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The dc ~osephsoa effect of a constriction in a taro-dimensional superconductor-semiconductor-
superconductor junction, i.e., a superconducting quantum point contact, is investigated theoretically
for both long and short constriction lengths compared with the superconducting coherence length.
It is shown that the critical current, Of a, ballistic Superconducting, quantum point contact increases
stepwise as a function of its width under appropriate conditions. The step height generally depends
on both the superconducting energy gap and junction parameters. The effect of normal reflect&ons

at the superconductor-semiconductor interface is also examined.

I. INTRODUCTION

It has recently become possible to study high-mobihty
devices in which the electrons can travel ballistically, and
it is now established that the conductance G of a quan-
tum point contact (QPC) in a two-dimensional electron
gas (2DEG) is quantized in units of e /irh. This sur-
prising phenomenon results from the quantization of the
transverse momentum of the electrons in a constriction
having a width of the order of the Fermi wavelength.

One possible extension of these studies on the quantum
transport in a 2DEG is to explore the quantum transport
of Cooper pairs, i.e., the Josephson effect between two
superconductors coupled by a 2DEG in a semiconductor.
In fact, the Josephson current through a 2DEG was ob-
served in a Nb/p-InAs/Nb junction before the discovery
of the quantized conductance, using the native inversion
layer of p-type InAs. However, this junction was a dirty
system, where the motion of quasiparticles was not bal-
listic but difFusive. To our knowledge, a very clean and
high-mobility S-Sm-S junction (9 and Sm denote su-
perconductor and semiconductor, respectively) has not
yet been made, but in the near future, progress in mi-
crofabricntion and crystal growth technology will make
it possible to fabricate high-mobility 9-Sm-S Josephson
junctions.

Consider a constriction in a 2DEG of a high-mobility
S-Sm-5 junction with gate electrodes. The constric-
tion acts as a superconducting quantum point contact
(SQPC) of variable width, whose normal-state conduc-
tance is quantized. It is well known that the criti-
cal (maximum) supercurrent Ig of a classical Josephson
point contact is given by zbG. /ep, where Ep is the or-
der parameter of the superconductor. Thus, it is very
likely that I~ of the S-Sm-S junction is quantized in

unit~ of ehp/h, if the resistance of the S-Sm interface is
much smaller than the quantized resistance of the SQPC.
However, this scenario is too simple since the scale of
two characteristic lengths is neglected. s The first one is

the Fermi wavelength As. , which determines whether the
wave nature of electrons appears in the transport through
the constriction. The other one is the coherence length

( = llvF/7l Ap, where vF is the Fermi velocity of the semi-
conductor, not the superconductor. It is known that the
Josephson current flows mainly via bound states (excita-
tion energy E ( b,p), and the number of bound states is

roughly proportional to L/(, where L is the length of the
semiconductor. For very short junctions (L (( g) the cur-
rent is carried by a single bound state while many bound
states contribute to the Josephson current for very long
junctions (L )) (). It is the coherence length ( that
determines the nature of the supercurrent flow. The
critical current is quantized in units of eEp/h only for
S-Sm-9 junctions whose semiconductor length is much
shorter than the coherence length, as will be discussed
in Sec. III.

The Josephson effect through a small number of chan-
nels, i.e. , the resonant tunneling in a quantum box cou-
pled with two superconductors, has very recently been
studied by van Houten. He also briefly mentioned a pos-
sible combination of ballistic devices and superconduc-
tors. The issue of the critical-current quantization for an
SQPC has been studied by Furusaki et al. ,

9 and the spe-
cial case of a very short constriction has been investigated
by Beenakker and van Houten. iP An SQPC coupled to
another electron reservoir has also been considered by
van Wees et al.

