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Thermodynamic and electromagnetic properties of a spin-glass superconductor
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For an intrinsic spin-glass superconductor, we have calculated several thermodynamic and elec-

tromagnetic properties as a function of temperature. In particular, we present calculations of the free-

energy difference between the normal and superconducting states, the electronic specific-heat difference,
the London and local penetration depths, the electromagnetic coherence length, and the thin-film critical
current. The results are sensitive to the spin-glass parameters assumed and are distinct from those of
Abrikosov-Gor'kov theory for noninteracting spins.

I. INTRODUCTION

It is well known that materials that contain a dilute
concentration of noninteracting paramagnetic impurities,
which interact with the conduction electrons through
spin-flip scattering in the weak-scattering limit, can be
successfully described by the model of Abrikosov and
Gor'kov. ' However, although some materials can be de-
scribed by such a model, there is a large body of physics
devoted to the understanding of localized moments that
interact with each other and undergo ordering to states
such as ferromagnetism or antiferromagnetism.

Anderson and Suhl have shown that the coexistence of
these ordered states with superconductivity depends on
whether the ordered state produces a macroscopic field
on the scale of the coherence distance. In the case of fer-
romagnetism such a net field exists and superconductivity
is not able to coexist due to the splitting of the spin-up
and spin-down conduction electron bands by the magnet-
ic field. On the other hand, antiferromagnetism and su-
perconductivity are well known to coexist; superconduc-
tivity is then uninhibited by the magnetic ordering as the
net magnetic field of the moments averages to zero.

Another possible magnetic state occurs in substitution-
ally disordered alloys, where the localized magnetic mo-
ments are randomly distributed and interact via the
long-range Rudermann-Kittel-Kasuya- Yosida (RKKY)
interaction mediated by the conduction electrons. This
produces frustration in the magnetic ordering as not all
magnetic moments can be simultaneously satisfied in
their spin orientation with respect to the others. This
leads to an infinite number of random configurations that
are degenerate in energy but separated by large energy
barriers so that one ground state cannot evolve into
another on the laboratory time scale. These materials are
known as spin glasses, of which Ag-Mn and Cu-Mn are
examples of canonical metallic spin glasses. Coexistence
of superconductivity and spin-glass ordering has been
observed by Davidov et al. in Gd„Th, Ru2,
Gd Ce, „Ru2, and Gd„La3 „In.

Associated with the spin-glass state is a characteristic
temperature Tf (the freezing temperature) below which
the spins "freeze" into one of these random

configurations. Spin glasses are characterized by a cusp
in the magnetic susceptibility at Tf, no anomaly at Tf in
the specific heat other than a broad maximum around Tf,
and no Bragg peaks (which normally indicate long-range
magnetic order) in neutron scattering experiments.

An attempt to describe the spin-glass phase was made

by Edwards and Anderson. As in all problems on phase
transitions, one tries to identify an appropriate order pa-
rameter that will be nonzero in the phase of interest and
zero in the disordered phase. Edwards and Anderson in-
troduced an order parameter which is related to the prob-
ability that a spin with a given direction at a time t =0
will have the same direction in the infinite-time limit.
This order parameter reflects the "frozen" nature of the
spin-glass state but has no spatial correlations as would
be found in other magnetic order parameters.

Several reviews and books exist on the topic of spin
glasses. Here we will be following a particular model
given by Nass et al. and used more recently by Schach-
inger et al. ,

' Stephan and Carbotte, " and Perez Gon-
zalez et a/. ' We will be presenting results which extend
the work of Stephan and Carbotte, " which was done in
the context of BCS theory, to strong coupling theory. In
addition, we examine several properties not previously in-
vestigated, in the work of Stephen and Carbotte. "

Before describing our calculations we will summarize
the necessary theoretical background. First, we will
briefly review the Eliashberg formulation of paramagnet-
ic spin fluctuations and derive the limiting case of
Abrikosov-Gor kov paramagnetic impurities. Then we
will introduce the model of Nass et al. as it is imbedded
in the Eliashberg notation.

