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We study the negative-U Hubbard model by exact diagonalization of a 4 x 4 cluster with different
numbers of particles. We calculate the ground-state energy and wave function as well as the one-
particle, charge-, and spin-excitation spectra. We show that the BCS approximation gives results
in good agreement with the exact ones for the ground-state energy and wave function in the whole
range of U. In the one-particle excitation spectrum the BCS dispersion relation gives the position
of the most intense peaks of the exact calculation. Lower-energy (quasiparticle) excitations, which
are interpreted as strongly dressed Bogoliubov quasiparticles, also appear. The occurrence of pair-
breaking and collective excitations in the charge- and spin-excitation spectra and the interplay
between one-particle and collective modes are discussed.

I. INTRODUCTION

The discovery of high-temperature superconducting
materials has opened questions in the fields of supercon-
ductivity and strongly correlated systems, but has also
renewed (he interest in some old unanswered ones. The
short coherence length of these superconductors suggest
that they are probably in an intermediate regime between
BCS weak-coupling superconductivity and Bose conden-
sation of composite bosons. This has triggered efforts
toward the understanding of the evolution between these
two regimes. A simple model which can be used to de-
scribe this evolution is the negative-U Hubbard model.
This model, however, does not include long-range interac-
tions, and consequently collective excitations that involve
charge redistribution which should have energies of the
order of the plasma frequency occur at low energies. If
experimental data are interpreted in terms of this type of
model, one should bear in mind this unphysical feature.

It has been shown that the BCS wave function evolves
continuously as the interaction strength changes and that
it is a good variational ansatz both in the weak- and in
the strong-coupling limits. The slave-boson technique
has also been used to study the ground state, showing
only a slight improvement in the energy for intermediate
values of the interaction strength. However, the exci-
tations are quite different in both limits: pair-breaking
excitations with an energy gap 2A dominate in weak cou-
pling, while in strong coupling strongly bound states ex-
ist and the lowest-energy excitations are collective modes
like those of superQuid He, pair-breaking excitations be-
ing much higher in energy.

In this work we study the ground-state and excitation
spectra of the two-dimensional (2D) negative-U Hubbard
model with exact, diagonalization techniques in a finite
cluster, for the whole range of interaction strengths. We
examine the validity of the mean-field approximation for
the ground-state energy and wave function, and study

charge, spin, and one-particle excitat, ions. We show that
in the one-particle spectral densities there is a broad and
intense maximum at the energy of the BCS quasiparti-
cle, there are also low-energy quasiparticle lines which
correspond to a strongly dressed BCS excitation. In the
strong-coupling limit this problem has been studied by
mapping the Hamiltonian into a polarized t-J model.

The rest of the paper is organized as follows: in Sec. II
we present the model and numerical method; in Sec. III
we present our results for the ground state (III A), for the
one-particle (III B), the charge-charge (III C), and the
spin-spin (III D) Green's functions, and we study (III E)
the coupling between one part, icle and collective modes;
and finally Sec. IV includes a summary and discussion.

II. MODEL AND NUMERICAL METHOD

The negative-U Hubbard model is given by the Hamil-
tonian:

H = —& ) (c,,c~ + H.c.) —U ) n, ln;1,
(»)

where c; creates a particle at site i with spin o, n;

c; c; is the number operator for site i with spin cr, t is
the hopping matrix element, and U is the strength of the
attractive interaction (U ) 0).

We have diagonalized exactly the Hamiltonian in a fi-
nite cluster of 4 x 4 sites, with periodic boundary condi-
tions and different numbers of particles. The calculations
of the ground-state energy and wave functions were per-
formed using a modified Lanczos method. In these cal-
culations the translation and inversion symmetries of the
cluster were used, as well as the spin-inversion symmetry.

We also calculated frequency-dependent correlation
functions. To study one-p ar ticle excitations we cal-
culated the one-particle Green's function ((ck, ck ))
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where ck creates an electron with crystal momentum
k and spin cr. The charge and spin excitations were
studied by means of the two-particle Green's functions
((n z, nq)) and ((S',S'))„,nz and S' are the Fourier
transforms of the charge and z component of the spin
densities, respectively.