This paper gives a more detailed description of the dc
Josephson effect of SQPC's than previous papers. i The
theory of Beenakker and van Houten is included in
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our theory as a special case of a very short point contact.
We demonstrate that the critical current shows a step-
wise increase ns the constriction becomes wider. Each
time a new channel opens in the constriction, the critical
current increases abruptly. The step height of the critical
current in general depends on junction pnrametcrs, such
as the separation 1. between two superconductors, as well
as on the superconducting energy gap Qp. Qn t, he other
hand, when the normal reflection (electron~electron or
hole~hole) at S'-Sm interfaces dominates, the critical
current shows peaks due to resonant tunneling instead
of the stepwise increase

Section II describes the calculation method for the dc
3osephson current using a simple two-dimensional model.
Section III investigates the case where the width of the
constriction varies slowly compared with the Fermi vrave-

length. In this case the scattering between the channels
is negligible, and hence we can calculate the dc Josephson
current analytically in a simplified WKB approximation.
Section IV examines the opposite limit where the width
changes suddenly and the scattering between the chan-
nels is no longer negligible. The method of numerical
calculation is explained in detail and the results for a.

simple rectangular model are given. The effect of normal
reflections at the S-Sm interfaces on the Josephson effect
is studied in Sec. V. The main results are summarized in
Sec. VI.

II. METHOD OF CALCULATION

H z, y Qz)y uz)y ~ ux, y

where H(z, y) is the single-electron Hamiltonian,

Q2 Q2
H(z, it ) = — + + U(z, y) —E~

2m 6$ By

(2.1)

(2 2)

In this section, the dc Josephson current is calculated
using the temperature Green's function which is con-
structed from the eigenfunctions of the Bogoliubov-de
Gennes (BdG) equation. ~s It is shown that the Josephson
current is given by the scattering amplitude of Andreev
refiection. '

We treat an SQPC as a, two-dimensional system, and
take the z axis along the constriction; the net Josephson
current flows in the z direction. It is assumed that the
transport of quasiparticles with an effective mass m is
ballistic and that no magnetic field is applied. The mo-
tion of the quasiparticles is governed by the BdG equa-
tion

FIG. 1. Schematic drawing of a. two-dimensional model
for an SQPC.

and A(z, y) is the pair potential. The width of the sys-
tem in the p direction is assumed to vary only in the
semiconductor (0 ( z & I.) and to be constant Wg in
the superconductor (z ( 0 and z ) L) The geo. metry of
the system is defined by the hard-wall boundary condi-
tion (Fig. 1). That is, the wave functions vanish at the
boundary.

The Fermi momentum of the semiconductor is gener-
ally different from that of the superconductor. Thus the
potential U(z, y) has different values in each material.
This difference causes normal reflections at the S-Sm in-
terfaces, which reduces both the Cooper-pair amplitude
penetrating into the semiconductor and the 3osephson
current, We assume that, U(z, y) is constant in the
superconducting region.

In principle the pair potential should be determined
from the self-consistent gap equation, but instead we sim-
ply assume that it is constant in the superconducting
region and vanishes in the normal region:

~(z, u) = ~(z)
= AD [8(—z) + exp(ip)O(z —L)] . (2.3)

In many cases this rectangular pair potential is su%-
cient for obtaining quantitatively correct results and has
been adopted by a number of authors. - In particu-
lar, Plehn e] a/. have shown that the spatial variation of
the pair potential near the interfaces can be simulated by
using an eKective S-S separation I' with a rectangular
pair potential.

The solution of Eq. (2.2) is a linear combination of
plane waves in the regions z ( 0 and z ) L. The wave
function representing the process in which an electron-
like quasiparticle is injected from the left-hand side is
written as

4i, (z, ~) = e'"'

Wg
+bi,.I,e '"~

I
sin q& I y+ (2.4)
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if~~O, and

4ij(»y) — ) ci'te ""
I

'
'~/2 + dijte '""

~ -iyj2 I
sin q» I y+ (2 5)

if x & L, where j is a positive integer,

2 n& 1 ( 0)
pt+ =,(Er +f1) —qt, qa =, uo = —

I
1+—I, vo ——

h Ws' 2g &' 2q E

and A = v E~ —A~.

(2 6)

The coefficients ai&q, bi&l„cijt. , and dijt are functions of the energy E and the phase difference y across two
superconductors, and they are determined by the matching conditions discussed in the following sections. The
retarded Green's function is obtained by combining the above wave function and three other types of wave functions.
The method is briefly described in the Appendix.

