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We study the response of an array of underdamped classical Josephson junctions when the phase
configuration contains precisely one vortex. We first simulate the linear response of arrays to a small
oscillating current and find, as a function of frequency, a well-defined resonance apart from the single-
junction resonance. When a dc current is applied, in addition to the small ac current, the resonance
is seen to split into two separate peaks. Next, we analyze the full set of evolution equations and show
that the response of the array under these conditions is represented very well by a set of three linear
equations. With zero dc current we obtain an analytical estimate of the resonance frequency. The
reduced set also reflects, but underestimates, the splitting into two resonances, in an additional dc
current. Finally, we extend the approach to nonlinear response to extract one differential equation
for the motion of the vortex out of the complete set of equations describing the dynamics of the

array.

The interest in the dynamical properties of vortices in
superconducting systems is rapidly increasing,!™® partly
due to fact that it may be of great importance in studying
the granular superconductors. Arrays of superconduct-
ing islands, weakly coupled by Josephson junctions, are
very much suited to study the dynamics of these vor-
tices because of the controlled fabrication and flexibility
in varying the system parameters. Recent experimental
findings in the Josephson-junction arrays® suggest that
it is possible to reach a regime of parameters where vor-
tex motion is ballistic. This opens up an interesting as-
pect in the field of transport phenomena, especially when
one would be able to expose unambiguously a quantum
nature of such objects, possibly in arrays of ultrasmall
Junctions. In understanding the results of experiments
it 1s always crucial to have detailed knowledge of the
physical properties of these objects, as for example, their
mass. Therefore we perform a linear response analysis of
the vortex properties in classical underdamped junctions,
based on the full set of coupled evolution equations for
Junction arrays. Starting from this set, we first simulate
the response of arrays of underdamped junctions at zero
temperature, where the current distribution contains one
vortex. The results of the response as a function of fre-
quency, show, besides the bulk contribution, a very dis-
tinct and well-defined resonance generated by the vortex.
The position of the peak in the in-phase response is the
basic quantity to characterize inertial properties in the
static regime. There is no strong size dependence in this
position for linear system sizes larger than approximately
8, and the relative height of the peak simply decreases
linearly on enlarging the system size. We also study the
response as a function of an applied dc current. The res-
onance then splits into two peaks, reflecting the removal
of a symmetry between core junctions.

Out of the complete set of equations, we then derive
an effective set of only three coupled differential equa-

45

tions, to describe the dynamics of junction arrays in this
regime. To do this we take one effective coupling param-
eter for all junctions not adjacent to the vortex core. We
show, by direct comparison with the simulations, that the
equations thus obtained represent the full set very well.
This stresses the crucial role of the core junctions for the
dynamics. In the case of an infinite system with zero
dc current we reduce the set to two equations, and we
express the resonance frequency in terms of the lattice
Green function. In the presence of a small dc current,
the reduced set exhibits the splitting of the resonance,
observed in simulations, but in a less pronounced way.

Finally, we extend this approach to nonlinear behavior
of a junction array with one vortex. We study the full set
of equations in a model, introduced in Ref. 3, where only
one junction has a sinusoidal phase-current relation. This
Jjunction is embedded in a linear medium. By taking the
nonlinear junction along with the motion of the vortex,
we obtain an approximate description of the response
of an array with one vortex. We compare the results
directly with simulations of the full set of equations, and
find that the properties of the vortex itself are described
quite well. However, to obtain a consistent model, one
is forced to an unrealistic value for the coupling of the
linear medium.

I. LINEAR RESPONSE

We consider a rectangular lattice with superconduct-
ing islands at the nodes. Each island is connected with
nearest neighbors by Josephson junctions. The dynam-
ics of single junctions is determined by the resistively
shunted junction (RSJ) model, and thus the time evolu-
tion of the phase difference 6(r,r’,t) across the junction
connecting islands centered at r and r’ is governed by the
dimensionless equation
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ﬂcé(r,r',t) + 9(r,r',t) +is(r, ', t)

+ip(r,v',t) = i(r, ', 1),

(1.1)

where we measure time in units of the reciprocal char-
acteristic frequency l/w. = h/(2el.R,). i(r,x',t) =
I(r,r',t)/I. is the total current flowing through the junc-
tion. The superconducting component is(r,r’,t) is given

by

is(r,r’,t) = sin[@(r, v, t) — 27 A(r,2)]. (1.2)

The magnetic field appears in the variables

(1.3)

The vector potential is A and ¢¢ = he/2e is the elemen-
tary flux quantum. The first term in Eq. (1.1) represents
the displacement current carried by the capacitance C of

the junction. The Stewart-McCumber parameter §. is
defined as

1/
A(r,r')za/ A - de.