We obtained results for numbers of electrons N,
2, 4, 6, and 8. The case of a nearly half-filled band,
which in the present case would correspond to N, 16
may be interesting, since for this filling superconductiv-
ity and charge density waves compete. Unfortunately,
the Hilbert space for a nearly-half-filled band in this clus-
ter is too large for our computing facilities and we were
forced to restrict ourselves to lower densities.

III. RESULTS
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A. Ground state

First we present results for the ground-state energies
for diff'erent values of U/t and N, . All the results pre-
sented below correspond to ground states calculated in
the sector of zero magnetization, i.e. , NT ——Ng. In Fig. 1

the ground-state energy Eo as a function of U is shown
for N, = 4, 6, and 8 particles. The continuous line is
the result obtained in the BCS approximation. The BCS
energy was obtained by solving the mean-field equations
in the same cluster. In order to compare in a more quan-
titative way the exact results with mean-field theory we

plot in Fig. 2 the relative difference between both en-
ergies. The maximum relative difference is obtained for
intermediate coupling, U of the order of the one-particle
half-bandwidth W = 4 t, and is always smaller than 3.5'%%uo.

These results show that the BCS mean-field theory is an
excellent approximation for the ground-state energy in
the whole range of parameters.

A direct comparison of the exact wave function with
the BCS ansatz is not feasible because the latter does
not conserve the total number of particles. One possibil-
ity is to project the BCS wave function into the subspace
with a given number of particles. Another possibility is
to calculate expectation values of different observables,

FIG. 2. Relative difference between the exact value and
the BCS approximation for the ground-state energy for (a)
Ne ——6, (b) N~ = 6, and (c) N =4.

We have used the second approach, in Fig. 3 we show
the expectation value of uk~ for different values of U,
N, = 6, and all the inequivalent wave vectors k compat-
ible with the cluster. The continuous lines in the figure
are the mean-field results as obtained for the same clus-
ter, for display purposes we considered k as a continuous
variable. Again, we see an excellent agreement between
the exact and mean-field results, only for intermediate
values of U there is an appreciable difference for the case
of k = 0. Similar results were obtained for other particle
numbers W, .

Finally, we calculated the chemical potential p as a
function of U and the particle density n = N, /16. In the
thermodynamic limit, the chemical potential is defined as

p = BEp/BN, . We have to calculate p as the diff'erence
between ground-state energies with different numbers of
particles. Note that even and odd numbers of particles
behave very differently in the large-U limit, where the
total energy is essentially given by the number of pairs
times —U. Consequently we define

0 p, = 2[Ep(N, ) —Ep(N, —2)j . (2)
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FIG. 1. Ground-state energy as a function of U for N, = 4

(upper curve), 6 (middle curve), and 8 particles (lower curve).
Squares: exact results, solid line: BCS approximation with
parameters determined self-consistently for the 4 x 4 cluster.

In Fig, 4 the chemical potential shifted by the Hartree-
Fock correction p* = p + &Un as a function of N, is
shown f'or different values of U. For N, = 2 the chemi-
cal potential is half the energy of the two-particle bound
state, as the number of particles increases, p* also in-

creases and, depending on the parameters may get into
the one-particle band starting at —4t. This means that
the chemical potential p gets into the Hartree-Fock one-
particle band, whose bottom is at —4t —2Un. These re-

sults are also in good agreement with mean-field theory.
All the numerical results presented above show that the

BCS approximation correctly describes the ground st, ate
of the system. It evolves continuously from the small-
U to the large-U limits, as was pointed out, previously.
However, our calculations do not give much information
for the weak-coupling system, since the coherence length
in this limit is larger than the size of the cluster. The
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A (k, cu)

CO Ck~ . Ck 40
cu + iO+ —H + Ep

1
+ @0 &k& .o+ H g k(T 0 )

where ~Cp) and Ep are the wave function and energy of
the ground state, respectively, the first term on the right-
hand side of Eq. (3) gives the contribution corresponding
to adding a particle to the system and is related with
the inverse photoemission experiment, the second term
corresponds to removing a particle and gives the photoe-
mission spectrum.