The dc Josephson current I can be calculated from the temperature Green's function, G „(z,y: z', y'), which is
obtained by analytic continuation, E+i0 ~ i~„, from the retarded Green s function. Here u„ is the Matsubara
frequency, s.(2n+ 1)/P (n = 0, +1,+2, . . .), at temperature T = I/k&P. Taking into account the charge-conservation
law, the current at z = 0 is calculated:

eh '' (0 rj& 1I = . dy i, —
i

—) Tr[G„„(z,y: z', y')]

(p +p" + — »j(~ ~-) n»&(V, i~-)
2hP -Q„~j ' i + —

)
'

j—
&

(2 7)

where 0„=(w„+ b.o) j . If the kinetic energy of the jth channel along the z axis is much larger than the energy

gap, that i, 'f p ~ p pj = {2mEp/fi —q. ) I, Eq, {2.7) csn be written as

eLp ). ).[~i&j(V'~i~~) —eij~(—p, i~~)]," j=l
(2 S)

where & is the largest integer to make p& a real number, i.e. , the number of open channels. Thus the Josephson
current is given by the Andreev-scattering amplitude ai

The comment on Eq. (2.7) is here in order. So far we have derived the expression of the dc Josephson current in

te~ms of imaginary energy ice„: I =
& g I(i~„). This expression can be rewritten in terms of real energy E as

1I = —) ' I(i~„)= dz
.I(z) tanh = — dE Im [I(E)]tanh + .I(E) tanh

Pz 1 PE dE PE
,+g, 4+i 2 vc 2 g 4+i

(2 9)

The contours Ci, C2, and C are depicted in Fig. 2. The first term of the right-hand side of Eq. (2.9) is the contribution
from continuous energy levels with E ) 60. Since the scattering amplitude of the Andreev reflection has a pole at
E = +E~, wllel'e EIj ls a bolllld state's energy (0 & E~ & 60), the second term gives the contribution from bound
states (discrete levels). Thus, our formula (2.7) contains both contributions in a single expression. We also note that
Eq. (2.9) should coincide with a result obtained from the relation between the Josephson current and y dependence
of excitation spectra.

III. ADIABATIC TRANSPORT

In this section we consider the case where the width of the constriction W(z) varies slowly compared with the
Fermi wavelength. In this case the scattering between the channels can be neglected so that the Andreev-scattering
amplitude a;zp is nonzero only for j = k.

We solve the BdG equation in the WKB approximation to obtain the amplitude a;j (= a;jj). In this and the next
section we put U(z, y) = 0 to concentrate on the quantum conduction of the supercurrent through the constriction
by restricting our discussion to the case of an ideal S-Sm contact. The effect of normal re8ections will be discussed
in Sec. V. From the assumption of the adiabatic transport, the wave function of the quasiparticles in the jth channel
can be written as



10 566 Pl'JRUSAKI, TAKAYANAGi, AND TSUKADA 45

y, (z, y) = y, (x)sin g~
~

(3.1)

where a two-component wave function Pi(x) obeys a modified BdG equation:

d*' IV( ))
&i(&) = E&i(&)

2m de~ 8'(x) +
(3 2)

We solve Eq. (3.2), assuming the form of the wave function as

1'

sp n
(

o I ir x 0
(

b
-ip+. T

I
u(i

l) z&0

i'~( )=( (~&y~ ' *+Ay~ ' ) I+ Tx, &'' ''+ha '' '' I, O&z L&

~p+. u, e'«' '( ~p-. voe'v'&' l
Voe ) uoeI + di~'e z&L,

where

(3.3)

h z j (3.4)

The matching conditions at z = 0 and L are given, within the Andreev and WKB approximation, by

