentum q, and
e&(p, ) or e&(p2), of momentum p„or pz, refers to the
"free" electron described by gf of (1.7). Because P is a
resonant state (not a bound state), this reaction is exo-
thermic.

The effective Hamiltonian for reaction (1.8) can be
written as

and the coefficien JR is associated with the internal
PlP2q

wave function of the P quantum, which is to be discussed
in the next section. [The relative sign between the two
terms a a b and aab' in (1.10) has been chosen negative
in order to conform with the desired reality condition
(2.6) on the bosonic internal wave function. See (2.11)
and remark (2) at the end of Sec. II.]

In this model, the total charge density of both the
"free" and the "bound" electrons (in units of e) is

1 i(p1 —p2) rN
Hff —Y rN 2 pi pi3Q

+(2n ~)- ~ ~
p)p2q

g Q=nf+2nb

with

nf =gfpf and nb=ital p .

(1.13)

(1.14)

X(a &a &b ba —
&a ~),

(1.10)

where the first term is due to the "free" electrons [Fig.
1(a)], the remaining terms are due to the "bound" elec-
trons in P [Figs. 1(b) and 1(c)] and its inverse processes
[Figs. 1(d) and 1(e)],

I = &I, 1~I„— iI,—~I, &

= [I(I + 1) I,(I, —1)]'—
is the nuclear matrix element, b is the annihilation
operator related to the boson field by

eg(P) )

(a)

el(Pp)

As shown in Ref. 5, for applications to high-T, supercon-
ductors, depending on the doping, the expectation value
of n& can be much larger than that of nf. Therefore, the
bosonic component plays an important role.

In the s-channel theory, below the critical temperature
T„both bosons and fermions are superconducting. The
superAuidity of the bosons is due to Bose-Einstein con-
densation. Therefore, it exhibits a characteristic two-
Auid behavior, like Heal. The dominance of the bosonic
component would naturally lead to qualitative agree-
ments with the NMR measurements, as well as more re-
cent infrared conductivity experiments. In the follow-
ing, we shall show that a quantitative agreement can also
be obtained for the nuclear-spin-relaxation rate. (The
analysis of infrared conductivity will be given separately. }

II.AMPLITUDES DUE TO BOSON CONTRIBUTION

Let r& and r2be the coordinates of e& and e~ in the res-
onance state P, and

2
(2 P2 q]

(c)

(2 p) - q)
2

e~(P2)

e 'U(r)
Q

be its normalized orbital wave function, where

rb =-, (r, +r, )

is the center-of-mass coordinate of the boson,

I'= r( I'2

(2.1)

(2.2)

(2.3)

e$(- Pp) e (- Pg) the relative coordinate, and the normalization condition
requires

J 1
U(r)l'd'r =1 . (2.4)

ez(- p ) eJ(- P2)

(e)

Thus, the total wave function (including spins) is

(20) '~ e ' times

U(r)e&(r, )e&(rz) —U( —r)e&(r2)e&(r, ) .
FIG. 1. All the processes contributing to reaction (1.8) in the

normal phase, where e (p) denotes an electron of momentum p
»d sp&u o' ( = 1, l }, P(q} denotes a boson of momentum q, and
the cross represents the action of the contact interaction (1.6).
The rates of these processes are given by (3.2)—(3.6).

On account of the quasi-two-dimensional nature of the
crystal, this wave function is not isotropic. The Fourier
component of U(r) is

u(k)—:f U(r)e'"'d r, (2.5)
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U(r)*= U( —r),
and therefore

(2.6)

u (k)' = u (k)= real . (2.7)

In order that the resonant state can be approximately
represented by a local field operator P(r), a necessary
condition is for u (k) to receive its main support from k
vectors that are outside the Fermi surface; otherwise, the
boson operators cannot (approximately) satisfy the re-
quired commutation relations, even for matrix elements
between the low-lying states. Hence,

k —= (8m ) 'f u(k) k d k)k (2.8)

In Fig. 1, all crosses denote the action of the contact
Hamiltonian (1.6). Figure 1(a) represents the nuclear spin
Qip through its collision with a "free" electron:

e&(p, )+I,~e&(p2)+(I, —1) .