The one-particle density of states is given by

D(~) = ) A, (k, cu) .

k, o

(4)

Ia~

In Fig. 5 the one-particle density of states is shown
for N, = 4 and different values of U. As is clearly seen,
there is a gap at the Fermi energy which increases as
U increases. In Fig. 6 the size of the gap is compared

FIG. 3. Expectation values of nk for 1V, = 6, with
U = 1, 4, 7, 10, and 20 (from upper to lower boxes). Squares:
exact results, solid line: BCS approximation with parameters
determined self-consistently for the 4 x 4 cluster. The inset
shows the points considered in the first Brillouin zone.

excitations are expected to be very diH'erent from the
mean-field excitations in the intermediate and large-U
limits. In the following sections we show that this is
indeed the case.

B. One-particle spectral densities

We calculated the one-particle spectral densities de-
fined as
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FIG. 4. Chemical potential shifted by the the Hartree-
Fock correction p* = p + 2Un as a function of the density;
for (G) U = 1, (x) U = 4, (+) U = 8, (s) U = 15, and (g)
U = 25. The dashed line is at the bottom of the one-particle
band. The solid lines are only to guide the eye.

FIG. 5. One-particle density of states for N, = 4, with
U = 1, 4, 7, 10, and 20 (from upper to lower boxes). Dashed
line: density of occupied states; solid line: density of empty
states. The delta functions have been broadened by including
a small imaginary part g = O. lt.
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will dominate the thermodynamics of the system. The
charge excitations are studied by means of the frequency-
dependent density-density correlation function, given by

(5)

0
0 24
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FIG. 6. One-particle gap as a function of U for N,
4. Squares: exact results obtained from one-particle Green's
functions, solid line: BCS gap parameter for the same cluster,
dashed line: BCS gap parameter for a 16 x 16 system with
the same density. Finite-size eR'ects appear only for small U.

C. Charge excitations

In this and the next section we discuss the nature of
collective excitations of the system with a given number
of particles. These are charge and spin excitations, which

with the results of the BCS approximation. The same
behavior is observed for other particle numbers, and the
gap is always pinned to the Fermi ener y. Similar results
were obtained by Dagotto efal. in a, 10 x ~10 cluster.

It is instructive to analyze the behavior of the one-
particle spectral densities A (k, a) for diITerent values of
k. In Fig, 7 the spectral densities are depicted for all the
nonequivalent k's of the lattice. Each peak in the spectral
density is indicated by a horizontal line with a length pro-
portional to the amplitude of the peak. The dispersion
relation of the BCS quasiparticles Fk is shown with a con-
tinuous line, the parameters used to calculate this line are
the self-consistent solutions of the mean-field equations
for the sal1le cluster and the same U and N, of the exact
calculation. It can be seen that the mean-field disper-
sion relation almost fits—without any free parameter-
the most intense peaks of the exact calculation. These
peaks may be associated with the undressed BCS quasi-
particle. The amplitude of photoemission peaks is small
except for k close to the I' point due to the coherence
factor vk. In the inverse photoemission spectra all peaks
but the ones corresponding to the zone center are in-
tense as suggested by the mean-field calculation, which
predicts an amplitude given by u&. These strong peaks
are surrounded by lower intensity ones which, in the ther-
modynamic limit, presumably form a continuum giving
rise to a resonance with a finite width, reflecting the fact
that the BCS Bogoliubov quasiparticles acquire a finite
lifetime. For most values of k these are not the lowest
energy one-particle excitations; there are peaks of small
intensity much closer to the Fermi energy than Ek. In
what follows we refer to these peaks as the quasiparticle
peaks and as we show below they correspond to strongly
dressed Bogoliubov quasiparticles.

where n& is the Fourier transform of the particle density.
Note that this is not the complete Green's function usu-
ally associated with the polarization, normally given by
Eq. (5) antisymmetrized.