~0 + Qy& vp —Q'y&, o'~& exp l

. (~
k,
+( z) dz = ci, uo exp i

I

p+ I, + -V
I

vo + a~&uo ——p», ppj exp
. (,

k, (z)dz = ci, vo«p t'I p+L —-p
~

'I (3.5)

b» —d» = P» —
('-(ii = 0,

The solution of Eq. (3.5) is

Ap [exp(iC, ) —exp(i(p)]
(E + 0) exp(ip) —(E —0) exp(i4& )

'

where 4&&
——fz [k+(z) —k (z)]dz, and hence the dc Josephson current is obtained from Eqs. (2.8) and (3.6) as

(3.6)

N
2ed(i ) ) . sing

&p . ; (2~„'+ 40) cosh 4, + 2(v„O„sinh C~ + b, ozcosy
(3 7)

where 4& ———i4&(E ~ iur„)
To see the qualitative feature of this result, we shall consider two interesting limits. First, in the limit L « (, Eq.

(3.7) becomes

I = & ) = N sin(p/2) tanh~ cos(p/2) ~,
2e4~& sin p e40 lAo

hP 2ur~ + b,o~+ 60~ cosy h (,2k' T r
(3.8)

which is a natural extension of the Kulik and Omel'yanchuk's result for a classical superconducting point contact,
and is in accordance with Eq. (17) of Ref. 7. The 3osephson current is a multiple of the supercurrent carried by
a single channel which depends only on Ao except for universal quantities e and h at zero temperature. Thus, the
critical current Ic will increase stepwise as the constriction becomes wider, and the step height is e40/h at zero
temperature.

On the other hand, if L )) (, Eq. (3.7) can be written at zero temperature as2

4e ) ) sin(np)
j n=o

(E —0 (" ( 2nEL e

(,E+0) q h, I. .
- '~ (—z. & p & z.). (3.9)
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t' I
v; = — dz

i L o hko(z) )
(3.10)
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With this carrier density, an 18-nm increase in Wo corre-
sponds to the opening of another channel. The coherence
length $ = hvF/~Bc is 180 nm. One can notice that the
behavior of Ip is completely diAerent for the two limits,
L » ( and L « (. As expected, Ic shows a nearly linear
increase in the case of L » (, while Ic increases stepwise
in the opposite limit.

Next we shall examine an ordinary SQPC whose width
varies spatially (Fig. 1). To be specific, we assume that
the width W(z) varies as

s N

WN O~~P Ws

1
w(z) = w, —w~e-'

1 —e-4

—(Ws —W)v) exp -16 ———
L 2)

Figure 4(a) shows the critical current as a function of the
minimum width W)v for a fixed value of Ws = 120 nm.
The dc 3osephson current as a function of the phase dif-
ference is also shown in Fig. 4(b). The curves correspond
to the cases of L & ( (A), L —( (B), and L & ( (C
and D). In Fig. 4(a), Ig increases stepwise for the two
cases of longer L while in the upper curve the contribu-
tion from the tunnel current, through the closed channels
smears the steps. It is interesting to note that the step
height of each curve is strongly dependent on the length
L and is less than eho/h = 0.24)uA. Moreover the step
height of the lower curve decreases as the critical current,
increases. The change in the current-phase (I —p) re-
lation from I oc sin(p/2) for short SQPC's to I oc p for
long SQPC's is clearly seen in Fig. 4(b). The difference
between the results for L » ( shown in Figs. 8 and 4(a)
suggests that spatial variation of the constriction width
is necessary to observe a clear stepwise increase in the

FIG. 5. Schematic drawing of the model with a rectangu-
lar constriction.

critical current. The geometry of the system is one of
the important factors to determine the supercurrent IIow
in SQPC's. Another example of the geometrical effect,
geometrical resonance, is discussed in the next section.

IV. NONADIABATIC TRANSPORT

In this section we examine the case where the width
of an SQPC changes suddenly in the normal region. The
geometry of the system is shown in Fig. 5; the width is
assumed to be Ws for z & z (= (L —D)/2) and for
z ) z+(= (L+ D)/2), and to be W)v for x & x & x+.
It is riot a trivial issue whether the critical current in-
creases stepwise as a function of the width WN in such
a situation that the mode conversion, i.e. , the scattering
between the channels at z = z+ and x, is important.
The dc Josephson current is calculated by a fully numer-
ical method as described below.

