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Localization of electrons and electromagnetic waves in a deterministic aperiodic system
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Electron localization and optical transmission in one-dimensional systems with two components distri-
buted according to the Rudin-Shapiro sequence are investigated. The nature of the eigenstates in the di-

agonal tight-binding model is studied by making use of nonlinear recurrence relations satisfied by the as-
sociated transfer matrices and their traces. It is shown that the wave functions display a wide range of
features going from weak to exponential localization. Numerical computations lead to the conjecture
that the localization property is generic. Nevertheless, a countable dense set of critical values of the on-
site potential amplitude is found for which a class of extended states exists. Accordingly, the numerical
investigation of the time evolution of the electronic wave packets displays a subdi8usive behavior when

the potential amplitude becomes critical. Finally, a study of the optical properties of the Rudin-Shapiro
dielectric multilayer shows strong similarities with the behavior of the disordered multilayers regarding
the development of gaps in the transmission spectra.

I. INTRODUC1 ION

The interest in the physical properties of deterministic
aperiodic systems has increased explosively during the
last years, especially since the experimental discovery of
the quasicrystals. ' Various models were conceived in or-
der to explain the influence that the type of aperiodic
atomic distribution has on their properties (for a review
see, e.g., Ref. 2). Among the treated subjects, the locali-
zation problem plays a central role. Since it was
rigorously proven in one dimension and is generally ac-
cepted in two and three dimensions that disorder can lead
to electron localization, it is of great interest to know if
different kinds of deterministic aperiodic systems can
show the same property. The first step towards the
answer was done in the frame of the study of incommens-
urate systems when electron localization was discovered
in the Aubry model. Another system displaying locali-
zation was later obtained by mapping the kicked quan-
tum rotator into a one-dimensional tight-binding model
with an unbounded incommensurate potential. It is in-
teresting to note that, in both models, the wave functions
are exponentially localized but the localization length is
energy independent in the first case, while it depends on
the energy as in the Lloyd disordered model in the second
case.

A class of models which has recently received much at-
tention is the one characterized by distributions of com-
ponents generated by substitutions or finite automata.
The results obtained in this field until now showed the ex-
istence of extended and recurrent (critical) electronic
states ' ' and a rich self-similar structure of the elec-
tromagnetic wave transmission spectra, ' sometimes
displaying a tendency towards the development of
transmission bands. ' In the frame of these studies, a
question naturally arose: How close can the behavior of

an automatic system be to that of a disordered one? This
paper intends to be a step towards the answer in regards
to the localization of electrons and light by giving an ex-
ample of an automatic distribution whose complexity
generates physical properties which are qualitatively
close to those existing in disordered structures. This is
the case of the string containing two different com-
ponents (letters) distributed in a deterministic and
aperiodic way according to the Rudin-Shapiro (RS) se-
quence. " Even if it shares with the other automatic se-
quences the general feature of having zero configurational
entropy, the RS sequence displays the additional remark-
able property of possessing an absolutely continuous
Fourier measure whose uniform density equals one, ex-
actly like a random distribution. ' This makes the RS
system a natural candidate for the investigation of the
possible similarities with the disordered systems.

Despite its interesting properties, the RS distribution
was treated only scarcely in the physical literature, prob-
ably due to the inherent technical difficulties risen by the
complexity of the problem. A few conjectures and results
were published concerning the hopping conduction, ' the
distribution of gaps in the diagonal tight-binding model, '

and the multifractal analysis of the Fourier transform. '

The authors of Ref. 16 have recently derived a trace map
for one-dimensional RS systems and conjectured some
consequences this can have on the electronic spectrum of
the associated tight-binding model.

Here the localization of electrons and electromagnetic
waves in binary systems with the components distributed
according to the RS sequence is investigated. The for-
malism of the transfer matrix is described and recurrence
relations relating the transfer matrices and their traces
corresponding to successive generations of the chain are
derived in Sec. II. Section III is devoted to the study of
the spectrum and wave functions of the diagonal tight-
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binding model with site energies distributed according to
the RS sequence. The dynamics of wave packets is inves-
tigated in Sec. IV. The last part of the article (Sec. &)
treats the transmission of electromagnetic waves through
a dielectric multilayer whose components are again or-
dered like the letters in the RS sequence.