(1.4)

with plasma frequency

wp = \/2eI./RC. (1.5)

The second term is the tunneling current carried by
quasiparticles. In the RSJ model these processes are
taken into account by shunting the junction with an
ohmic resistance R,,. Apart from the intrinsic dissipative
tunneling, R, can also include an external shunt resis-
tance. If one wants to simulate finite temperatures then
one must add a noise term to the left-hand side of Eq.
(1.1). However, we assume zero temperature throughout
this paper.

We now briefly discuss some important properties of
vortices. Physically a vortex can be seen as an eddy cur-
rent in the flow pattern in a Josephson-junction array.
One can assign a positive or negative charge to the vor-
tex, depending on whether the current flows clockwise
or counterclockwise. For numerical and analytical pur-
poses it is necessary to have a rule which, given a phase
configuration, determines the vorticity, or vortex charge,
M(R) at the center R of each unit cell. We define the
value of this vortex charge to be the rotation of the gauge
invariant phase differences ¢(r,r’):

MR)= 5= 3 (e )
cell

= 51; 2[0(1‘, r') — 27 A(r,x"))
cell

=Q(R) - f,

with integer Q(R). Here, ¢(r,r’) is taken between —m
and 4+7. The sum in Eq. (1.6) is a directed sum over
the bonds surrounding R. The lattice of cell centers R
is called the dual lattice and for each r we take the as-
sociated dual lattice site to be R = r + (X + §)/2, with
unit vectors X and y¥. The parameter f measures the flux

(1.6)
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piercing a cell, in units of ¢o. By symmetry f can be re-
stricted to the interval (0, 1/2) without loss of generality.

We write the gauge invariant phase difference over
bond < r,r’ > as

o(r,x' 1) = po(r,x') + dp(r,x',1). (1.7)

The @o(r,r’) represent the reference configuration, and
this is taken to be the lowest-energy state containing one
vortex in the middle row. In other words, the ¢y form
the ground state of the system, under the constraint that
the vortex charge as defined in Eq. (1.6) is — f in all unit
cells, except for one cell in the middle row, where the
charge 1s 1 — f. These phase differences contain the mag-
netic field parameters A(r,r’). For the boundary con-
ditions we use periodic boundaries in the [10] direction
and free boundaries in the [01] direction, together with
a current bias. We also considered arrays with periodic
boundaries in both directions, but these are not suitable
if we want to study a configuration containing one vor-
tex. Using the results of the analysis in an earlier paper,!®
we now write the set of equations for the dynamics of a
junction array, in a form that enables the reduction later
on:

Bed(t) + B(t)+ < is(r,r+ §,8) >= iav(t),
B.bp(r, v 1) + bp(r,x' 1) + is(r,r' 1)

(1.8a)

=iday(t) + Y ALG(R,R)C(R',2). (1.8b)
R,

Here, G* is the lattice Green function for the lattice with
the aforementioned boundary conditions. C is the circu-
lar sum of the supercurrent around the cell centered at
dual lattice site R:

CR, 1) =Y is(r,2',1),

cell

(1.9)

with summation in counterclockwise direction. < is > is
the spatially averaged supercurrent in the y direction, 7,y
the average current, and & the average phase difference.
There is an equation similar to Eq. (1.8a) for bonds in
the = direction. However, we only consider highly sym-
metrical configurations with an applied current in the y
direction. Therefore, the average voltage in the z direc-
tion can be set to zero. For the present purpose it is con-
venient not to separate out the average from the variables
dp(r,r’,t) directly. Consequently, Eq. (1.8a) is already
included in Eq. (1.8b), but we still write it separately
because this is one of the equations that will survive the
reduction scheme. For other purposes it may be useful
to subtract Eq. (1.8a) from Eq. (1.8b). In that case the
choice of bias only appears explicitly in Eq. (1.8a). The
perpendicular-difference operator in Eq. (1.8b) is

_ J—A; for bonds <r,r+y >,
AJ‘_{ Ay for bonds < r,r+ %X >, (1.10)
where, e.g., A f(R) = f(R) — f(R — X).

We study linear response, and take the external current
to be
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fav(t) = dext(t) = idc + fac sin(wt), with i5c < 1. (1.11)

First we set igc = 0. The parameter S, is set to 100, so
that the individual junctions are strongly underdamped.
The small quantities are ® and the ép(r,r’, ).