In this system the wave function g»(z, y) can be writ-
ten as

0(z& z

z (x(z+

z+(z(L

(4.1)

;,~, , Iv) u)e ' sill ()& ~
v +

(vo
w,+) ai, ie"~

~
+ ~»)e ' ' '

I
sin qi y+ x&0

OC

) (&') is+~ P(i) —iJ+(T. T

1=1

+ . ) .k;( — )+~() -a,('1 (y) — 0
sin ql y + 9

lj1 1j l 1 2
CQ

( ) ( ) (-')eik~+(x —x ) + P(2) —sk,+(x—x+)
~1=1

I

i. )(;, (T —X+) + P( ) —~, (T —T )
ljl Sin gl g +

2
OO

(3) k,+( — +) + g(3) —k, ( —1.)
0

1=1

.ih, (T —I ) + P
—ik, (T —T+)(3) i:~.

— T-C. S
Sill g( g +

2

~s
ei ie'"~' ) o l+di ie 'i'~( ~), 2 sin qi y+, x&I,

voe 2
, 1=1
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where

2'
(E~ 6 E) —

q,', k,
2'l71 l~ le

(E kE) —
q, , q =, ql ——

h' (4.2)

In practical calculations, the number of modes must be cut off to be finite (Miv for z & z & z+ and Ms for z & z
and z ) z+), and we set Mlv ) 20 and Mg ) 40 in numerical calculations.

The matching equations at, z = 0, z, z+, and L are transformed into two sets of equations in the Andreev
approximation. The first set consists of 4 x Mg equations:

(~) (2) i k+ D it+a it—+r) Slm crrj~ + P1&~e = (u06jl + a1jlv0)e &
—+ b1j l&oe

S

) pr
~ 7,r. e ' +rr, . ) = (vo6~r+a»ruo)e'"' '-+b»rvoe

S

) .pr (arr
e'"+ + p, . ) = e'v& (crrruoe '"+*-+d»rvoe'"+' ),

m

) pr (Yrl + 6rr e '"" = e ' c,rrvoe
' '* y d»ruoe'" *-)

S

(4.3)

where

l4'~ . Wiv 5
Sin ql, q +, Sin qrrr y +

~
dy.

2 2
(4.4)

The other set of 4 x M~ equations comes from the matching of the derivative of the wave function and is given by

0
~ ~

1'
r',

a~. —p~. e' = „, s u e'' * +, ) k pr (ar rroe' —br ruoe
' ),

0

1 y. e '" —6 =p ve''' + ) kpr arruoe''' —&rrvoe ''' ),
vVpf 1V

err joe Pl jm I
= e g kl ~im c1j lu0e dlj lv0e

-0 (2) ik+D (2) & i/12 ~ - 0 -ik]+x ~ iki+~
pm pm~

k0 (2) b( ) -ik D -ivr/2 & kOg . Ik, z -d ck& z
~1j m 1jme ~ = e ~ g f 1m Clf LVOe ' — ljlBOe

N

(4 5)

where kl0 and k~0 are given by setting E = 0 in Eq. (4.2).
Equations (4.3) and (4.5) are sufficient for determining
the 4 x (Ms + Mlv) unknown coefficients. The scatter-
ing amplitude a1jl(p, iu„) is numerically calculated from
these equations with E ~ i~„. Then the dc Josephson
current is obtained via Eq. (2.8).

The critical current Ig is calculated at T = 0.5 and 1

K [Fig. 6(a)]. The dependence of I on p is also shown
in Fig. 6(b). We set I = 100nm, D = 20nm, Ws =
120nm, and the values of the other parameters are the
same as those in Sec. III. The length L of the normal
region is about half of the coherence length. Thus, if
one assumes that the mode conversion does not acct
the total supercurrent flow, it is naturally expected that
the S'~ —I~ curve shows a clear stepwise change from
the discussion given in Sec. III. As expected, a stepwise
change can be seen clearly in Fig. 6, which shows that the
mode conversion is not relevant for the total magnitude
of supercurrent.