This gives an amplitude

(2.9)

—
( I/30)I y, y~e (2.10)

where K =p, —
p2 is the momentum transfer given to the

nucleus. The boson-dissociation reaction (1.9) is
represented by Figs. 1(b) and 1(c). In the "impulse" ap-
proximation, we neglect the final state interaction be-
tween the "free" electrons e t (p&) and

e &
(pz). As will be

shown in remark (2) below, the sum of these two ampli-
tudes, Figs. 1(b) and 1(c), is the product of (2.10) times

which satisfies

(8n. ) 'f iu(k)i d k=1 .

It is convenient to choose U(r) real for even-parity states
but imaginary for odd-parity ones; i.e., the complex con-
jugate of U(r) satisfies

G—=(4~) 'f d'f» fd'p2(u(p2) —u(pi) j'. (2.14)

[See Eqs. (3.4) and (3.9)—(3.12) below for the precise use of
G.]

To estimate the magnitude of G we assume, as an ex-
ample, the internal wave function U(r) of P to be a p
state

U(r) =i vr
'

A, ze

its Fourier component (2.5) is

u (k) — 25~1/2/7/2k ( k 2+ /2) —3

(2.15)

(2.16)

Thus, (2.14) gives G—= —,'2"nA. kF(k~+A, ) . The fer-

mion number nj is related to kF by

n/=(3m') 'kF'. (2.17)

(at zero temperature). Assume the temperature T is not
too high, so that k~T «c~, where k~ is the Boltzrnann
constant. Thus, the magnitude of the P momentum q is
«kF. Since the Zeeman splitting for the nuclear spin
levels is only —IO times cF, energy conservation re-
quires the relevant final momenta p, and p2 in reaction
(1.9) to lie near the Fermi surface; i.e., their magnitudes
are =—kF. Hence, the nuclear-spin-relaxation rate due to
boson dissociation (1.9), or to its inverse reaction (2.13), is
proportional to Gnb, where nb is the expectation value of
the boson number operator (1.14) and G is the angular
average

G—:(4m) f d p, f d pz~JK

with p& and p2 both on the surface of the Fermi sphere,
and p&, p2 their corresponding unit vectors. Because
~q~ &&kF, we can make the approximation of replacing
(p; —

—,'q) by p; in (2.11), where i =1 or 2; hence, G be-

comes q independent and is given by

At ~=u(pz —q/2) —u(p, —q/2), (2.1 1)

where the minus sign between the two u functions is due
to the antisymmetry in the final two-electron wave func-
tion, and the momentum transfer K in (2.10) is now given

by

Multiplying G by n& times nb /n/, we find

g kF nb
Gnb ———

9n (k +g) n

From (2.8), we have

(2. 18}

K=q p) p2, (2.12) k =A,') k'F (2.19)

with q denoting the initial P momentum. In deriving
(2.11), we have made use of the reality condition (2.6).
This condition is related to the convention for relative
phase between the initial state P and the final state
e &(p, )e

& (p2}; as we shall see, the same convention also
determines the phase of the amplitude for the time-
reversed reaction U(r)=(2~) '

A,
/ (z —r /3)e (2.20)

At a given ratio nb In&, the maximum of Gnb occurs at
A. = 1.4kF, which gives, for a p-state P quantum,

( Gnb ),„=l. 23( nb /n& ).
As another example, we may take the normalized d

wave

e ~ ( —p, )+e
&

( p, )+I'~p( —q)+—(I' —1), (2.13)

where I,'= (I,—1) and I,—' —1= I, . By relabeling —I,'
as I„we find the amplitude sum of Figs. 1(d) and 1(e) to
be —1 times that of 1(b} and 1(c},as given by the second
term in (1.10).