A ~AB,
B~AC,
C—+DB,

D~DC .

(2.1a)

(2.1b)

(2.1c}

(2.1d)

II. DYNAMICAL MAPS

There are many equivalent ways to generate the RS se-
quence (see, e.g. , Ref. 11). Here we adopt the substitu-
tional procedure which is subsequently described. Fix a
four letter alphabet I A, B,C,D I and define a (concurrent)
binary substitution relation acting on it given by

Take A as a seed and apply the substitution once. The
two-letter word AB is obtained which will be called the
first generation of the sequence. A straightforward re-
currence procedure to obtain the pth generation by ap-
plying the substitution to each letter of the (p —1)th one
can be defined in this way. The first few successive gen-
erations read

A —+ AB ~ABAC~ ABACABDB ~ ABACABDBABACDCAC —+ . (2.2)

The RS sequence is obtained when identifying each A or 8 with A, and each C or D with 8 in the above string, such
that we finally get the generations

A —+ A A —+ A A AB ~ A A ABA ABA —+ A A ABA ABA A A ABBBAB~ (2.3)

The physical system studied in this section consists of a
chain of atoms of two kinds distributed like the A's and
B's in the RS sequence of letters. Each site A (B}has
the energy V ( —V), and an electron with energy E can
hop from site to site according to the following diagonal
tight-binding equation of motion:

P. +i+0. i+ V.4.=—E4. (2.4)

where f„den toes the wave amplitude on site n, V„=k V,

and the hopping integral is set equal to one. In what fol-
lows we will always consider a positive V.

The above system of equations can be written as

E —V —1n

Y'n —1 Q

(2.5)

where M„ is the unimodular transfer matrix associated
with the site n. Then the total transfer matrix corre-
sponding to the nth generation of the RS chain is given
by

A„=M~M~ )M~ 2
. M2M), X=2", n 0 .

—n+1 —n —n
=B A

8 =CA—n+1 —n —n

(2.6a)

(2.6b)

—n+1 —n —nC =8D
D =CD—n+1 —n —n

with

(2.6c)

(2.6d)

In analogy with these, we can define in the case of the
four-letter sequence matrices Bn, Cn, and D„ through the
following equations which are the direct consequence of
the recurrence relation (2.1}:

Ao =M~, 80 =M~, Co =M~, Do =M~,

where Mz (Mz ) denotes the matrix M„ in (2.5) when V„
equals V ( —V). The above equations define a nonlinear
16-dimensional mapping for the entries of the matrices.
If we take into account the unimodularity of the ma-
trices, this dimension is reduced to 12. Moreover, the re-
lations (2.6) are symmetric under the transformation
which replaces all A„with D„and all Bn with Cn. In the
particular case of the tight-binding model, the equations
lead to the following identities:

A„(E, V) =D„(E,—V), B„(E,V) =C„(E,—V) . (2.7)

The first equation above gives a physical meaning to D„;
according to (2.7), D„describes again the nth generation
of the RS system but with V replaced by —V. For our
purposes we would like to have an equation satisfied by
matrices A„(or D„) only. The necessary decoupling of
the recurrence relations (2.6} is performed in the Appen-
dix and its result reads

A„+)=A„)A„2A„)A„:2A„A„)A„2A„(A„,
(2.8)

Cn =8„)C„28„2C„ (2.9)

un+i d +1 n~nbn C d nn

~n+] Cn+ f Qn Cn ~ndn
(2.10)

Due to the above-mentioned symmetry, the matrices D„
satisfy a formula analogous to (2.8} and B„an equation
similar to (2.9) but with the C„'s replaced by B„'s and
vice versa.