Since the abrupt change of the width gives rise to nor-
mal reflections at z = z and z+, most electrons go

and return many times in the narrow region until they
reach one superconductor from the other. The interfer-
ence caused by the multiple reflections influences not only
the transmission probability of a single electron, i.e. , the
normal-state conductance, but also the Josephson cur-
rent which is the flow of Cooper pairs. This is understood
by the following consideration. The supercurrent is car-
ried in the normal region by an electron and a hole which
are Andreev reflected at S-Sm interfaces, creating or de-
structing a Cooper (Fig. 7). The electron and hole indi-
vidually travel from one superconductor to the other su-
perconductor while keeping their phase coherence. Since
the Josephson effect is due to the phase-coherent propa-
gation of Andreev-reflected electron and hole waves, the
probability that each quasiparticle (electron or hole) goes
through the constriction is a key factor determining the
flow of supercurrent. Thus the multiple reflections at
z = z and z+ give rise to resonances in the probability
and, at the same time, in the critical current.

Some typical results on this geometrical interference
eA'ect are shown in Fig. 8. The length D of the nar-
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uo + Qljvo + bljuo —Alj + plj, vo + Qljuo + blj vo —Tlj + blj,

( r, ) ( s,
e' (cl&uo+ dl&vo) = alj exp i k+(z)dz + plj exp ~
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) k ~ )

L ) ( I
c 'v'
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o ) ( 0 )

cxlj —pl, —(uo + aljvo —bljuo) = —2iZj(nlj + plj)r (5 2)

71j blj (vo + nlju0 bljv0) — 21Zj( flj + blj)t

( I, 'l ( L,

e'+j (cljuo —dljvo) — alj exp i k+(z)dz —pl& exp i —k+(z)dz = —2iZje'+ (cljuo + dlzvo),
) I ' )

(
e '~

(cl& vo —dlz uo) — pl j exp i k (z)dz —blj exp —i k (z)dz.
) & o

' ).
2iZ—je / (cljvo + dljuo),

where Zj —rnV/h pj. From the solution of Eq. (5.2) we obtain the dc Josephson current as

N
2eko x X.sing
rp ~-~- r '

tajn

where

L
4+ = (k++k, )dz

0

I' = [~„+0„+4Z& (1+Zz )0„]cosh 4 + 2~„0„(l+ 2Z ) sinh Cp + 4Z& (1 —Zz )O„cos Cp~+

+8Z& A„sin Ct+ + 60 cos ip,

L
tip = — (k+ —k )dz

J l i 2
E E~iu

(5.4)

The wave number k+(z) has already been defined in Eq. (3.4) with W(z) given by Eq. (3.11).
In Fig. 9 we show the critical current at T = Q as a function of the minimum width W~ for various values of

Z—:mV/h po, where po = (2mEF/h )'j~. The value of Ws is chosen as 200nm, and the other parameters are
the same as in Sec. III. Figure 9 shows that Ic Wftf curve -begins to show clear resonant peaks as the parameter Z
increases, i.e. , as the normal reflection becomes dominant. These peaks originate from the interference of quasiparticles
which go and return many times in the semiconductor. This is easily seen by rewriting Eq. (5.4) as

ar
(fI„' + ~„' + 2ZsO~ )

2 exp( —4, )

1+

(1 —iZj) exp 2i k+dz + (1+i Z&) exp 2i k—. dz

—p(t + a )exp( —
O~ ) roe tr

where k+—:k+(E —p iu„). The terms proportional to

exp —4. on the right-hand side rhs of Eq. 5.5 cor-

respond to the process in which an electron experiences
the Andreev reflection at both S-Sm interfaces while
making a round trip; an electron is reflected as a hole
at an S-Sm interface and then the hole is reflected as an
electron at the other 9-Sm interface. These terms cause
no interference. The interference comes from the term
proportional to exp Pi fe t de exp —Pi fe t de)

L-

I

which represents the round trip of an electron (a hole)
having suffered the normal reflection at the S-Sm inter-
faces. A resonant peak in Fig. 9 appears when the rhs of
Eq. (5.5) takes a minimum value. It is interesting to note
that the resonant tunneling for a large-Z value exactly
corresponds to the resonant-tunneling Josephson eA'ect

studied by van Houten, although we consider only the
static Josephson effect.