In accordance with (1.4), the top Fermi energy eF is v

which gives

82g9/2
u(k)= — (k —3k, ),

(k+A, )

k~=k'& k',F ~

(2.21)
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and with g real,

(4k~) )(. nb

15m'(k~+A, )
(2.22)

and

k, =—,'q+k

(2.29)

0.593(n&/nf ) p wave,
Gn ='

b 0 456(.nslnf) d wave . (2.23)

At a given nb In&, the maximum of Gnb is now
-=1 45(.n„lnf ), at A, =9k~/7.

As remarked before, k =A. must be considerably
larger than k~, in order that the resonant state can be
represented phenomenologically by an independent boson
field P(r). Take A, =2k+ and for the above two examples
we find

k2= —,'q —k .

It can be readily verified that, on account of (2.26} and
(2.27}, T invariance requires

u (k)*=v(k) =real, (2.30)

similar to (2.7).
Below the critical temperature T„ the statistical en-

semble average (bo) for the zero-momentum boson
operator bo is of a macroscopic amplitude:

At higher A, , Gn~ decreases rapidly; e g , a.t .2=2.5kF,
Gnz becomes 0.30(n& /n& ) for the p wave and
0 17(n.I, /nf ) for the d wave

Remarks

where

(2.31)

(2.32)

p(rb ) =f d rU(r )p&(r, }lt&(r2), (2.24)

(1) In terms of U(r), the boson operator P can be ex-
pressed as a bilinear product of electron field operators g,
introduced in (1.5):

is the long-range order parameter that characterizes the
Bose-Einstein condensation. As shown in Ref. 4, this in-
duces the following transformation from the fermion
operators a

&
and a

&
to the "quasiparticle" operators

apT and ap

where

and

TP(r, t ) T ' =rti, g(r, t), —
(2.25)

where

1 rb +—r and r2 rb

Under the (anti-unitary) time-reversal operator T, we
define the phase factors qf and gb by

Tf(r, t)T '=rtfo gt(r, t)—

apf ap) COSOp e '~a ~
~ sin8

a &=e'~a~& sin8 +a pJ cos'Qp

where

sin28 =gl8lv(p)/Eu,

cos29 =(p'/2mf —p)/Eu,
E =[(p /2mf —Iu) +b,(p) ],

and the gap energy squared is

~(p}'=Igl~lu(p}1' .

(2.33)

(2.34)

(2.35)

(2.36)

0 —i
CT2- i 0

and lgf 12= lg, l2=1. The phase convention (2.6) and T
invariance lead to

2
lb If ~ (2.26)

independent of the parity of U(r).
Applying T onto the annihilation operators apf app,

and b defined by (1.7) and (1.12), we have

These formulas will be used in the next section; their va-
lidity depends on T invariance and the phase convention
(2.6) and (2.7).

The effect of b, (p) becomes most important when the
fermion kinetic energy (2mf ) 'p is near the top Fermi
energy IM, which is, in turn -=v= —,

' times the excitation
energy 2v of the resonant P state. Hence, we may ap-
proximate v(p) as a function only of the unit vector
p =p/p. For the p-state wave function (2.16), we assume
u (p) ~ p, and write

and

Tap~ T '= —igfa pJ

Tap~ T '=isa pf,
(2.27)

b, (p) =35op, ,

so that the angular average of h(p} is

(2.37)

(2.38}

Tbp T gb6 p

Write the boson-fermion coupling interaction as

H«=g g [u(k)bqaz &a„&+u(k)'az &a& &b ]
1' 2

(2.28)
Q(p)2 —5 Q2( 1 3~p 2)2 (2.39)

(2) The amplitude (2.10) and (2.11) for the reaction (1.9)

[i.e., v (p) is normalized to have its angular average= 1).
Likewise for the d-state wave function (2.21), we have
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can be readily derived by evaluating the matrix element
of the Fermi interaction H, given by (1.6), between
the initial and final states: ii ) =bq iI, ) and

if )
=a& ta t iI, —1), where iI, ) denotes the state with the

Pi P2

nuclear z-component spin I„but without any boson or
fermion. By using (1.7), (1.12), (2.24), and the phase con-
vention (2.7), we find

(f ~Hii ) = ,'0——yylvI A, e

m
3/'2 1/2

27r2
(2.41)

where co, andD are two real positive parameters to be
I

(2.40)

where Af,
q is given by (2.11).