II. THE THEORETICAL MODEL

Berk and Schrieffer' have given a model for incor-
porating paramagnetic spin-density fluctuations
(paramagnons) into Eliashberg theory. It is based upon
capturing the essence of how paramagnetic spin fluctua-
tions are expected to affect spin-singlet pairing in a super-
conductor. Typically, due to strong Coulomb interac-
tions between electrons in very narrow energy bands, fer-
romagnetic correlations (for example) may cause spin po-
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larization of the electron cloud (a fluctuation in the spin
density), such that an electron seeking to lower its energy
by forming a Cooper pair in a spin-singlet state with
another electron through the electron-phonon interaction
(which is short range in real space), might actually be in-
hibited or repulsed by this cloud of polarized electrons of
the wrong spin. ' This forms a repulsive interaction. Al-
len and Mitrovic' have given a loose definition of
paramagnons as "interacting electron-hole pairs of spin
1." Paramagnons are typically heavily damped excita-
tions that cause strong renormalization effects. ' '

In this model, a standard set of Eliashberg equations
for both phonons and paramagnons can be writ-
ten. ' ' The kernel in these equations is written in
terms of the spectral density, a F(co), for the coupling of
the electrons to the phonons and the analogous one for
paramagnons, P(co). As paramagnons are pair breaking
(or repulsive), they enter the equation for the gap param-
eter with a negative sign relative to the pair-enhancing
phonons. However, in the renormalization equation,
P(co) enters with a plus sign and hence accentuates
strong-coupling effects. The Eliashberg equations for the
order parameter and renormalized frequencies of the su-
perconducting state are given as' '

E„=nT g [A, (n —m}

—p'8(co, —
~
co

~ ) ]
+corn +~m

and

@mco„=co„+nT g A+(n, m—}
m= —~ +co +5

(2)

where

A,*(n m—):A*—(i c,o~ i co„—)

dco,
2co[a F(co)+P(co)]

~ ~

co (tco~ Econ )

and E„=K(i c—o„)=Z(i co„)b(ico„) and co„=Z(ico„)co„
with ico„=in T—(2n+1), n =0,61,+2, . . . , T is the tem-
perature, and p* is the Coulomb pseudopotential. The
spin fluctuation spectral density is related to the spin fluc-
tuation propagator by' '

P(co)=N(0) g ——Imp+ (k, k', co+t0+) 5(ek)5(e k) +5(ek)5(ek )
k, k' k, k'

2kF
=N(0) f ImV'(q, co),

2k~2

(4)

where q is the momentum transferred, N(0) is the single-
spin density of states at the Fermi momentum, and in Eq.
(5}a spherical Fermi surface has been assumed. The spin
fluctuation propagator is related to the particle-hole T
matrix through the Fourier transform of the transverse
susceptibility y+ (q, co).'~' Our starting point will be at
an assumed form for P(co) and hence details of the micro-
scopic theory beyond this point are unnecessary for our
dtscusston.

The static limit of dynamic paramagnetic spin fluctua-
tions are paramagnetic impurities that spin-flip scatter
the electron. Like paramagnons, as paramagnetic impur-
ities are pair breaking, they will cause a reduction in T,
over the pure case. These are described in the dilute,
noninteracting limit by the theory of Abrikosov and
Gor'kov, ' where interaction between the moments on the
magnetic atoms are neglected and single scattering events
are assumed such that multiple scattering need not be
considered. The strong scattering limit (which allows for
the possibility of bound states being formed at the impur-
ity sites) requires the theory of Shiba and Rusinov,
who solved the problem exactly without the use of per-
turbation theory, but rather used the 7' matrix. Shiba-
Rusinov theory reduces to Abrikosov-Gor'kov theory in
the weak scattering limit. Here, we will only consider
Abrikosov-Gor'kov theory, which has been examined by
many authors. In the end we will be interested in

the case of interacting magnetic impurities described
within the Abrikosov-Gor'kov formulation.