In the large-U limit we expect two kinds of excitations
in different energy ranges to contribute to II(q, ~): on
one hand pair-breaking excitations at energies larger than
2A and on the other hand collective excitations of the
hard-core Bose gas at low energies. This collective mode
has been studied in the large-U limit using a canonical
transformation of the original Hamiltonian, ' ' and for
arbitrary U with a RPA approximation.

The total density of charge excitations, (I/N) Q
—(I/7r)lmII(q, ~) is shown in Fig. 8. In the intermediate-

0-

(a)

0-

FIG. 7. One-pa, rticle spectral densities for S, = 4 a.nd all

values of k, with (a) U = 4 and (b) U = 10. Ea.ch pea. k in

the spectral density is indicated by a, horizontal line with a
length proportional to the amplitude of the peak. Solid line:
dispersion relation of the unperturbed BCS quasiparticle Ek
calculated with self-consistent parameters corresponding to
the same cluster. The dashed line is only a guide to the eye
and joins the exact energies of quasiparticle peaks for different
k values.
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U case, the separation between the low-energy excita-
tions and the high-energy excitntions is clearly observed.
The former are the collective excitations while the latter
correspond to pair-breaking excitations which contribute
with a small weight to II. As U decreases the character-
istic energy of both types of excitations become of the
same order and for small U we cannot distinguish one
from the other. For large V the weight of pair-breaking
excitations is so small that they are hardly observed.

In Fig. 9 we show the spectral density of charge exci-
tations defined as —(I/vr)imii(q, uj), for all values of q
and different, values of L~. T. he plot, is done as in Fig. 7.
For each value of q the peak with larger amplitude is the
lowest energy peak, it corresponds to a collective state.
The dispersion relation of this state is indicated with a
dashed line in the figure. Although this dispersion rela-
tion is affected by finite-size effects, there are some gen-
eral features which are well described by the calculations.
For q = 0 the corresponding energy is zero. This reflects
a symmetry of the system associated with particle con-
servation. In the thermodynamic limit this symmetry
gives rise to a Goldstone mode with a dispersion relation
linear in q. For q = (n/a, n/a) the energy of the collec-
tive mode is —V—2p. This has been shown by Zhang'4
who defined

) i+R.,+ ~ iTil

with g the wave vector at the zone corner and R& the
coordinate of site j. It can be easily shown that J+ is an
operator satisfying the equation

[H, J+] = (—U —2iu) J+,
thus J+ acting on the ground state creates an exact eigen-
state of H with energy Eo U ——2p. If we use the chemical
potential p as defined in Eq. (2) we find that the energy
of the peak corresponds exactly to this value.

In Fig. 9(b) it becomes more evident that there are
two energy scales: pair-breaking excitations with energy
greater or equal than 2h and collective excitations with
a much smaller energy.

As a general trend we see that the bandwidth asso-
ciat| d with the collective excitation decreases as U in-
creases. As was shown previously an RPA calculation
for this mode is in qualitative agreement with the numer-
ical results,

D. Spin excitations

To study spin excitations we calculated the frequency
dependent spin-spin correlation function, given by
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FIG. 8. Total density of charge excitations for N, = 4,

with U = 1, 4, 7, 10, and 20 (from upper to lower boxes); and
g = O. lt. The arrows show the position of 2A for each value
of V.

I

X

FIG. 9. Spectral densities of charge excitations for N, = 4

and all values of q with (a) U = 4 and (b) U = 10. The plot

is done as in Fig. 7. The arrows show the position of 26 for

each value of U. The dashed lines are guides to the eye and
join the lowest charge excitation energies.
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where S' is the Fourier transform of the z component
of the spin of the particle. As before, this is not the
complete Green's function usually associated with the
susceptibility.