PiP2q

Similarly, for the time-reversed reaction (2.13), the ini-
tial state is ii ) =a

z ia iiI, ), and the final state
Pi P2

if ) =b
q iI, —1); the corresponding inatrix element

(f IHIP' ) is —I times (2.40). This then establishes the
minus sign inside the parenthesis of the last term in
(1.10).

(3) The condition (2.8) is necessary for the approxima-
tion that P/(r) and P(r), given by (1.7) and (1.12), can be
regarded as independent field operators. Clearly, this ap-
proximation breaks down if the boson momentum q is
sufficiently high, so that either q/2+k or q/2 —k (denot-
ing one of the momenta of the "bound" electrons inside
the resonant boson state) may lie within the Fermi sea,
even if k & k„.

(4) There are strong dynamical reasons, due to the in-
teraction between P and the lattice sites, to restrict fur-
ther the magnitude of the boson momentum. In the s-
channel theory, the boson is an excited resonant state; by
itself, it is unstable with an excitation energy 2v in the
rest frame [as shown in (1.3)]. This instability would in-
crease when the boson is in motion, because of collisions
with lattice sites. Therefore, its density of states pb(co)den
for a kinetic energy between co and co+dco should be less
than that of the free particles, especially when co is large.
In the following we assume

determined phenomenologicaHy by experiment. As we
shall see, co, is » D. Hence, the reduction factor

(co—co )/D
(e ' +1) ' is near 1 when co is small; it becomes —,

'

at co=co„decreases rapidly over a width O(D), and ap-
proaches 0 when co~ ~.

III. RELAXATION RATES

R =2/7 y i (f iH, g ~
i ) i

2w (Ef,E, )$(EI—. E,. ), (3.1)

where ii ) and
~f ) are the initial and final states, E; and

Ef are the initial and final energies of the electron sys-
tem, and w (EI,E, ) is the appropriate product of fermion
or boson distribution functions. The nuclear-spin energy
has been neglected in (3.1), since it is much smaller than
any other energy involved.

For the process due to free electrons [Fig. 1(a)], the
rate is simply given by

R, =(~/18)y, y~I pI J def(e)[1 —f (c)], (3.2)

where p&=&2mj EF /m is the density of states at the
Fermi surface (including both spins) and

1(E)= e~'+ 1

is the fermion distribution function where P= 1/k~ T and
E=p /2m& —p with p the Gibbs chemical potential. The
integration over c is elementary and the result is

R, =(n/18)y, y~I. p/k~ T . (3.3)

It follows that R, /T is independent of the temperature;
this is known as the Korringa law.

For the process involving bound electrons [Figs. 1(b)
and 1(c)], the rate reads

A. Normal phase

According to the effective Hamiltonian (1.10), in the
normal phase there are three incoherent processes con-
tributing to reaction (1.8), as shown in Fig. 1. The rate
for each process is obtained from the standard expression

R2= Gy, yNI p/ I dcopl, (co)g(co) f de[1 —f (E)][1—f(co+2(v —p) —e)], (3.4)

X dcopb(co)
/[co —( I/P)in/]e

0 (1—ge e
)

(3.5)

where

1g(co)=
g 'e~"—1

is the boson distribution function with a fugacity
g=exp[2P(p —v)] and pb(co) is the density of states of
bosons given by (2.41). The fermionic integration in (3.4)
can be worked out explicitly, yielding

R2 = Gy, y~I Pf36

For bosons with a free particle density of states [co,~ ao

in (2.41)], the rate at the critical temperature is given by

R„=Ri+2R2 . (3.6)

R2 = —,'GnbR i,
where nb is boson density.