Using the representation of Egs. (1.8a) and (1.8b)
we simulate the dynamics of the array. Our results
are obtained in a square lattice with a linear size L =
8 and 16 unit cells, and the amplitude of the oscilla-
tion is ipc = 2 x 1073. We write the response as
®(t) = A(w)sin(wt) + B(w) cos(wt) and determine the
frequency dependence of A and B. In Fig. 1 we plot A
and B for an 8 x 8 lattice with one vortex.

There is an applied magnetic field of f = 0.025, which
corresponds to a minimum in the energy as a function
of the field, given that the configuration contains a vor-
tex. The large resonance corresponds to the bulk single-
junction response. From the single-junction equation
(1.1) one easily finds that the peak is located exactly at
the plasma frequency, which is w, = 1/+/B., when time
is measured in units of 1/w.. The effect of the vortex is
clearly visible as a small resonance at a frequency smaller
than w,. Because the location of this resonance is very

well defined it is very useful in determining the vortex
properties. In the following we concentrate on A(w) for
convenience. In fact, from the Kramers-Kronig relations
we know that B does not contain any new information,
once the full frequency dependence of A is known.

As we focus on the vortex part we plot A in Fig. 2 for

=8 and L = 16. For L = 8 we show two graphs, one
of which is taken at f = 0.025 and one at f = 0. For
L = 16 we applied a field of f = 0.006 to minimize the
energy. There is a significant shift between the L = 8
curves. Below we will explain the origin of this shift,
when we discuss the reduced set of equations. There, we

N —

0.8 | £=0.025

0.6 |

W/wp

FIG. 1. Results, obtained from simulations of the full set
of evolution equations, for the in-phase (solid curve) and out-
of-phase (dotted curve) component of the response of an array
to a current 1 = 7,¢ sin(wt) with t5c = 2 x 1072 in an 8 x 8
array. The curves correspond to a phase configuration with
one vortex in the middle row.
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FIG. 2. Thein-phase component of the response of arrays,
with a phase configuration containing one vortex in the middle
row. For L = 8 we plot a curve for f = 0.025 (solid curve) and
for f = 0 (dotted curve), and for L = 16 we have f = 0.006
(dashed curve). Curves with data points are obtained from
simulations, without are analytical results.

show that the f = 0.025 curve is the more appropriate,
when we seek information on the properties of vortices in
large systems. Comparing the L = 16 curve, we see that
the effect of the vortex becomes smaller. Besides that,
the resonance has moved to a slightly higher frequency.
Assuming this to be best representation for the infinite
system, our numerical result for the resonance frequency
is

20 = 0.573 £ 0.001. (1.12)
Wp

II. A REDUCED SET FOR THE
LINEAR DYNAMICS

We now attempt to describe the observed features in
the response by reducing Egs. (1.8a) and (1.8b) to their
essentials. First we linearize the equations around the
configuration, ¢o(r,r’), and the dual lattice position of
the vortex is written as Ry. From the extensive study of
Refs. 2 and 3, as well as from continuum superconductors,
we expect the vortex contribution to the response to come
mainly from the core. The exceptional role of the core
Jjunctions is brought out by setting

d; for left-hand core junction,

d, for right-hand core junction,

d, for top and bottom core junctions,
« for all other junctions.

cos po(r,r’) =

(2.1)

Here, a is given by the average of coso(r,r’) over all
Jjunctions, except for the core junctions. We denote the
gauge-invariant phase difference over the junction to the
left and right of the core, by 8¢; and 6¢p,, respectively.
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Substituting this in Eq. (1.8a) we obtain
di

—51(1)

BB(t) + B(t) + ad(t) + ~

dr — .
+ I b (1) = (1),

where 7 = ie¢— < singg(r,r + §) >, which is equal

(2.2)

to Zexy only if 74 = 0. N is the number of junc-
tions in the array. The next step is to write down
similar equations for the é¢p; (i = [,7). By symme-

try we can take the voltages over the top and bot-
tom junctions, < Rg + %fc + %5', Ro — %)‘( + %}“' > and
< Rg+ -;—5( - %)‘/,Ro — %fc - %y >, to be identical. Con-
sequently the corresponding phase changes can simply
be expressed in §¢; and dp,. For completeness we write
down the nonzero circular currents:

C(Ro,t) = (dr — dy)bip, (1) — (d — d)br(t),  (2.3a)
C(Rg + %,t) = —(d, — a)8¢p, (1), (2.3b)
C(Ro — %,1) = +(d; — a)bpy(2), (2.3¢)
C(Ro +,1) = 3(d — a)[ip, (1) — Su(1)), (2.34)
C(Ro - 9,1) = $(di — a)[6¢, (1) - b1 (1)]. (2.3¢)

Inserting Eqs. (2.3a)-(2.3e) in Eq. (1.8b) we find, after
some manipulations

Bebpi(t) + 6pi(t) — (1) = Aubpi(t) + Aibdpi(t),  (2.4)

with ¢ = {7, and we have defined [ = r and r = . The
matrix elements are

Au=—3(di + o) + v(d; — a), (2.5a)
A = =27+ 3)(d, — @) = y(d; — ), (2.5b)
An = = (27 + 3)(di = a) = y(d; = ), (2.5¢)
Arr = —=3(d, + ) + 7(d; — ), (2.5d)

where we have set ¥ = V,G*(%,0) and have used that
G*(0,0) -~ G*(%,0) =~ G*(0,0) — G*(3,0)

~ L
g,

(2.6a)

TABLE L
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Y (G*'(R,R) -G (R+§R) =b6rr, (26b)
;

and

V.G*(%,0) = 1[G*(2%,0) — G*(0,0)]

~V,G(§,0). (2.6¢)

Nearest neighbors are indicated by § = +x,+y, and 0
indicates the origin. The approximations in Eqs. (2.6a)
and (2.6¢c) become exact in an infinite, or periodic sys-
tem. With the present boundary conditions the deviation
is less than 2% for an L = 8 lattice. For large systems, the
derivative in Eq. (2.6¢) is approximately —0.182. (Note
that the A and V operator are not the same.) Equa-
tions (2.2) and (2.4) contain the terms in Egs. (1.8a)
and (1.8b), that are first order in the small quantities
® and 6p. Because supercurrents are conserved in the
configuration {po(r,r’)}, the zeroth-order terms cancel.

We can now show that these equations do reflect the
physics of our data. In Fig. 2 we plotted the analytical
result, where the parameters o and d;, extracted from
the corresponding simulations, are listed in Table I. The
comparison is very good, especially when we consider the
enormous reduction we made of the set of equations. The
peak height is practically recovered, and there is only a
small, constant overestimate of the resonance frequency.
Note in particular, that the shift of the L = 8 curve with
an applied field, is indeed present in the “core model,”
indicating that it originates primarily from a difference
in the core junctions. For f = 0.025 the current carried
by the core junctions is closer to the critical current I,
(see Table I), which corresponds to an infinite array. Our
results show that as a consequence of such a field, finite-
size effects are diminished. For very small, e.g., L = 4,
lattices it is even essential to apply an appropriate field,
because the configuration with one vortex is not stable in
zero field. The analytic model shows the same decrease
in peak height, if we go from L = 8 to L = 16, as the
simulations. Also the small shift is reproduced, and in
the core model it results from the slight change in « and
the d;. For an infinite system o = 1 and the d; are zero,
therefore we can conclude that the point of saturation is
almost reached for L = 16, and that our value for wo/w,
is representative of infinite systems.

We now briefly consider the core model for the infinite
system in zero field. Because « = 1 and d; = 0 (i =
{,r,t,b), Eqs. (2.4) can be diagonalized by introducing
new varlables s = ¢, + ¢; and v = ¢, — ;. The equation
for v does not contain the external current, therefore v is
expected to be small. Furthermore, v does not appear in

Values of the parameters used in the core model, as obtained from simulations.

Because of symmetry d; = d, and d», = d;. We also give the values for wo/wp, as obtained from

simulations of the full set of equations.

[0 dt wo/wp
L =38 f =0.025 0.9772 —4.41 x 1073 8.29 x 10~ ° 0.57 &+ 0.01
L=38 f=0 0.9772 0.122 —0.122 0.63 +0.01
L=16 f = 0.006 0.9905 -1.95 x 1073 2.08 x 1072 0.573 & 0.001
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Eq. (2.2) and consequently we ignore it. The equation
for s becomes

Bes + 5 — 2V,G(X)s = 7, (2.7)

with G the (translational invariant) Green function for
the infinite system. This gives a response frequency

wo/w, = \/—2V,G*(X) ~ 0.603, (2.8)

in reasonable agreement with the simulation result (1.12).