The total density of spin excitations, defined as
(1/N) P —(1/z')Imp(q, cu) is shown in Fig. 10. The in-
tegral I of this density decreases as U increases. This is
due to a sum rule that yields I = (1/N) P,. ( (S;)
n/4 —(1/2N) Q,. ( n;ln, t ); this quantity goes from
sn(2 —n) for U = 0 to zero for U ~ oo.

As can be seen in the figure, spin excitations always
have a gap at least of the order of 2A, because creat-
ing this type of excitation necessarily implies breaking a
pair. In the case of small U, finite-size effects are strong
and the spin gap is larger than expected for the thermo-
dynamic limit. In the mean-field approach, the spin ex-
citation corresponds to creating two BCS quasiparticles
with the same spin. In the small cluster, and due to the
Pauli principle, the lowest excited state contains one BCS
quasiparticle with an energy equal to the one-particle gap
and another with a different k and a significantly larger
energy.

In Fig. 11 the spectral density of spin excitations
—(I/z)lmg(q, ~) is shown for all values of q. If we cal-
culate the spin-excitation energies as a sum of two BCS

quasiparticle energies, the lowest state for almost every q
is well reproduced in weak coupling (see solid line in the
figure). As U increases, the lowest energy is below the
mean-field result. This is related to the residual inter-
action between BCS quasiparticles that renormalize the
mean-field results.

E. Quasiparticles

As we mentioned above, there are one-particle exci-
tations with energies much smaller than the mean-field
energy Et,. In the one-particle spectral density A(k, ~),
the peak with energy nearest to the chemical potential
corresponds to a real quasiparticle state. The quasiparti-
cle peak has a dispersion relation with a bandwidth that
is strongly reduced as U increases. These quasiparticle
states can be viewed as Bogoliubov quasiparticles that
are strongly dressed by collective excitations. The col-
lective excitations that will renormalize the one-particle
excitations are the charge and spin excitations discussed
above. However, as we showed, in the intermediate or
large-U limits, charge and spin excitations have different
characteristic energy scales, the former being low-energy
excitations and the latter having energies larger than 2A.
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FIG. 10. Total density of spin excitations for N, = 4,
with U = 1, 4, 7, 10, and 20 (from upper to lower boxes);
and g = O.lt. For U = 10 and 20 the spectral weight was
multiplied by the factors indicated in the figure in order to
make it visible in the plot. The arrows show the position of
2D for each value of U.

FIG. 11. Spectral densities of spin excitations for N, = 4
and all values of q with (a) U = 4 and (b) U = 10. The plot
is done as in Fig. 7. Dashed and solid lines are guides to the
eye, the former join the lowest exact spin-excitation energies,
the later join the lowest spin-excitation energies in the BCS
approximation (see text).
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k k q k
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FIG. 12. Perturbative corrections to the BCS quasiparti-
cle. The wiggled line represents a collective excitation.

Cad

In this situation we expect the charge excitations to be
the most important in dressing the one-particle excita-
tions. The one-particle propagator has corrections which
are schematically shown in Fig. 12. In the lowest order,
the energy of this one-particle excitation is given by the
minimum energy of all the states that contribute to its
wave function. In particular, for k away from kF, this
energy is EI, + u~ ~„, where u& is the energy of a col-
lective excitation of momentum q. Since the charge exci-
tations have a narrow bandwidth for large U, this energy
is much smaller than E~. We calculate the energy of the
quasiparticle peak using this criterion and compare with
the exact results. In Fig. 13 both dispersion relations

are shown. For small U, the agreement is quantitative,
except that some states appear that have zero weight in
the exact calculation,

As U increases some small differences can be observed.
This can be understood in terms of the mixing between
different states in Fig. 12, the mixing matrix elements
being larger for large U. This is consistent with the fact
that exact quasiparticle energies are generally lower than
the approximate energies obtained by the zero order min-
imum energy criterion.