The Eliashberg equations for the Matsubara pairing
energy E(ico„~ and renormalized frequencies co(ico„), in-
corporating such paramagnetic impurity scattering are
given as

E„=nT g [A,(n —m) —p'8(co, —lco I }]
m= —oo N +6m m

and

—7rt
+co~n +~n

00 ~mS„=co„+nT g A(n —m},
m = —oo +co +5

CO~+m.t
+co„+b,„

with the same notation as before. Here, t is the magnet-
ic impurity spin-flip scattering rate related to the scatter-
ing time ~z for paramagnetic impurities byt—:1/(2nr&). The function A,(n —m) is related, in the
usual manner, to the electron-phonon spectral density
a F(Q, ) by
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~( ) f ~ 2Qa F(Q)
Q +(to„—co~ )

(8)

Equations (1)—(3) reduce in the static limit to the above
equations for paramagnetic impurities by choosing for
the form of P(to)

as a cutoff in the sum rules that apply to this spectral den-
sity. "' ' In Eq. (15), 0( T) is the temperature-
dependent Edwards-Anderson order parameter. Two
models for the temperature dependence have been sug-
gested for this quantity. Edwards and Anderson have
derived its temperature dependence from a mean-field
solution and find

P(to) = At, cofi(to) .

We use this in the definition for A, *(n —m ):
g(t ) =S2(1—t }, (16)

At, (n —m) =+2f de toP(to)

to +(co„ to )
(10)

where t = T/T& and S is the impurity spin. Nass et al.
have also suggested the form

which for n =m gives A~=+A~ and for num yields
A.p =0. Therefore,

m CO~

n Tacit, (n —m)
2 2

=+a TAt

2kF
P(Q) =N(0)J f B(q,Q),

o 2k'
(12)

where J is the electron magnetic impurity exchange con-
stant, which couples the superconducting electron to the
magnetic impurity.

The spin spectral density that Nass et al. suggest is
given as

B(q, to) =Bd(q, to)+B,(q, to},

where the dynamic part is given as

(13)

which make Eqs. (1)—(3) equivalent to Eqs. (6)—(8) for
At, =t /T, at finite T.

Nass et al. (see also Schachinger et al. ' and Stephan
and Carbotte") have employed the standard form of the
Eliashberg equations formulated for paramagnons and
have introduced the spin-glass nature of the system
through their choice of the spectral density for the spin
fluctuations P(Q), where a weak exchange interaction
occurs between the local moments and the conduction
electrons.

Following the example of Dzyaloshinskii and Volo-
vik, ' they model the electron-spin spectral density by a
dynamic contribution equivalent to the hydrodynamic
limit of a Heisenberg paramagnet and a static com-
ponent in the form of a Dirac delta function at zero fre-
quency which represents spin freezing.

The electron -spin spectral density P(Q) that enters the
Eliashberg equations is related to the spin spectral densi-
ty B(q, Q) by

If the spin-glass parameters y, D, and 7 are allowed to
vary arbitrarily, unphysical results are found for the tun-
neling density of states and in the transport properties.
Therefore, two sum rules are imposed on the spin-
spectral density B(q, to). The one is the standard f-sum
rule and the other is a sum rule arising from the
definition of the structure factor. Rather than review
these results here, we prefer to refer the reader to the
literature, '" where detailed discussion of the sum rules
exist and their evaluation for several spin-glass parame-
ters has been performed.

Keller, in the case of a ferromagnet, and Nass et al.
have found, in the case of the above model, that the terms
for A, (n —m), where num in the dynamic part of the
Eliashberg equations are negligible compared to the
n =m term A,(0) and hence it is only necessary to keep
the n =m term in the Matsubara frequency sums. Thus,
A,d(0) can be evaluated using the sum rules" to be

Ad(0)=N(0)J ny . (18)

(19)

Therefore, we are now solving the standard Eliashberg
equations modified for Abrikosov-Gor kov impurities,
a = I /rp, but now a is temperature-dependent [i.e.,
a~a( T) ] and is given by

a(T) ~ TA,(0), (20)

It can be shown, from applying the procedure outlined in
Eqs. (9)—(11) to Eqs. (12)—(15), that the problem has now
been reduced from one of dynamic spin fluctuations to
one of temperature-dependent static impurity scattering
where

1 = TA, (0)
2777p

( )
Dytoq

to +(Dq to r)—
and the static part is given by

(14) and the effective scattering rate t' in the spin-glass state
is reduced from the Abrikosov-Gor'kov scattering rate
t'g (using the notation t =t'g ) by

B,(q, co) =m(1 —e ~ )Q(T)5(co) . (15)
gg gg tt( T)

a(T, )
(21)

Here, D is the spin diffusion constant, y is the static sus-
ceptibility, which is taken to be independent of q, and 7 is
a phenomenological magnetic relaxation time that is used

Finally, we need a model for the freezing temperature in
terms of the concentration of impurities. This is taken
from the experimental observation that T& is proportion-
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al to the concentration of impurities:

n,.
Tf

nc

where n, is the Abrikosov-Gor'kov impurity concentra-
tion and n, is its critical value which reduces T, to zero.
T, is the T, in the absence of impurities and R is a di-
mensionless constant between 0 and 1.