The electron part of the processes in Figs. 1(d) and 1(e)
is the inverse of that of the processes in 1(b) and 1(c); the
corresponding rate is equal to (3.4) after neglecting the
nuclear magnetic energy. The total rate in the normal
phase is then
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B. Superconducting phase

To obtain the rate of reaction (1.8) in the supercon-
ducting phase, the effective Hamiltonian (1.10) has to be

I

expressed in terms of the long-range order 8 and the
quasiparticle operators, ap and ap (o = 1' and J, ) intro-
duced in (2.32) and (2.33). The resultant Hamiltonian is

ff yy I Q(e~ f(x)e'a&u&)sin(8 —8p)+2ap~ap icos(8p —8p)60 PP Pl P2 Pl P2 Pl P2 Pi P2 Pl
Pl P2

+IBIAt p p
0[(e'~a &a &

—e 'ra
p &ap t)cos(8p —8 p )+2ap tap ~sin(8 —8 p )]

+ —g JR
p p q[bz(a p tap t cos8p cos8

p
+e 'rap ~a p &

sin8p sin8
Q PI P2 q q P) P2 P2 P1 P2 P2 Pl

q

—2e 'rat tu g cos8 sin8 )
P2 P)

2l gb—(e ' a &a &
sin8 sin8 +a ~ap ~ cos8 cos8

P2 P) P2 P) P2 P) P2 P)

—2e'~a )a ) sin8 cos8
p )]P2 P] P2 P]

(3.7)

where 8 is given by (2.34).

All the processes contributing to reaction (1.8) in the superconducting phase are shown in Fig. 2 with e denoting a
quasiparticle and e a real particle. Their rates are given below.

(1) Direct quasiparticle "scattering" [Fig. 2(a), the process in the BCS theory]:

R) = y, y~I f 3 f cos (8p —8
p )f(E, )[1 f(E2)]5(E—2 E))—

9 (2 )3 (2 )3 PP Pl

e
—PE

y,'yNI—' pf f "dE [E'Xo'(E)+&OX)(E)] (3.8)

where Xc(E) and X,(E) are defined by (3.10) below.
(2) Quasiparticle "scattering" due to the bound electrons inside the condensed (zero-momentum) bosons [Figs. 2(b)

and 2(c)].

Rz"=
9 y,'y&1' IBI'f, f ', I~ p, p

cl'»n'(8p —8 p )f(E~)[1—f(E2)]5(E, E,)—
(2~) (2m. )

—PE=
9 y!y~ ' p»IBI'f dE[E [Xp(E)X2(E) X,(E)] &0[X,(E)X3(E) X,'(E)]j

0 (1+e ~ )
(3.9)

Th«unctions X„(E),(n =0, 1,2, 3) in the above expressions result from the integrations over p&, and pz, and are given
by

n

X„(E)= f dx— —P e(E —b,op (x)),
2 —I QE2 gz 2( )

where
I

&3x, for p wave
p(x)= '

(&5/2)(3x —1), for d wave,

(3.10)

and the step function e restricts the integration within the interval where E2—6~~2(x) is positive. Note that for p
wave, X,(E)=X3(E)=0.

