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Non»near fluctuation conductivity of a layered superconductor: Crossover in strong eiectric iieids

A. A. Varlamov
International Centre for Theoretical Physics, Post 0+ce Box 586, Strada Costiera I I, 34IOO Trieste, Italy

L. Reggiani
Dipartimento di Fisica, Universita di Salerno, I 84-08I Baronissi (Salerno), Italy

(Received 22 July 1991; revised manuscript received l6 September 199I)

The fluctuation conductivity of a clean layered superconductor in an arbitrary electric field is stud-
ied. It is shown that in the vicinity of T, an unusual crossover from three-dimensional to two-
dimensional behavior in the non-Ohmic region of the electric field excess current dependence takes
place. In spite of the large size of the fluctuation Cooper pairs, the strong electric field gives rise to
additional decay and to an effective freezing of the number of degrees of freedom.

Recent advances in the technology of monocrystalline
film growth has permitted the creation of perfect samples
of high-T, . superconductors with a sharp transition in the
superconductive state. In the vicinity of T, and in

sufficiently strong electric fields, a nonlinear fiuctuation
conductivity was observed. ' It is interesting that in the
immediate vicinity of the critical temperature and in

suSciently strong electric fields the critical exponents de-
viate from the three-dimensional (3D) case. ' This fact
is nontrivial because, as it is well known, in the immediate
vicinity of T, [where g(.T) »a] the behavior of the fiuc-
tuations has to be 3D; it is really so in the same tempera-
ture range but in a weak field where the nonlinear effects
are not important.

The problem of non-Ohmic behavior of the fluctuation
conductivity in sufficiently strong fields was discussed
many years ago. ' lt was sho~n that the fluctuation con-
ductivity may be calculated in the linear-response approx-
imation only for sufficiently weak fields, when they do not

perturb the fluctuation spectrum. Beginning from some
characteristic field strength, the acceleration of electrons
is so large that, on the path of the order of (, they change

l

their energy by an order of T —T„which characterizes
the binding energy of the Auctuating Cooper pairs. As a
result, the fluctuating Cooper pairs decay additionally and
the deviation from the Ohm's law takes place. The
characteristic electric field E„at which the nonlinear
effects are exhibited, decreases as e (here e =T —T„/T„
is the reduced temperature) as the temperature ap-
proaches T,.

In this Rapid Communication we shall study the fluc-

tuation conductivity of a layered superconductor in an ar-
bitrary electric field and show that the crossover from 30
to 2D behavior of the conductivity takes place not only

upon the change of the temperature but also upon the
change of the electric field. This means that in very strong
electric fields even at temperatures close to T„ the pair
motion becomes 2D again due to the pair-breaking effect
of the electric field.

Let us begin with the expression for the fluctuation
correction 8Jp which was calculated in the case of dirty
isotropic superconductors by Gorkov for the electric
current:

lijii=cE vdv e 'exp[ ——v[tt r (T —T )+e DE v~]]
d'q -2D

(2tr)
3 S C

where D is the diffusion coefficient, r, is the relaxation
time of the inelastic scattering [r, (T —T„)«1], and c is
a constant dependent on the geometry of the spectrum
(Ii =ktt =1).

We consider now the case of a clean superconductor
(I» (0), which corresponds to the experiments under dis-
cussion. Hence, the anomalous Maki-Thompson contri-
bution, which is stipulated by the coherent electron
scattering on impurities, does not appear at all and we
need not introduce the hypothesis of the presence of
paramagnetic impurities in the superconductor (as was
done in Ref. 5). So, in the vicinity of the critical tempera-
ture, we can restrict ourselves by considering the paracon-
ductive contribution only. However, the term originating
from the pair breaking in (1) has to be omitted and some
necessary modifications of (1), required by the specifics of
our model, have to be made.

Let us begin with the electron spectrum. In order to
take into account the layered structure of high-T, super-
conductors, we adopt its Fermi surface in the form of a
modulated cylinder which describes the 2D movement of
electrons in layers and, simultaneously, the possibility of
their hopping between layers:

C(p) =e(p) &F vF(lplll pF)+w —sc(op~a), (2)

where g(p) is the electron energy measured from the Fer-
mi level, vF and pF are the Fermi velocity and momentum
in the plane of the layers, and w is the electron hopping in-

tegral.
First of all let us mention tkat, in the case of anisotropic

spectrum (2), even for the diffusive character of the elec-
tron motion, the product Dq has to be treated not as the
first term of the expansion, which is valid for small q only,
but for any q from the Brillouin zone. So, for the spec-
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trum (2), one can find

dirty

Dq' =&r ( v. q) '& =(r [e(p+q) —e(p)]'&q ii
"