III. THERMODYNAMIC PROPERTIES

In what follows here, we will be using results previous-
ly obtained by Stephan and Carbotte" for the
temperature-dependent scattering rate. Stephan and Car-
botte solved for the temperature dependence of a( T) for
several values of the spin-glass parameters R, D, ~, and
either Q(t)=S (1 t) o—r Q(t)=S (1 t ). —We have
chosen only two of these cases to illustrate the two possi-
ble temperature-dependent scenarios that are likely to
occur in this model. For a knowledge of how these quan-
tities might vary with a change in one or the other of the
spin-glass parameters, the reader should consult the work
of Stephan and Carbotte. " Here, we use the scattering
rate t given in Eq. (21) in replacement of t in Eqs. (6)
and (7) to calculate superconducting properties in Eliash-
berg theory and, in addition, to examine properties not
previously investigated by Stephan and Carbotte. "

In Fig. 1 we show the temperature dependence of the
scattering rate a(t) normalized to its infinite temperature
limit a( ae ), for two sets of parameters, which we will call
case 1 (solid line) and case 2 (dashed curve). Here
t = T/Tf. In case 1, the dimensionless spin-glass param-
eters are D(1)=D(2kF) /Tf =1, Q(t ) =S (1 t ), —
R =01, and r=Tfr=0 2. In case 2, D(1)=2,
Q(t)=S (1 t), R =0.4,—and r=0.2. These curves and
others similar to them have already been presented by

1.0

Stephan and Carbotte. "
In Fig. 1, the scattering rate reduces from the high-

temperature limit with significant reduction occurring
below Tf as the spins freeze into a random configuration
and are unavailable to spin-flip scatter. In case 2, the rate
dips and then recovers producing reentrant phenomena
as we will later discuss. The detailed shape of the curve
is due to the interplay between the dynamic and static
contributions to the scattering rate in the low-
temperature region. The zero-temperature limit of the
scattering rate is proportional to S, whereas the high-
temperature limit proportional to S(S+1),hence the ra-
tio of a(t )/u( ao ) approaches S /[S(S+1)] at zero tem-
perature. In this work we have followed Stephan and
Carbotte" and have used S=—,

' (keeping Ag-Mn in

mind). As a result, these curves approach a value of
0.71428 at t =0.

In Fig. 2 we show the T, curves, for these models as a
function of impurity scattering or concentration t
which resulted when we solved the Eliashberg equations
with the temperature-dependent scattering rate given in

Fig. 1. Again, the solid curve corresponds to case 1 and
the dashed curve to case 2. The dotted curve is the
Abrikosov-Gor'kov curve that results for the same pa-
rameters but with no temperature dependence in the im-

purity scattering [i.e., a(T) =ct( ee ) in Eq. (21)]. Here we

have used in the Eliashberg equations a delta function for
the electron phonon spectral density a F(co)=(coFA,F/
2)5(co —co+), with co@=10 meV, )Lt*=0, T, =11.604 K
=1 meV, which sets RE=0.9. One sees the famous
Abrikosov-Gor'kov result, that T, is reduced from its

pure value T, on addition of magnetic impurities. For
small concentrations, the dependence of T, on t is

linear. There is also a critical concentration at which the
superconductivity is destroyed. In the case of the spin
glass, the temperature-dependent scattering rate is re-
duced from the corresponding Abrikosov-Gor'kov rate as
the spins freeze, reducing the effectiveness of the impurity
spin to break Cooper pairs through spin-flip scattering.

8

C$

O.S

1.0

O.B

0.7 g

OS

0.4

O.S
0.0

I

0.5
I

1.0
I

1.5 2.0 0.2

FIG. 1. The temperature dependence of the spin-glass

scattering rate cx(t ) used in the model in the text normalized to

its infinite-temperature limit. Here t = T/Tf. The solid curve

corresponds to what we call case 1 and the dashed curve corre-

sponds to our notation, case 2. In case 1, D(1)= 1,

Q(t)=S (1 t ), R=0. 1, and 7=—0 2 In case 2, .D. (1)=2,
Q(t ) =S (1 t), R =0.4, —and i=0.2.