As proven in the Appendix, Eqs. (2.6) induce useful re-
currence relations for the traces of the total transfer ma-
trices, which read
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III. SPECTRUM AND WAVE FUNCTIONS

This section is devoted to the study of the spectrum
and nature of the wave functions of the RS diagonal
tight-binding model described by Eq. (2.4}. We investi-
gate first the spectra of its periodic approximants ob-
tained by repeating unit cells corresponding to the
configurations of the successive generations. Then the
parameter E belongs to the spectrum of the periodic ap-
proximant given by the nth generation if and only if it
satisfies the condition

I
tr A „(E,V) I

~ 2 . (3.1)

The trace of the total transfer matrix corresponding to
the n th generation is a polynomial of order 2" in the vari-
ables E and V. Then Eq. (3.1) says that the energies are
the solutions of an algebraic inequality of degree 2". To
derive a general expression for the above-mentioned poly-
nomials is an impossible task even for simpler atomic dis-
tributions. Fortunately there are some particular cases
which can be solved without too much dif6culty. Sup-
pose, for example, that for some values of E and V the
traces corresponding to a given n satisfy the following
equations:

a„(E,V)=d„(E,V), b„(E,V)=c„(E,V) . (3.2)

Then it can easily be seen from the recurrence relations
(2.10} that the same equalities hold for any index m ~ n
This means that the dynamics of the trace map is trapped
when m ~n into the six-dimensional invariant subspace
described in Ref. 16. The earliest generation for which
Eqs. (3.2) are satisfied is the second one, in which case the
value of the parameter E reads

where the trace of the matrix X„(X=A, B,C,D) is
denoted by x„(x=a, b, c,d ).

Relations sitnilar to (2.10) appear in Ref. 16 where a
complete eight-dimensional trace map was derived. The
authors conjectured that the RS trace map has a struc-
ture similar to the Thue-Morse and copper-mean maps as
regards the fractal structure of the basin of attraction and
the nonexistence of a polynomial invariant. Here it will
be shown that, despite these similarities, the physical
properties of the RS systems in what concerns the spec-
tral and optical behavior are qualitatively different.
Equations (2.8}—(2.10}will be used in the next section for
the study of some special wave functions.

—21/2(f 2

f (V) 2u2V (3.5)

Moreover, the following identity is obtained as a direct
consequence of the unimodularity of A2. +,

f2=2[1+(V2—1)F2, ], j ~1 . (3.6)

Equation (3.5) suggests the parametrization
V=(z+z ')/2, where z can be a positive real number
(when V~ 1) or a complex number with modulus one
(when V ~ 1 }. Then the following equalities hold:

f1=2 ' (z ' '+z ' '), NJ=2, j~ 1,N —N

F J=S~,(z), j~2,
J

N —N.
Q2J+) =Z +2 J + 2,

(3.7)

(3.8)

(3.9)

5

;', I II-
~ I'

I

where S„(z) denotes the nth Chebyshev polynomial of
the first kind. ' If V~ 1, there is a 8 in [O, n. /2] such that
V=cos8 and a2 + &

=2 cos(N 8); that is, condition (3.1}is
satisfied. On the other hand, V & 1 implies the divergence
of the sequence of traces corresponding to the odd gen-
erations. In conclusion, when the condition (3.3) is
satisfied, E belongs to the spectrum of the odd genera-
tions if and only if V&1, and gaps open when V=1 at
E=+V 3. Moreover, whenever V(1, Eqs. (3.4) and (3.7)
say that the entries of the matrices A 2 + &

are given by

(A2 +, )»=cos(N. 8)—[(3+V )/(1 —V )]' sin(NJ8),

( Az +, ),z= sin(N~8)/sin8,

(3.10)

( A2J+1)2~
= —3( A2J+1)12

(Az +&)22=cos(NJ8)+[(3+V )/(1 —V )]' sin(NJ8) .

For a fixed V, the above formulas define bounded func-
tions of argument j showing that, when applying the ma-
trices A 21+ &

to some arbitrary vector U& with unit norm,

E=/( V +2) ~2 0.3)

In the Appendix it is proven that, whenever E takes one
of the above values, the total transfer matrices corre-
sponding to the odd generations have the following ex-
pression:

5 ~

~ I

l

II
~ I

I

i
''ti'(

IC l ll
I
~

I I

] t

C I

C
J

'I
I i

0CI li''jll ~l'''tIt 1 I ~ ~ i I ~
'

' ' 'i

j~ I Isj
II I'

. j,'I;:
j 1 ~ I
~ I ~

I

r' $11

I ll Ill
~ I I l

II
1
~

I &
y I

,
'~)i~

]
II I~

i
~ 'I &' . & ~ '

j ~ '
il , I r

I e ~ '
I

i. j , i Ie
1~ ~ ~

A2
f 1 EF-—

J 1
F.

f 1+EF-J 1 .
(3 4)—3F1

where the polynomials f and F are defined by.
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FIG. 1. The natural logarithm of IIR„ II divided by the loga-
rithm of the site index n for the case V= 1 and E= —3'
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-80 I-

0 5000 10000 15000 20000 25000 30000

FIG. 2. The natural logarithm of the absolute value of the
wave function coefficients 1{„plotted as a function of the site in-

dex n for V=1, E= —1.732050807. . . and N=32768.