(3) Qua»particle "pair creation" due to the bound electrons inside the excited bosons, i.e., bosons with nonzero mo-
menta, shown in Figs. 2(d) and 2(e):

9 y.ywl —f d~pb(~)g(~) f 3 f 3 IAfp p ql cos 8 cos 8
0 (2~) (2n. )

X [1 f(E, )](1 f (E—2)]5(E~+E,——a))
(3.11)

y,'y~l' pf f d~p, (~)g(~)f dEE(~ E)[X,(E)X,(co E)+—X,(co E)X,(E—) 2X,(E)X,—(co E)]— —
0 0

X [1—f (E)][1 f(co E)] . — —
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(4) Quasiparticle "scattering" due to the bound electrons inside the excited boson [Figs. 2(f) and 2(g)]:

y y I f dcopb(co)g(co) f f ~A4 ~
sin 0 ~ cos 8~ f(E, }[1 f—(E2}]5(E~ E—, c—o)

y', yNI pf f dco pb(a))g(co) f dE E(E +co)[yo(E)y,(E +co)+go(E +co)y, (E)—2y, (E)y,(E +co)]
36 e N f b 0

Xf(E)[1 f—(E+co)] . (3.12)

e &(2&)

(a)

e'q(p2) The total rate in the superconducting phase is

R, =R, +R2 '+2(Rz" +R2 '), (3.13)

(b)

e'gQ, )

e'J(p&)

e'y(p&)

e y(Pq)

(c)

e'J(p))

e'q(p2)

e'q(p, )

e'q(p, )

where the factor 2 in the last term is due to the time-
reversed processes of (3) and (4), as shown in Figs.
2(h)—2(k). The low-temperature behaviors of these pro-
cesses can be obtained easily and are given by R, ~ T,
R 2

' ~ T, and both R z" and R' ' ~ T' These results
are quite different from the exponential suppression of
the s-wave pairing model, since the gap energy in the
pairing model with a nonzero orbital angular momentum
vanishes in certain directions. For an arbitrary tempera-
ture below T„ the integrals in (3.8)—(3.12) can be carried
out numerically and the results will be discussed in the
next section.

The total rate for reaction (1.8) being known, the
nuclear-spin-relaxation rate T&

' follows from the stan-
dard formula

e';(p2)

„R „(E E„)—
(3.14)

e'J(P, )

where R „ is the transition rate from the nuclear spin
I, =m to I, =n, and E„ is the nuclear-spin energy at
I, =n. In the problem being studied, only transitions
m —n =+1 are realized with the upper sign correspond-
ing to reaction (1.8) and the lower sign to the reciprocal
one.

e'J(- p, )

IV. RESULTS

e'q(- p, ) e'J(- p, )

e J( Pg)

FIG. 2. All the processes contributing to reaction (1.8) in the

superconducting phase, where e' (p) denotes a quasiparticle of
momentum p and spin o ( = f, $), B denotes the Bose conden-

sate amplitude, P(q} denotes a boson of nonzero momentum q,
and the cross represents the action of the contact interaction

(1.6). The rates of these processes are given by (3.8)—(3.13).

The nuclear-spin-relaxation rates T, ' at both the oxy-
gen sites and at the copper sites of YBa2Cu307 „have
been measured by a number of groups. ' There are two
striking features. One is the absence, in the supercon-
ducting phase, of the coherence peak that would be ex-
pected according to the standard BCS theory with an s-
wave pairing state. The other is the decrease, in the nor-
mal phase, of the Korringa product (TT, )

' at Cu sites
with increasing temperatures. As will be explained
below, both features are consistent with the boson-
fermion model.

In Fig. 3, we plot the experimental values of the Kor-
ringa product from the measurement of Hammel et al. '

and the numerical values of the Korringa product calcu-
lated from the boson-fermion model with a p-wave pair-
ing state [Fig. 3(a)], and with a d-wave pairing state [Fig.
3(b)]. The open circles (0 sites) and triangles (Cu sites)
refer to the experimental data, and the solid circles (0
sites) and triangles (Cu sites) are the theoretical values;
the overall agreement is reasonably good. In these calcu-
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FIG. 3. Comparison between the Korringa product (TI T) (in units of its value at the critical temperature T, ) measured experi-
mentally and that calculated from the boson-fermion model with a p-wave pairing state, (a), and with a d-wave pairing state, (b}. The
open circles denote the experimental data at 0 sites and the solid circles denote the corresponding theoretical values. The open trian-
gles denote the experimental data at Cu sites and the solid triangles denote the corresponding theoretical values.