0.0
0.0 0.1 0.2 0.3 0.4 0.5

t (me V)

FIG. 2. T, /T, vs the magnetic scattering rate t . The dot-

ted curve is the Abrikosov-Gor'kov result for the phonon model

used in the text. The solid curve corresponds to case 1 in our

spin-glass model and the dashed curve corresponds to case 2.
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Thus, the spin-glass material may sustain a larger concen-
tration of impurities for the same T, . The point at which

the critical concentration of spin-glass impurities occurs
is controlled by the t=O point in Fig. 1 or the ratio
S /[S(S+1)], with the critical t' equal to (S+1)/S
times the critical t'g.

Note, that for case 2 (dashed curve) we can expect
reentrant phenomena at the lower end of the T, curve
where for the same concentration, two values of T, exist
with a region of superconductivity in between. (Note,
that if this diagram were alternatively labeled as a phase
diagram with T on the y-axis rather than T„ then the
area to the left of a curve would correspond to the super-
conducting state and the area to the right the normal
state). Reentrant superconductivity is the case where
below a temperature T„a material becomes supercon-

ducting but below an even lower temperature

T,2(T,2(T„), the material reenters the normal phase
again due to the formation of magnetic order, such as fer-
romagnetism, which inhibits the superconductivity. Ex-
amples of reentrant superconductors are ErRh484 (Ref.
38) and HoMosSs, where their reentrance is due to a
ferromagnetic transition occurring at T,z. In case 2, it is
also possible for a spin-glass superconductor to exhibit
reentrant phenomena, as has been observed in

La, Gd Ru2 by Jones et al. Similar theoretical re-
sults have been obtained by Soukoulis and Grest. '

We will now present results, in these two cases, for the
free-energy difference, the thermodynamic critical mag-

netic field, and the specific heat difference. Similar results
have been presented by Stephan and Carbotte" for the
critical magnetic field, however, our results will go fur-

ther by extending the parameters into the reentrant re-

gion of the model. In all graphs to be presented from
here on, we have plotted our results in three-frame figures
with the upper frame displaying the Abrikosov-Gor'kov
result, the middle frame showing the analogous results
for case 1 and the bottom frame for case 2. In addition,
the curves in each figure are given for the same set of pa-
rameters; we have listed these in Table I. Curves will be
presented for six cases: no magnetic impurities

T, /T, =1.00 ( ), T, /T, =0.95 (—-), 08 ( ———),
0.58 ( ———), 0.34 ( —-—-), and 0.15 ( —- —-). The
corresponding Abrikosov-Gor'kov scattering rate t' and

spin-glass scattering rate t' for each case are given in

Table I. The freezing temperature Tf with respect to T,
is also given for the two spin-glass cases.

With our parameters now defined, we will proceed to
present results for various thermodynamic quantities:
the free-energy difference, the thermodynamic critical
magnetic field, and the electronic specific heat difference.
These results are based upon a calculation of the free en-

ergy. The difference in free energy between the supercon-
ducting and normal state (b,F=Fs Fz) is —given in

terms of the Matsubara gaps and frequencies, which fol-
low from the solution of the Eliashberg equations
modified for the spin-glass contribution, by the Bardeen-
Stephen formula:

&F= &(0)~T g [(co„+b„)' —iso„i] Zs(ice„) ZN(icy„—)n n n S n N n
( 2++2)ii2 (23)

H, (T)=( —8rrhF)' (24)

Also, the electronic specific heat difference is given in
terms of the free-energy difference by

d AF
b, C(T)= —T

dT
(25)

In Figs. 3 and 4 we plot the difference in free energy AI'

From this the thermodynamic critical magnetic field

H, ( T), which is related to the condensation energy of the
superconducting state, is given as

I

'and the thermodynamic critical magnetic field H, (T), re-

spectively. In both cases we normalized these quantities
to the zero-temperature value in the pure case (solid
curve). This reduces the plot fo dimensionless quantities
and permits the reduction in free energy and the corre-
sponding critical magnetic field due to the magnetic im-

purities to be seen with clarity. The parameters are given
in Table I. Frame (a) shows the Abrikosov-Gor'kov re-
sults while frames (b) and (c) show the results of case 1

and case 2, respectively, for the spin-glass model used
here.