—2j +1A

A2 =

1 —EN NJ J
—E N 1+EN

1 —EN EN 2 —4NJ J J

Nj 1 —N,'+ENj

(3.11)

(3.12)

0 ~ 15 -~—————~——
(a)

i.~l lt. I ~~a~tI'1~/~, i~1
$ $1~1"gyl )

the sequence !)Uz +1!!of the norms of its iterates is
2j+1

bounded. A completely diff'erent picture is found for
V= 1, in which case it can easily be seen from (3.4) and
(A8) that the total transfer matrices read

—n„—4—6 —2r —2—2rR —A A A A (3.13)

Then it follows from Eq. (3.12) that, for large r, the
norms of the matrices A„satisfy the scaling law

!!g„(&=+&3,&=1)!!-const «„ (3.14)

where numerical computations performed in multiple
precision give P=(4ln2) . In conclusion, the eigen-
functions corresponding to (3.3) are weaker than ex-

ponentially localized when V=1. This pattern can clear-
ly be seen when numerically computing the free boundary
condition approximants (see Fig. 2). On the other hand,
Eqs. (3.10) suggest a qualitative change in the nature of
states when V&1. An extreme situation appears when
V=cos0 takes one of the critical values corresponding to
those values of 8 from (0,1r/2), which are integer multi-
ples of m/N~ . If w. e .assume that 8=k m /NJ,
0 (k (N /2, we obtain, with the help of (3.10) and (2.8),

A2 +I =( 1) I

As a consequence of the above expressions, the wave
functions corresponding to the energies given by (3.3)
possess subsequences of power-law increasing amplitudes
on sites N', N + 1 (with power 1), and 2N, 2N + 1

(with power —,'), j ~ 1. If we denote the products of
transfer matrices by R„=—M„M„&.. . M2MI, then a
plot of In(!!R„!!)/In(n) as a function of n (see Fig. 1)
shows that the latter power-law behavior is, in fact, a
lower bound. (Here, and whenever necessary, the compu-
tations were performed in multiple precision, the number
of significant digits being chosen in each case such that
numerical errors were practically eliminated. ) An upper
bound is given by the values of the amplitudes on sites la-
beled by the sequence of numbers m, =8+n„
n„= QJ zN2J. , r ~2. The first two relations from (2.6)
can be used to prove the identity

-0.15 I
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I
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j

2000

—2j +2r+1A

g 2f
A2j +2r+2 ~ 2j +2~ f —x

(3.15)

0
T

I

-10—

500 1000 1500 2000

-120
L J I I I I

0 1000 2000 3000 4000 5000 6000 7000 8000
n

FIG. 3. {a) The wave-function coefficients P„plotted as a
function of site index n for N =2047, V= 2 ', and
E= —{V +2}' using free boundary conditions. {b}Same as
{a},but in logarithmic scale.

FIG. 4. The natural logarithm of the absolute value of the
wave-function coefficients 1rj„plotted as a function of the site in-

dex n for V=1, E= —0.517638090. . . , N=8192, using free

boundary conditions.
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where I denotes the identity matrix. In what follows we

will study in detail the case V=2 ' (j=2, k=1).
Then, as proven in the Appendix, there is a periodic
subsequence of sites (given by the set of indices
m =1+16p—4q, p =0, 1,2, . . .,q =0.1) on which

Moreover, numerical computations showm

that the sequence of norms of matrices R„ is again dom-

inated by the subsequence (~R„(~ whose values can be
r

computed with the help of (3.15). We obtain

0-
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(a) FIG. 6. The state with lowest energy in a RS chain of length

N =2048 with V= 1 plotted in a logarithmic scale.
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(3.16)

(3.17)

0 5

(b)
This allows us to conclude that, in the limit of the infinite
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FIG. 5. (a) The normalized second moment, (b) the inverse
participation ratio, and (c) the normalized first moment vs
eigenenergy number for a Rudin-Shapiro chain with V=1 and
the length N= 512.
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FIG. 7. (a) The normalized second moment and (b) inverse
participation ratio vs eigenenergy number for a RS chain with
V=2 ' and the length N=2047.
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chain, the wave function is non-normalizable, that is, ex-
tended. The derived features can be easily seen in Fig. 3.