Figure 9 suggests that, when the normal reflection at
the 9-Sm interfaces exists, the stepwise increase in the
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1.0
The situation which could be achieved experimentally lies
in between that shown in Fig. 9 and in Fig. 10.

VI. CONCLUSIONS

& 0.5-

0.0
0 50

~N (nm)
100

FIG. 9. The critical current as a function of the width at
zero temperature. The normal refiection is incorporated into
the theory via the parameter Z: Z = 0 (A), 0.2 (B), 0.5 (C),
and 1.0 (D). We set L = 100 nm and Ws = 200 nm.

critical current can hardly be seen. Instead, resonant
peaks are observed. In real systems, however, the finite-
ness of the phase coherence length L~ and the intermode
scattering discussed in Sec. IV may cut off the multiple
reflections and make the resonant peaks broader. We
shall consider an extreme case where only the direct
(lowest order) process contributes to the Josephson cur-
rent and the higher order processes involving multiply
reflected quasiparticles are negligible. This is achieved

by replacing the rhs of Eq. (5.5) by unity, and thus the
Josephson current is given by

0.8

N
4eko sin y'- ~P? -?-(n. +..+2Z, n. )

'"'(-'»
~n

(5.5)

The Ic WN relation c-alculated from Eq. (5.5) is shown
in Fig. 10. There is, of course, no resonant peak in the
figure, but the critical current increases almost stepwise.

The dc Josephson effect of an SQPC has been investi-
gated both in the adiabatic-transport regime and in the
nonadiabatic-transport regime. The Josephson current is
calculated from the scattering amplitude of the Andreev
reflection which is obtained by solving the Bogoliubov-
de Gennes equation. It is shown that, for the ideal S-Sm
interface, the critical current increases stepwise as a func-
tion of the constriction width. The step height depends
not only on the superconducting gap Ao but also on the
separation between two superconductors L; the geometry
of the system also influences the critical current. Using
an artificial model in which the width changes suddenly
from S'g to WN and vice versa, it has also been shown
that resonant peaks appear which are due to the interfer-
ence of an individual quasiparticle which goes and returns
in the narrow region many times.

The Schottky barrier and the mismatch of the Fermi
momentum cause the normal reflection at the S-Sm in-
terface and may prevent the observation of the stepwise
increase, i.e. , quasiquantization of the critical current.
This issue has also been studied phenomenologically. Our
findings are the following. If all the higher-order pro-
cesses involving multiple normal reflections contribute
equally to the supercurrent, then the I~-6'N curve shows
resonances corresponding to the resonant tunneling of
Cooper pairs through a resonant level formed in the semi-
conductor by the diagonal potential barrier rather than
by the off-diagonal (pair) potential. On the other hand,
if the multiple normal reflection is not effective, the res-
onances disappear and the stepwise change can be seen.
Although experiments for confirming our idea may be
di%cult, it is expected that in the near future when a
high-mobility SQPC with clean S-Sm interfaces is fab-
ricated, the quasiquantization of the critical current or
alternatively the resonant structures due to the normal
reflection will be observed experimentally.
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FIG. 10. The critical current calculated from Eq. (5.5).
The parameters are the same as in Fig. 9.

APPENDIX

In this appendix we describe the method to construct
the retarded Green's function from the solutions of the
BdG equation.

The wave functions are plane waves in the regions z (
0 and z ) L since the pair potential is constant. In
addition to the wave function given in Eqs. (2.4) and
(2.5), there are three other types of wave functions.
The wave function for the process in which a holelike
quasiparticle is injected from the left is written as
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T

e sin[q, (y+ Ws/2)] I

+ «) a»~e '""
I I

+ b»ae'""
I I »n[qa(y+ I4's/2)] x&0

k=1

w ) c»te '"~
I —;~/~ I+d»ae'"~

I i~/~ I »n[qa(y+~s/2)], » L.