Aside from the overall depression in the magnitude of

TABLE I. Parameters for the curves shown in Figs. 1 —9. Case 1 refers to the spin-glass parameters
D =1, Q(r)=S (1 t ), and R =0.—1. Case 2 refers to D =2, Q(t)=$ (1 t), and R =0.4. Pa—rameters
used for the pure case are T, = 11.604 K= 1 meV, coE = 10 meV, and p =0.

1.00
0.95
0.80
0.58
0.34
0.15

t'g (meV)

0.0000
0.0246
0.0945
0.1846
0.2620
0.3021

Case 1
t'g (meV)

0.0000
0.0247
0.0955
0.1893
0.2768
0.3409

Case 1

Tf /T,

0.0000
0.0098
0.0445
0.1200
0.2905
0.7592

Case 2
t'g (meV)

0.0000
0.2478
0.0976
0.2003
0.3124
0.4287

Case 2

Tf /T,

0.0000
0.0195
0.0891
0.2400
0.5810
1.5183

Line type
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1.0

0.8—
0.6 =
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0.2—
0.0

0.8—CO

O

O.S—
0.4 ~
0.2--
0.0

0.8—
o.e—
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0.0

0.0 0.2 0.4 0.6 0.8 1.0

i.o

0.8—

FIG. 3. The free-energy difference AF normalized to the zero
temperature value in the pure case vs the reduced temperature
t = T/T, . (a) Abrikosov-Gor'kov impurities. (b) Spin-glass im-
purities for case l. (c) Spin-glass impurities for case 2. See
Table I for details of the parameters. (26)

where hS refers to the difference in entropy between the
normal and superconducting states which of course must

1.0

these quantities, we note that at 1ow temperatures in case
1, there is an upturn in the temperature dependence,
whereas, in case 2 there is a downturn. The upturn in
case 1 reflects the scattering rate steadily decreasing as
the temperature is lowered, thus, allowing the supercon-
ducting state to lower its energy and become more stable.

On the other hand, in case 2, the scattering rate begins
to recover and grow stronger at lower temperatures, thus
inhibiting the superconducting pairing. Eventually for
large spin-glass impurity scattering we see reentrant be-
havior [best exhibited in (c) of Fig. 4], where the sample
reverts to the normal state at a reduced temperature
around 0.35.

On these plots, the features distinguishing case 1 and
case 2 are quite strong and, in particular, case 2 has a
strong signature with regard to the ordinary Abrikosov-
Gor'kov case that should make it observable in experi-
ments.

In Fig. 5 we display results for the calculation of the
electronic specific heat difference normalized to the value
at T, . Here the curves exhibit a very strong and unusual
temperature dependence. The Abrikosov-Gor'kov curves
show a shift upward at higher temperatures with increas-
ing impurity scattering, resulting in the slope of the jump
just below T, decreasing with increased scattering.
Overall, the shift in area under the curves reflects the en-
tropy constraint of

Tc 5CbS= J dT=O,
0 T

0.6—

0.4—
0.5—

0.0
~op

0.8 ~
O 0

o.e +
0.4—

0
0.2—
O.o

0.8—

—0.5

1.0—

0.5—

0.0 ~
—0.5

(a)

(b)

0.4—
0.2—

0.5—

0.0~i~.
—o.s—

0.0
0.0 0.2 o.4 o.e 0.8 1.0 —1.0

0.0
I

0.2
I I

0.4 0.6

(~)
I

0.8 1.0

FIG. 4. The thermodynamic critical magnetic field 0,(T)
normalized to the zero temperature value in the pure case vs the
reduced temperature t = T/T, . (a) Abrikosov-Gor'kov impuri-
ties. (b) Spin-glass impurities for case 1. (c) Spin-glass impuri-
ties for case 2. See Table I for details of the parameters.

FIG. 5. The electronic specific heat difference hC(T) nor-
malized to its value at T, vs the reduced temperature t = T/T, ~

(a) Abrikosov-Gor'kov impurities. (b) Spin-glass impurities for
case l. (c) Spin-glass impurities for case 2. See Table I for de-
tails of the parameters.
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IV. ELECTROMAGNETIC PROPERTIES

In this section we present calculations for several elec-
tromagnetic properties, namely, the London and local
penetration depths, the electromagnetic coherence
length, and finally, the thin-film critical current.