The above argument can be extended to the other criti-
cal values of V, giving a whole class of extended functions
possessing periodic subsequences of amplitudes whose
periods depend on V. Also, it is to be noted that Eqs.
(3.10) do not exclude the existence of extended states for
other (noncritical) subunitary values of V whose energies
satisfy (3.3), but their investigation is more complicated
and will not be performed here.

A similar analysis can, in principle, be applied to
other values of F. and V which are simultaneous solu-
tions of the relations (3.2) and (3.1) for odd
n ~3 (eg. , 8=+[2 +(2 +V )'~ ]'~ for V=1 or
F. =+[2—(2+ V )' ]' for V=1, 1 j&2). A plot of the
associated wave functions calculated in multiple precision
(see one example in Fig. 4} displays some very complex
self-similar structures with an overall tendency towards
localization.

A general picture of the nature of all the states [includ-
ing those which do not satisfy the condition (3.2)] can be
obtained by computing their first and second moments
and the inverse participation ratio. The numerical com-
putation performed for various values of V showed that
the localization property is generic. This can be easily
seen, for instance, in Figs. 5(a) and 5(b), where extremely
small (large) values of the second moment (inverse parti-
cipation ratio) are displayed. It is useful to remember
that the second moment takes values greater than 0.18
for extended states and the inverse participation ratio
gives the inverse of the number of sites that support the
wave function. Moreover, a picture of the first moment
of the states exhibit a completely disordered pattern, as in
a random system [see Fig. 5(c}]. The analogy is even
closer because a large class of typical exponentially local-
ized states exist, exactly as in a purely random system
(see Fig. 6).

The same analysis of the second moment and inverse
participation ratio but for critical values of V reveals two
bands of extended states around the energy values given
by (3.3) (see Figs. 7).

IV. TIME EVOLUTION

0 I-

10000 20000 30000 40000 50000 60000
t

FIG. 8. The time evolution of the logarithm of the root-
mean-square deviation [([hx(t)]2) ]'~ plotted for two different
values of the site energy amplitude V, V=1.0 (upper), and
V=2.0 (lower), for a Rudin-Shapiro chain. The length of the
chain is N =2047 and the electron was located at site
(N —1)/2=1023 at time t =0.

known to behave like t, where a=1 for extended states
in periodic lattices, a= —,

' for extended states in disor-
dered systems and a=0 for localized states in random
lattices. Recent studies on aperiodic chains' have
displayed a rich variety in behavior: while in the Aubry
model a equals one or zero if the potential amplitude is
smaller, respectively, greater than a critical value, in the
Fibonacci case a takes values in the range (0,1)
depending again on the site energy amplitude.
Superdiffusive behavior (a )—,

'
) has also been found in a

random-dimer model, ' and in Ref. 20 it has been proven
that the difFusive spread of the wave packet can take
place only if the spectrum is singular continuous. The
numerical results obtained here for the RS lattice will
show that, in concordance with the study performed in
the previous chapter, the existence of very few extended
states in a sea of localized ones can slightly increase the
value of a from zero to small positive values, leading to
subdiffusive dynamics.

The explicit form of the time-dependent wave function
in the representation of the energy eigenstates

~

k ) reads

The most appealing picture of localization is given by
studying the time spreading of an initially localized wave
packet. Unfortunately, its achievement demands the
knowledge of both electronic spectrum and wave func-
tions, raising serious analytical difficulties. This problem
can be overcome by numerically diagonalizing large
tight-binding Hamiltonians and by computing all the
relevant quantities in the eigen vector representation.
One quantity of interest is the mean-square displacement
of the wave packet whose long-time behavior can give in-
formation concerning the extension of eigenstates. For a
wave packet localized at t=0 on the site no of a chain
this is given by

0. 9 )