As we mentioned above, and is shown in the figure,
there are some states that do not appear in the exact one-
particle spectrum. We have checked that there are states
with N, + 1 or N, —1 particles with energies very close to
the ones predicted by our simple criterion (see Fig. 13).
These states are not observed in the exact spectral den-
sities because the matrix element of c&t (ck~) connecting
the ground state with N, particles to the ground state
with N, + 1 (N, —1) particles and momentum k (—k) is
lower than the error in the numerical calculation of the
wave functions (10 s). It could be possible that these
matrix elements were exactly zero because of a selec-
tion rule based on a symmetry operation; however, it
was checked that the transformation properties of the
initial and final states in each case were compatible with
a nonzero value for the matrix element.

To sum up, we have presented clear evidence that the
low-energy one-particle excitations are strongly dressed
Bogoliubov quasiparticles. These dressed quasiparticles
have been studied in the large-U limit by mapping the
problem into the polarized t Jmode-ls s and are related
to the pairing bag excitations discussed by Bishop et al.
using a mean-field Bogoliubov —de Gennes approach.

IV. SUMMARY AND DISCUSSION

Cb)

0-

-16
e
I

X

FIG. 13. Quasiparticle energies vs k for N, = 4 with (a)
U = 4 and (b) U = 10. Points: spectra obtained with the
zero-order approximation discussed in the text, (x) energy
differences between the exact ground state with N + 1 par-
ticles in each symmetry subspace and the ground state with
N, particles, (0) energy differences between the ground state
with N, particles and the ground state with N, —1 particles
in each symmetry subspace. Dashed and solid lines are guides
to the eye, the former joins the exact quasiparticle energies
obtained from the one-particle spectral densities, the latter
joins the minima of the zero-order spectra.

In this work we studied the negative-U Hubbard model
by exact diagonalization methods in a 4 x 4 cluster, we
obtained results for different values of U and particle den-
sities. Our results concern ground-state properties on one
hand and elementary excitations on the other and can be
summarized as follows.

For the ground state we showed the following.
(a) The BCS approximation gives very good results

for the energy and wave function for the whole range of
values of U. The largest discrepancies appear for U
W = 4t, , but even in this case the BCS energy is correct
within 3.5% or less. The expectation values (c& ci, )
calculated in the ground state deviates slightly from the
BCS result only for k = 0 and U W.

(b) The chemical potential is also in good agreement
with the BCS estimate, it increases as the density in-
creases and may get into the Hartree-Fock band.

For the elementary excitations our results are the fol-
lowing.

(c) The total one-particle density of states shows a gap
pinned to the Fermi energy. Again the gap is well repro-
duced in the BCS approximation.

(d) Charge excitations of two kinds are observed: pair-
breaking excitations with energy larger than 2A and col-
lective excitations with lower energy. For intermediate to
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large U the two types of excitations are well separated in
energy, and collective excitations carry most of the spec-
tral weight. For small U, however, the two types of ex-
citations are not so clearly separated and pair-breaking
excitations have large spectral weight. The results for
the energy of the collective mode are qualitatively well
reproduced in the RPA approximation.

(e) Spin excitations always have a gap at least of the
order of 2L, because creating this type for excitation
necessarily involves breaking a pair. The total weight
of spin excitations is proportional to the square of the
magnetic moment, and goes to zero for U ~ oo as the
magnetic moment is suppressed by the interaction.

(f) The one-particle spectral densities show two espe-
cially interesting features. On one hand, the BCS disper-

sion relation almost fits the position of the most intense
peaks of the exact calculation. We argue that these in-
tense peaks will give rise in the thermodynamic limit to
a resonance with a finite width. On the other hand, the
quasiparticle peaks, which for most values of k have a
lower intensity, have a dispersion relation with a larger
effective mass. This can be understood as a result of
strong dressing of the Bogoliubov quasiparticles by col-
lective charge excitations. These quasiparticles can be as-
sociated with the pairing bags discussed in Refs. 15 and 8.
An open issue is what would happen with the quasiparti-
cle dispersion relation in a more realistic model where the
long-range Coulomb repulsion changed low-energy charge
excitations for q ~ 0 into high-energy plasma modes.
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