In the case of a superconductor that is sufficiently dirty
such that the mean-free path 1 of the electron is short rel-
ative to the zero-temperature coherence length g(0) be-
cause of impurity scattering, the response of the electrons
to an external field is local, and we have the local penetra-
tion depth A,

&

Q2
k&(T)= m.N(0}e uz—rT g 2 z

n=& n+~n

—1/2

(27)

Here, vF is the Fermi velocity, ~ is the scattering lifetime,
and e is the charge. This can be related to the dc Joseph-
son critical current J,(T) by

A, ((0)
k((T)

(28)

be zero at T, [i.e., ES(T,)=0].
For the two cases considered for the spin-glass model

there is considerable deviation from the usual tempera-
ture dependence with a peak at low temperatures for case
1 and a dip for case 2. Notice again the reentrant behav-
ior in case 2 where the curve returns to a value of 1 (the
normal state) at t around 0.35. Also, note that the entro-

py sum rule above cannot possibly be applied. This is
due to the fact that the specific heat presented here is the
electronic specific heat, whereas, for the sum rule above,
all the contributions to the specific heat must be included,
which in this case would include a large magnetic contri-
bution. In practice, this quantity will be difficult to ex-
tract experimentally as all other contributions to the
specific heat, other than the electronic component, must
be subtracted first.

which can easily be seen to be related to the local and
London penetration depths by

A,((T)
f(T)=1 (32)

L

where I =v+~.
In Fig. 6 we show the inverse square of the London

penetration depth normalized to the value for the pure
case at zero temperature. (Please refer to Table I for the
identification of the line types). Note that in case 1

[frame (b}], the magnitude of the curves is increased over
the corresponding Abrikosov-Gor'kov case, again
reflecting the decreased effective scattering rate. Also in
Case 2 [frame (c)] the temperature dependence remains
even higher due to a more rapid drop in the scattering
rate in this model. Note again the reentrant behavior of
the highest concentration case in this figure.

As impurities are added to a system bringing it closer
to the dirty limit, the London penetration depth will ap-
proach the local limit penetration depth, which already
has implicit in it the dirty limit. This is seen upon com-
paring the dot-long dashed curves in Figs. 6 and 7, which
corresponds to the highest impurity concentration used
in this model. One cannot see the exact equivalence here
as one would in the case of normal impurities, as the con-
centration of magnetic impurities required would be
larger than the critical concentration that destroys the
superconductivity entirely.

In Fig. 7 we display the dc Josephson critical current
J, ( T) normalized to its pure limit value at zero tempera-
ture. This quantity is also the inverse square of the local

i..0 e

For nonlocal effects [as in the case of the clean limit
where l »g(0)], there are two limits corresponding to ei-
ther extreme type-I [A, « g(0) ] or extreme type-II
[k»g(0)] superconductivity. The type-I limit is called
the Pippard limit and the type-II limit is called the Lon-
don limit. The formulas for these penetration depths are
given in the literature as

' —1/3

0.0

0.5—

OA

F m „, '„+a'„ (29) 0.0

for the Pippard penetration depth A,~, and

Q2
A,L ( T) = mN(0)e UF T g-

„=)Z„(co„+5„)~

' —1/2

(30}

0.5—

0.0
0.0

I

0.8 0.4 O.S 0.8 1.0

oo
n

n =1 n+~n
(31)

for the London penetration depth A,L. The temperature-
dependent electromagnetic coherence length g(T) is given

s43, 44
FIG. 6. The inverse square of London penetration depth nor-

malized to the value for the pure case at zero temperature vs the
reduced temperature t = T/T, . (a) Abrikosov-Gor'kov impuri-
ties. (b) Spin-glass impurities for case 1. (c) Spin-glass impuri-
ties for case 2. See Table I for details of the parameters.
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FIG. 7. The dc Josephson crItical current J„~ ~

t J (T) normalized
v the reducedto the value for the pure case at zero temperature vs the

temperature t =,. a= T/T, . (a) Abrikosov-Gor'kov impurities. (b)
S in-glass impurities for case 1. (c) p' -g

' ' '
r(c) S in- lass impurities forpin-

case 2. See Table I for details of the parameters.