0.1

([&x(r)] ) = g( n) ~g„(—t)~ (4.1)
10000 20000 30000 40000 50000 60000

t

In the long-time limit the square root of this quantity is

FIG. 9. The probability of return P„(t) for a Rudin-Shapiro

chain of length 2047 and V=2 with starting site no = 1023.
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FIG. 10. The same as in Fig. 8 but with
y 2

—1/2( 1 +2
—1/2)1/2

and can be computed explicitly with the help of (4.2).
In what follows we will discuss the long-time asymptot-

ical dynamics of one electron initially localized near the
middle of the RS lattice. When all the eigenstates are lo-
calized, the dynamics of the wave packet width displays a

!g(t))=g +exp( t'Ekt—)(k!m)P (t=0)!k), (42)
m k

where ( m! k ) denotes the amplitude of !k ) on the site
m. Equations (4.1) and (4.2) show that only those eigen-
states having nonzero amplitudes in the region where the
wave packet was localized at t=0 contribute to the
mean-square displacement. If all these eigenstates are lo-
calized, then the wave packet will never reach the bound-
ary of the system and will oscillate quasiperiodically at
large times between two limit positions, giving in the
mean the value zero for the exponent a.

Another quantity of interest is the probability of return
of the particle into the region where it was initially local-
ized. The strict positivity of this quantity in the asymp-
totic long-time regime was the first localization criterion
used by Anderson in his classical study of the disordered
solid. ' If the particle was initially localized on the site
no, the probability of return has the following simple ex-
pression:

(4.3)

superposition of oscillations with different time scales
around a straight line with slope a=0 (see Fig. 8). Ac-
cording to (4.1) and (4.2), the largest period which can be
seen in Fig. 8 for a fixed V is proportional to the recipro-
cal of the smallest spacing between the energies associat-
ed to the class of states which supports the motion. The
probability of return at the starting site shows symmetric
oscillations around a relatively high value (see Fig. 9).

When V takes a critical value and the initial site is
chosen such that the amplitude of at least one extended
state at this site has a considerable magnitude, the above
picture changes qualitatively. Such an example is given
in Fig. 10, where the positive slope of the packet width is
clearly seen (the corresponding value of a computed from
the asymptotics with the least-squares method is here
0.12). Moreover, the probability of return displayed in
Fig. 11 is slightly decreasing and its mean value is shifted
towards smaller values, showing a slow spreading of the
wave packet onto the lattice.

V. OPTICAL TRANSMISSION

M„= r„sin5 cos5

In the above equation, 5 denotes the phase variation
through one layer and r„equals 1 if the nth layer is of
type A, or n~ /n& if it is of type B.

The transmission coefficient T„ through a system con-
taining 2" layers distributed according to the nth genera-
tion of the chain is related to the entries m; of the total
transfer matrix through the equation '

The system which we analyze in this section consists of
a dielectric multilayer constructed from two components
A and B characterized by refractive indices n„and nz
respectively. The components are again distributed fol-
lowing the RS string. The multilayer is inserted between
two half-infinite media of type A and the layer
thicknesses are adjusted such that the variation of the
phase of the normally incident beam is the same in both
kinds of layers. Then it can be shown ' that the values
of the electrical field and its first derivative at the inter-
face of two successive layers are components of some vec-
tors which satisfy an equation similar to (2.5), the ma-
trices M„being given this time by

cos5 —r„'sin5

0.5— 4[T„(5)] ' —2=m „+m, +m, +m 2 . (5.2)

0—
I

0
I i I I I I

5000 10000 15000 20000 25000 30000
t

FIG. 11. The same as in Fig. 9 but with V as in Fig. 10.

The numerical computations performed for the same
refractive indices but different number of layers show the
development of transmission gaps around the phase
values 5=5k=(2k+1)n/2 when increasing the genera-
tion number (here k denotes any integer number). As
seen in Figs. 12(a) and 12(b) the behavior of T„(5k) de-
pends strongly on n: the even generations give transmis-
sion maxima while the values corresponding to the odd
ones vanish exponentially when the number of layers in-
creases to infinity. This can be explained easily if we
compute the first three matrices A„(5„) (n =1,2, 3) and
then apply mathematical induction in order to obtain
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with the help of the recurrence relation (2.8) the follow-
ing general expression:

(5.3)

—N
O

~an+((4)=~ ~en =
()

where r =n~ In& and %=2" '. Therefore, the transmis-
sion coefficient will, in this case, take the values one or
4/[2+ (r + r ) ] only.