[q)( + (4w'/vF')sin'(q j a/2)], (3)

where ( .
& means the averaging over the Fermi surface

and rl '""=xrvF/24T, is the value of the Ginzburg-
Landau parameter

2 2

[y(-,' +I/4zTr) —y(-,' ) —(I/4irTr)y'4)]

I

count the "mass" of the fluctuating Cooper pairs, that was
omitted in Ref. 5 because of the presence of strong pair
breaking. It is easy to do if one remembers that it appears
in the denominator of the fluctuation propagator
L (q, w), side by side with Dq:

(4) L~(q, rv) -—8T 1

irp (8/x)(T —T, ) iro+D—q
(5)

in the limit of a dirty metal [y(x) is the digamma func-
tion]. Hence, the second modification of (I) for the case
of clean superconductors is evident: we have to use below
not rl

'"" but il"'a"=ilii=limT, iI=7((3)vF/48m T„
[((3)=1.202 is the Riemann zeta function of argument
3].

The last that we have to do with (I ) is to take into ac-

Hence, in (I) it is suScient to substitute

2 8T 3 2 2 q+a2

Dq — ~+ —goq[[+6 2 go»n
E gap 2

to obtain the generalization of the Gorkov result for the
case of a clean layered superconductor:

14((3)vFe + ~~~~ dq~ ~ qidqi6'Jg = vdv exp
z "o "—&/& 2x "o 2x

+ 2 goqll+6 2
sin

x UF 2

x exp[ —(8T/z) rloe E v ]

1—for &~(E) &&a
2

r

16a 4z Tc 1
for &~(e) )& a .

14$(3) w

(8)
The opposite limit E & E,- of the nonlinear fluctuation

conductivity is more interesting to us now. To obtain the
asymptotic expressions we shall adopt E))E,. In this
case the integral in (7) converges at x —(E,/E) «1.
Ho~ever, the result of the integration strongly depends on

(we adopted the electric field E parallel to the planes of
the layers).

The integrations over q ~[ and q & are trivial and after
some calculations one can find

e E d
—xfi+[g (~)/aj')

dxe
16ae 4o

XIii[[&~(e)/al'x]e ' ' ", (7)

where (~(e) =a(3w rlo/vFe)' is the coherent length in
the direction per ndicular to the layers, E„=Eoe
(Eii =2 ~ T„/nerlo =54T, /evF) is some characteristic
value of the electric field and Io(z) is the Bessel function
of the imaginary argument. From this general result it is
easy to reproduce the static paraconductive contribution
in the fluctuation conductivity of a layered superconductor
above T,. It is sufficient to set E 0 and the integral in
(7) may be carried out exactly:

BJri(E, e) 1
oii(0, e) = lim

I «e [I+2[g(.)/al'] '"

the relation between g&(e) and a.
If the temperature is sufficiently far away from the crit-

ical value [g(e) & a], then, in the region of the convergen-
cy of the integral in (7), the product of the first two func-
tions may be adopted as 1 and

e'I (~ )Eio
'

E
' '~'

bJjP (E)&E„)=
48a Ep

(9)

The opposite case g~(e)&&a is more complex for the
analysis. Indeed, there are two parameters competing
with each other.

(i) If the electric field is so strong that

» [&~(e)/a] ',
E,.

then the region of the integral convergence turns out to be
so small that, in spite of the large factor (g~/a) && I in

the argument of Bessel function, the product

f(x) =e '"+""''lii[(g~/a)'xl

may be adopted at 1 as above. Hence, in a very strong
field E» E, (g~/a), the same . 2D behavior of the fluctua-
tion conductivity (9) takes place even in the vicinity of T„
when (&(e)»a. The physical reasons of such an effective
reduction of dimensionality will be discussed later.

(ii) In the case of intermediate fields

E,.«E«E„(( /a)',
in the domain of the integral convergence in (8), the func-
tion f(x) varies considerably. Due to the condition
[(~(e)/a] && E/E, one can use the .asymptotic expression

I (z» 1)=(I/2irz)' e
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' l/2

X
4Q

/p) 2/3y y
3

e " dy.

and the integral in (7) can be rewritten as
]/3 r

~go) eE r a 1
2

16ae E (& 2)r

(12)

Far from T„when g~(e) (a, there is no problem in the
treatment of (9). Cooper pairs "rotate" in every plane
separately and we reproduce the result of Ref. 3 only:

E/e for E «E,
2

bJPo) (E e) ~ I ( —)Eo
16a for E»E, .