FIG. 8. The temperature-dependen«»«e gerence len th (T)
ivided b the mean-free path I norma izeimp ized to the same

quan i ya zt't t zero temperature in the limit o no mag
ure t = T/T, .ties, i.e., g( T)1 /g (0)1™,vs the reduced temperature

( ) Ab 'k sov-Gor'kov impurities. (b) Spin-glass impurities for
case 1. (c) Spin-glass impurities for case 2. See Ta le
tails of the parameters.

limit penetration epd th Again similar discussion app ies
as in ig. , wiF' 6 'th reentrant behavior exhibited y case

h t shown the Pippard penetration dep e-e ave no
s. 27) andcause i c't closely resembles Fig. 7 as from Eqs. an

ith on1 a
1 htl different power law. This particular penetration

depth is used when referring to type-I superconduct
Fi ure 8 exhibits the temperature-dependent elec-

tromagnetic coherence length div y

Figure ex i i s
'

ided b the mean free
path I' " normalized to the same quantity at zero tem-

in the limit of no magnetic impurities, i.e.,perature in e im'

it scatter-(T)1 /g (0)l ' . In all cases, magnetic impurity
reases the magnitude of this quantity with the tem-ing increases e m

erature dependence once again reflecting e var
in the effective scattering rate. As the mean- pmean-free ath in
th presence of magnetic impurity

'
gscatterin will be

sma11er than without such scattering, these curves wos would
then in icate a

' d' th t the coherence length itself is reduced
by magnetic scattering.

~ ~

The thin-film critical current due to velocity pair-
field has been calculated inbreaking in zero magnetic fie d

4' I thestrong coup inglin theory by Nicol and Carbotte. In the
cacu a1 1 tion for a spin-glass supercon uctor, qs. an

an a lied(7) are modified to include the efFect of an app
'

momentum q due to the transport current. The result-S

ing change is to replace terms of the form

CO

M

O
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COm ISZdz

Q(co —isz) +b,
(33)

FIG. 9. The thin-film critical current dens' ynsit normalized to
—:—T d '/d T

~
T„vs the reduced tem-

rature t = T/T, . (a) Abrikosov-Gor*kov impurities.
Spin-glass impurities for case 1. c pin-g ass

'

case 2. See Table I for details of the parameters.



45 THERMODYNAMIC AND ELECTROMAGNETIC PROPERTIES OF. . . 10 517

p~ dz

( +b, )' ' [(tom i») +~m]
(34)

For case 2, reentrant behavior occurs as previously dis-
cussed.

V. CONCLUSIONS
where s =vFq, and q, is the magnitude of the applied
momentum of the current. The superAuid current densi-

ty is then given as

3' i (to„i—sz )z
j,= mT Y dz . (3&)

[(
— ~

z )2+g2 ]1/2

We numerically solve Eqs. (6)—(8), with the above
modification, self-consistently for a value of q, which
maximizes j,. This value of j, is then defined, in the usu-

al manner, to be the critical current density, j,.
In Fig. 9 we show the thin-film critical current normal-

ized to its slope at T, . The formalism for calculating this

quantity with the addition of paramagnetic impurities
has already been given in Nicol and Carbotte and is de-
scribed above; we have merely incorporated the
temperature-dependent scattering rate into the pro-
cedure. It was found previously that the temperature
dependence of this quantity is enhanced in the presence
of Abrikosov-Gor'kov impurities although the actual
magnitude of j, decreases. One finds that the tempera-
ture dependence in the model for case 1 is enhanced over
the Abrikosov-Gor'kov result in (a) at low temperatures.

In conclusion, we have calculated thermodynamic and
electromagnetic properties for an intrinsic spin-glass su-
perconductor in the spin-glass model of Nass et al. We
have extended the BCS calculations of Stephan and Car-
botte" to strong-coupling Eliashberg theory, so that the
theory is capable of providing quantitative predictions.
In addition, we have considered properties not previously
investigated, to the author's knowledge, within this mod-
el.

In general, we find very distinctive behavior in the tem-
perature dependence of the superconducting properties.
These should be observable in experiment if this model
has any relevance to spin-glass superconductors. In addi-
tion, reentrant behavior is a possible signature of a spin-
glass state corresponding to case 2 of the model used
here.
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