(AI)

The other two types of wave functions representing the process in which an electronlike, or a holelike quasiparticle is
injected from the right are written, respectively, as

and

A, ( zy)=« '"

w ) c3jp e '»
I I + d'ye'&~

I I sin[qy (y + Ws/2)], x&0
4 "p) 4 "p).

2
w sin[qz (y + Ws/2)]

+ «, ) . as/ke '""
I a~/2 + bsjae'""

I -,v/s 1»n[qa(y+ ~s/2)],upe 'v' ) qvpe

(A2)

«, ) . c4~te'"~
I I pd4, ~e '"~

I I »n[qt(y+ ~s/2)],pup) ' Evp)
s(p/2

$4, (z, y) = g
e'"~ «sin[q, (y+ Ws/2)] I )

) a4&ae'~ l,v/2 I + b4&l.„e '&I' I;&/~ I sin[qt(y+ TVs/2)],(vpe '& ) 1 upe

z&0

z&L.

(A3)

It is easily verified that the coefficients a,/z(E, p), b;&I, (E, p), c;&I,(E, p), and d;&I,(E, p) satisfy the following detailed
balance relations:

py agji.„(p) = p a41,/( p)+

p& b2 ~(v ) = p, b» ( W)-
pl, b4&i(v) = p, b4t&( v), —

pk c»~(q) = p, «»( q)-
p&d»~(~) = p d»~( q)-

p~a~/'(V) = p a2~~(-~)+

pl+, bi, ~(v ) = pubis, ( y), —

p~+b;~(~) = p+b. k, ( q), -
pk cl/k(V ) =

p& esp/ ( —p),+ . +

pl, d»~(v ) = p,+41;& ( p), —

(A4)

From these relations, it is proved that the retarded Green's function G"(z, y: z', y', E) is give»y

) .[,'V;(., y)i,*,( ', y')+,'4;(*,y)&h(" y')

j,k=1

+~s, l, A, (z, y)4gp(z', y') + &4gl «g(» y)&4(z' y')]
(& Q. &)V) j —& ).[P, 0, (*,y)@' ( ', y')+/I @ ( y)@l.(

' y')

+P, g, (,y)4", .( ', y')-+P, 0, ( y)4l (
' y')]

z & z'
(A5)

where f(p) = f( p), g, is the—transposition of g;&, and n; and P; are the solutions of the following equations:
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) (lrjj lc3lk + cr3jld4lk)
1=1

) (&1jld3lk + cr3jlc4lk)
l=1

(&2j lc3lk + &4jld4lk)
t=l

irnE
k + cx4jlc4lk) —

2 bj, k ~

I p,
—. O

(A6)

1jl &3lk

t=i

2jl &3th

t=s

OOimE
+ P3jld4lk) —

2 + bj, k & ),(Plj ld3lk
t

+ P4j ld4lk) = O& ) (j32jldslk + P4j lc4lk)
t=l

+ P3j lc4lk) —O&

imE
Q

2 t

Pj

Substituting these equations into Eq. (A5) yields, for z, z ( 0,

2imE 1
G"(z y: z', y'E) = —

2 ). ~ »n[qj(y + Ws/'2)]
&'~Ws, , p+

e'"~ ' ' sin[qj(y+ Ws/2)]

vo

tlpVp )
2irnE . 1). »u[qj(y'+ Ws/2)]

S j 1Pj-
e

—'"~ I*-*'I
sin[qj (y + Ws/2)]

+ ) btjke
' "& +"~ * sin[qk(y+ Ws/2)]

+ + +~t . Qo

tto Vo
k=1

+ ) aljke' "" "~ * »n[qk(y+ Ws/2)]

Vp
2

OO 2

+ ) b2jke'&"& +"~ & sin[qk(y+ Ws/2)]

OO
+ — ' V V Q+ ) a2jke '("& "~ I sin[qk(y+ Ws/2)] l

Vp tip Vp )k=1
(A7)
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