We now take iy in Eq. (1.11) to be nonzero. In Fig.
3 we present the results of the response as a function of
frequency for different values of iq.. We clearly see that
the resonance splits into two peaks. This is a result of
the removal of the symmetry between the core junctions.
Despite the off-diagonal elements A;; in Eq. (2.4), each
peak can still be associated by one of the core junctions.
The peak that shifts to a lower frequency corresponds
to the junction that is approached by the vortex. The
other junction more and more resembles the junctions
in the bulk. For currents above the depinning current,
tgep =~ 0.10, the vortex moves through the lattice and
the equations of motion can no longer be linearized. To
give an overview we plotted the resonance frequency as
a function of i4. in Fig. 4. The effect of the dc current
is to give a new stationary distribution ¢o(r,r’). We put
in the parameters, obtained numerically, and in Fig. 4
we plot the resulting analytic curve next to the simula-
tion result. The splitting is clearly present in the results
obtained for the core model, though underestimated. As
the dc current gets larger, the approximations made are
worse because one neighboring junction, not taken into
account, becomes increasingly important.

III. EXTENSION TO NONLINEAR DYNAMICS

In this section we analyze the set of evolution equations
to extract a single equation of motion for the vortex in

0.07 prrrrrrrrr S T S
£ £=0.025

0.06
0.05
0.04
0.03
0.02

0.01

Q)/CDP

FIG. 3. The in-phase component of the response of an
array to a current fexy = fdc + fac sin(wt) with i, =2 x 1073,
The values of i4. for subsequent curves differ by 0.01. The
depinning current, igep, is approximately 0.10.
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FIG. 4. Vortex resonance frequencies obtained from sim-
ulations (e), compared with analytical results (o).

the array, and at the same time find the exact coupling
of this equation to the measured, average quantities.
First we show in Fig. 5 the current as a function of
time, when the vortex configuration in the 8 x 8 lattice at
f = 0.025 is exposed to a dc voltage of 10~%. As a conse-
quence the vortex moves through the lattice. We clearly
see current oscillations just after the vortex has passed
the energy barrier. Then the vortex slides down, and os-
cillates around a slowly moving “equilibrium point.” We
studied these oscillations for 5, = 100 and 3. = 10000
and found that the frequency in both cases is approxi-
mately the resonance frequency, wg. The frequency in-
creases slightly in time, as the equilibrium point moves
to the next junction. From this we infer that the os-
cillations correspond to the high-frequency resonance in
Fig. 4. This is not unexpected because the junction

R T e ——
0.11
0.10 f
0.00 |
0.08
0.07
0.086
0.05 F
0.04 f
0.03 F
0.02 F
0.01 f

AW YT T

<i>

ok
0 200 600 1000 1400 1800

time
FIG. 5. Spatially averaged current as a function of time

for an 8 x 8-array with one vortex, in a field f = 0.025. There
is an applied dc voltage of 10™*.
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that is just passed by the vortex core dominates in these
oscillations, and this junction is associated with the high-
frequency resonance.

We now give a description, not only of the oscillations
but of the full curve in Fig. 5. The model assumptions of
our approach are extracted from Ref. 3. The new ingre-
dient is, that we examine the direct consequence of this
for the full set of equations, and we can directly study
the consequences for the measured quantities, the aver-
age voltage or current. The model introduced in Ref. 3
consists of one nonlinear junction embedded in a linear
medium. We use this “one-junction” model as a start-
ing point to describe the nonlinear vortex characteristics,
because it is the simplest possible model to contain the
basic ingredients.

The coupling constant of the medium is set to a. We
consider the motion of the phase difference over the non-
linear junction from 7 /2 to —w/2 (see Fig. 6). (In this
paper we define the phase difference as drawn in Fig.
6 for the nonlinear junction.) This motion is then di-
vided in a part where 7/2 < ¢ < 7 (I) and one where
-7 < ¢ < —7/2 (II). The restriction of ¢ to (—=,7) is
necessary to define the location of the vortex core with
Eq. (1.6). The evolution equation for ® in Eqgs. (1.8a)
and (1.8b) becomes

Be®+d =ia— < is(rr+7y)>

R lay ——%(sinp—a@)—a‘b. (3.1)
We want the total current to be zero in the starting,
equilibrium state, which means that @ = 2/7 as in Ref.
3. Because ¢ jumps from +7 to —7, ¢ also jumps discon-
tinuously and the net result is continuous. The equation
for ¢ becomes