3 Ep
Taking into account the fact that E,«E, one can find

bJIP '(E»E„)=
' 2/3

E
12aJI4((3)

I ( —)e JzEo
(i 3)

The results of the numerical calculations for the typical
cases g~(eI)/a =10.0 and g~(e2)/a =0.3 are presented in
a ln-In scale in Fig. 1 (w was adopted equal to T„ in these
calculations). The asymptotes (8), (9), and (13) are
shown by the tangent lines.

Let us now discuss the obtained results in more detail.
I

(i4)
In the immediate vicinity of T„(but still out of the criti-

cal region), when g& (e)» a, in small fields the movement
of the fluctuating Cooper pairs has a 3D character. In ac-
cordance with Ref. 3 this situation remains at fields even
higher then E, The nontrivial fact, which follows from
(7), is the crossover in a sufficiently stron electric field

E„-E„[(~(e)/aj from 3D behavior (bJ —E / ) to
2D behavior (bJ( ) -E '/ ), in spite of the large size of
pairs (~(e) && a at these temperatures:

3

for E, «E «E, &g(e)

3
&~(e)

for E»E,
a

Tc 1
for E «E, ,

v 14((3)
r(-,')J~E, T,

'
E

'"'
JJ 3D—2D)(E, e)

3414((3)
r(~) )Eo

12 Ep

(IS)

The nontrivial fact may be understood from the follow-
ing qualitative consideration. In the region E «E„all
types of 3D rotations of the fluctuating Cooper pairs are
possible. The picture is 3D. When E-E„the rotations
of the AB type (Fig. 2) (the electron pair rotates in the
ZL plane so that one of the electrons goes from point 8 to

I

point B) lead to displacements of particles a distance on

the order of g~. From the definition of E„E„g~—T —T,
(it is the characteristic energy of fiuctuating Cooper
pairs) and at E & E, , such rotations begin to decay. The
next step of the freezing of the degrees of freedom is the
decay of rotations from the polar point A to the nearest

0—
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I

—6
I I I I I

in(K/K, )

I « I I

0 2

FIG. I. The dependence of the normalized excess current hJa/(e'Eo/I 6a) on the dimensionless electric field E/Eo in the ln-In scale

for the typical cases e~ =5 x IO, for which (&(e~)/a = IO 0 (curve I) and for e2 =0 15, for which g&(ez)/a =0 3 (curve II). For sim-

plicity the case w T, is adopted in these calculations. The tangent lines show the asymptotes (8), (9), and (13).
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FIG. 2. The layered structure of the superconductor and the
sphere of all possible rotations of the Cooper pairs in the pres-
ence of the in-plane electric field (see the text for a detailed ex-

planation�}.

layer (point C), in the plane ZX. In this case the vertical
displacement is a, and the corresponding displacement in
the field direction X is of the order of (a(i) 't . Hence,
such rotations decay at E,. ', which is determined from
the condition

E t' (a(i) 't —T —T„-E„(~,
E„"'-E„(g /a) '".

The rotations of the pairs from the layer XYto the nearest
one (one of the electrons of the Cooper pair hops from
point B to point D) are more stable with increasing elec-
tric field. This leads to a displacement in the X direction
hx-a /g& and the characteristic decay field Et of such

rotations is E, -E,(gi/a) . But even for fields
E & E, , some 3D rotations are still possible. They are
the rotations in the plane YZ. The minimum of them has
the same hopping of an electron from the layer (XY) to
the nearest one, during which the displacement in the Y
direction is of the order of a /(~. But this movement has
to be slightly 3D, hence the angular displacement in the
LY plane has to be at least of the same order of that in the
YZ plane: hp-a/(~. It will give Ax —a /g~ and a cor-
responding field E, -E,„-E,((i/a), in accordance
with the result of the integration in (8). In higher fields
all the possibilities of 3D behavior of the Cooper pairs are
exhausted and the 2D regime of BJn(E, e) takes place in
spite of the condition (|.(e)» a.

It is important to emphasize that this is not a 2D
motion within layers but rather within the plane perpen-
dicular to the external field (which was adopted to be
parallel to the layers) to avoid its strong pair-breaking
effect.

In connection with experiment' we have to mention
that in high-T, superconductors the critical field E, ap-
pears to be rather high. For example, for T, =80 K,
vF =3x10 cm/sec, e 0.01, and E„—10 U/cm. This
means that a voltage on the order of 100 mU for a sample
of the size 10 p has to be applied.
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