lations, as an approximation, the chemical potential of
bosons in the superconducting phase is set to zero and
the temperature dependence of the Bose condensate is as-
sumed to be that of an ideal Bose gas. The chemical po-
tential in the normal phase is determined by the total
density of particles. For the theoretical values in Fig. 3,
we choose the parameters v( —,

' of the resonance energy of
the boson)=5aT„nf =n„—=(3n ) '(2mfv) ~, and
nb=3. 5n . These parameters are consistent with those
determined from the application of the boson-fermion
model to the Hall number measurement. In addition, we
set b (0T= 0)=3aT, for p wave and bo(T=0)=2. SENT,

for d wave, and Gnb =1. The theoretical curves are rath-
er insensitive to the parameters v, nslnf, and Gnb, even
if they vary as much as 50%%uo (the value of Gnb, in particu-
lar, can be as large as 2 instead of 1). Only the Korringa
product in the normal phase is sensitive to the parame-
ters co, and D. In Fig. 3, we set

m, =6xT„D=2xT„ for 0 sites

and
co, =3.5~T„D=0.1~T„ for Cu sites .

Phenomenologically, this means more bosons at 0 sites
than Cu sites. With these parameters, the ratio of the de-
cay rate of a static boson in vacuum to the resonance en-
ergy of the boson turns out to be about 0.1, which can be
regarded as the square of the dimensionless boson-
fermion coupling parameter; this justifies the perturbative
approximation we made in the superconducting phase.
In the normal phase, the exact fermionic density-of-state
function is used in the computation.

In the superconducting phase, the coherence peak can
be diminished by smearing the density of states of the
quasiparticles at the gap energy. This can be realized
within the BCS theory if the pairing state is not s wave,
but p, d, or other higher-order partial waves, as was sug-
gested for the heavy-fennion superconductors. In the
boson-dissociation processes [Figs. 2(f) and 2(g)], the in-
tegration over the boson energy naturally smears out the
density of states of the quasiparticles even with an s-wave
pairing state. With a pure s-wave pairing state, however,

the G factor defined in (2.14) will be too small to make
the boson process dominant. Therefore, the nonzero or-
bital angular momentum component in the pairing state
is required for both BCS and the boson-ferrnion model to
explain the experimental results of the Korringa product
in the superconducting phase. If the pairing state is a
pure p wave or d wave, the experimental results can be
fitted by both models. Only if the pairing state is a mix-
ture of s wave and other partial waves, say s-d mixing, is
the boson-fermion model preferred. In this case, the fer-
mion process still exhibits the coherence peak on account
of the nonzero gap energy generated by the s-wave com-
ponent. However, in the boson-fermion model, because
of boson dominance and because there is no coherence
peak in boson-induced spin-Hip processes, the agreement
with experimental data in the superconducting phase can
still be maintained.

In the normal phase, the decrease of the Korringa
product on the Cu sites with increasing temperature is
very hard to explain within the framework of a single
Fermi sea of electrons. With the additional boson com-
ponent, the situation is changed. The temperature-
dependence of the Korringa product due to bosons is
quite different from that due to fermions. Furthermore, a
moving boson can decay through collisions with the lat-
tice, and the decay rate may also be different at 0 sites
from that at Cu sites since the size of a boson is compara-
ble to the lattice spacing. Indeed, by assuming the boson-
ic density of states to be given by (2.41), we find that the
Korringa product given by the processes in Figs. 1(b) and
1(c) decreases at higher temperature. With the choices of
parameters co, and D given above, a reasonably good fit
of the experimental data in the normal phase can be ob-
tained. This shows that, at least phenomenologically, the
experimental results are consistent edith the existence of
the boson component.
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