Bep+ ¢ =~ tay —siny
~ V2 G*(0,0)[sin o — (2/7)p] £ 4A,G*(0,0)
ziav—%sinp—ga/n':tl. (3.2)
In Eq. (3.2), a + (—) refers to part [ (II) of the motion.
To obtain a quantity that varies continuously at ¢ = =+,
we introduce

FIG. 6. One nonlinear junction (solid bar) in a linear
medium (dotted bars). Initially the vortex core is at the site
indicated by the open circle, and we have represented a few
phases symbolically by an arrow. We analyze the set of Eqgs.
(1.8a) and (1.8b) for this one-junction model, and for the mo-
tion of the vortex core from the o to the e.
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z = p—sgn(p)m <= ¢ = z — sgn(z)~. (3.3)
The equation of motion now becomes
A 1 .
ﬁc:c+x-—2—smz+-7-r-x:zav, (3.4)

where z is restricted to the interval (—7/2, +7/2). Note
that with this definition of z, the stable equilibrium po-
sitions occur for £ = £7/2 and not for £ = 0. The depin-
ning current obtained from the one-junction model is ap-
proximately 0.10 and the resonance frequency is 0.564w,,
in agreement with the simulation results. In a Fourier
sum the sin 2z component of 1 sinz — (1/7)z has a coef-
ficient 1/37, which agrees with the more rigorous results
of Ref. 2. Equation (3.4) is the same result as in Ref. 3.
However, to obtain it we do not put in an ad hoc assump-
tion or a variational form for the phase configuration.
Instead we only require the vortex charge, as defined by
Eq. (1.6), to have the appropriate value, which is the
minimum amount of information necessary to describe
the presence of a vortex. From this requirement, result
(3.4) is derived by taking into account the complete set of
constraints of current conservation. Besides Eq. (3.4), we
obtain the precise consequences of the linear medium ap-
proximation, for the measured quantities. In fact, these
measured quantities explicitly bring out the serious flaw
of the one-junction model. To see this, we plot in Fig. 7
the average current as a function of time for an average
dc voltage V = ® = 10™*, using Egs. (3.1) and (3.4). To
obtain this figure we extend the potential periodically,
so that the z changes abruptly from 7/2 to —7/2. In
other words we take the nonlinear junction along with
the motion of the vortex. The averaged quantities in Eq.
(3.1) vary continuously in response to these jumps in z,
because the average current is designed to be zero before
and after the jump.

Although the plot is qualitatively the same as Fig. 5
there are important quantitative deviations. First, the
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FIG. 7. Average current as a function of time for an array
with a vortex, as described by the one-junction model of Eqs.
(3.1) and (3.4) (see also Fig. 6).
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slopes of the curves differ substantially. The values of
the slopes are approximately given by the prefactors «
of ®(t) in Egs. (2.2) and (3.1), respectively. For the
real array the slope is approximately unity, as one can
expect from our earlier analysis (see Table I). For the
one-junction model we have taken o = 2/7 to get the
zero net current in equilibrium. This clearly illustrates
where the model fails. In the array the current in all
vortex-core junctions is ideally [.. This means that the
current of the one-core junction is compensated by the
opposite core junciion, and the rest of the medium trans-
ports little; i.e., a is close to unity. In the model we have
spread this return current over all junctions, with no spe-
cial role played by the opposite core junction, leading to
a = 2/x. With this knowledge of the major weak spot
it may be possible to improve on the model. As a first
attempt one can assign a separate linear coupling o’ to
the other core junction, in order to take into account its
exceptional position. Then one has to impose the proper
continuity conditions at the point where the bonds are
shifted along with the motion of the vortex. In the model
above, the continuity is automatically satisfied. Such an
approach may allow for improvement upon the value of
the slope. At this point it is hard to predict whether this
also helps to resolve some other deviations, of the results
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of the one-junction model, from simulation results: there
is a small region with a negative net current in the one-
junction model, and the amplitude of the oscillations in
this region is smaller than in the simulations. Therefore,
further study is necessary to see if such an approach can
indeed yield a set of two equations, which reflects the full
set quantitatively, perhaps in a limited regime of vortex
velocities.

Finally, we repeat that our results pertain to the under-
damped classical regime because our approach is based
on the classical Langevin equations. Experimentally,
both underdamped classical junction arrays and arrays
in the quantum regime are of great current interest.®°
Although our method is not applicable to the latter, the
classical resonance frequencies of vortices described in
this work are expected to be important physical param-
eters in the quantum regime as well.
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