If we compare the above-mentioned transmission spec-
tra for the RS chain with the spectra corresponding to
the same refractive indices but various disordered layer
distributions obtained with a random number generator,
we can observe the development of similar gaps around

the values 5=5k [see Figs. 12(c)—12(f)]. This feature
common to the disordered and RS layers seems to be the
opposite of the behavior of the Thue-Morse and of the
copper-mean class of quasiperiodic systems (obtained by
generalizing the Fibonaccian sequence) previously report-
ed, ' which develop transmission bands around the
same values of the phase.

VI. SUMMARY

The localization of the electrons and electromagnetic
waves in binary structures with components distributed
according to the deterministic aperiodic Rudin-Shapiro

I 'T

1

T (b)

0-
I

1.4 1.6
I

1.2 1.4
I

2

1—
T (d) I

0-
1

I

1.2 1.4
I

1.8
0-

I

1
I

1.2
I

1.4 1.6
5

I

2

I

1.2 1.4
I

1.6
I

1.8 2

0-
1

I

1.2
I

1.4
I

1.6
I

1.8

FIG. 12. The transmission coefficient T as a function of the phase 5 measured in units for m for (a) a RS chain of length N= 512,
(b) a RS chain of length N= 1024, (c) and (d) two different disordered configurations for 512 layers, and (e) and (f) same as in (c) and

(d) but for 1024 layers. In all cases the ratio of the refractive indices is 1.5.
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sequence was investigated. Two physical realizations of
this distribution were studied: (a) an electronic tight-
binding model with diagonal aperiodicity, and (b) an
aperiodic dielectric multilayer composed of two kinds of
layers having different refractive indices. Both systems
were treated in the frame of the transfer-matrix formal-
ism making use of nonlinear recurrence relations satisfied
by the transfer matrices and their traces corresponding to
successive generations of the chain. Numerical computa-
tions of the first and second moments and of the inverse
participation ratio lead to the conjecture that the elec-
tronic wave functions are, in general, localized, display-
ing at the same time a rich self-similar structure. Also, a
class of eigenfunctions was found for which a combined
analytical and numerical analysis showed a qualitative
change in behavior when the strength V of the amplitude
of the on-site energy is varied: while, for V=1, these
states are weakly localized, there is a countable dense set
of critical subunitary values of V for which they become
extended. The overall tendency towards localization of
the wave functions shows that, in contrast to some other
deterministic aperiodic models previously studied which
present mainly critical or extended ' states, the Rudin-
Shapiro tight-binding model behaves more closely to the
disordered systems.

The influence which the localization property has on
the time evolution of the electronic wave packet was nu-
merically investigated. It was found that the existence of
extended states in the critical cases can give only a
subdiffusive behavior for the mean-square displacement
of the wave packet and a slow decrease of the probability
of return to the starting site.

The study of the optical transmission through the
Rudin-Shapiro dielectric multilayer has lead to the con-
clusion that the electromagnetic waves are localized too.
It was shown that gaps in the transmission spectra devel-
op around some phase values when the number of layers
is increased. The comparison of these results with the be-
havior of the binary disordered layers having the same
optical parameters emphasized their strong similarities.
The above-mentioned results lead to the general con-
clusion that the complexity of the Rudin-Shapiro distri-
bution has in some aspects effects on the physical proper-
ties close to those of a random distribution.

ACKNOWLEDGMENTS

Access to a Cray Research, Inc. X-MP/48 supercom-
puter through the National Supercomputer Centre in
Sweden at the University of Linkoping has been extreme-
ly useful in performing the numerical calculations in this
work. Financial support from the Swedish Natural Sci-
ence Research Council under Grant Nos. NFR-FFU-
1909-300 and NFR-FGF-1909-303 is also gratefully ac-
knowledged.

APPENDIX

In order to prove the recurrences appearing in Sec. I, it
is useful to derive first from Eq. (2.6) the following identi-
ties:

B
a-'C =a-' D—n —n —n —1—n —1

(A 1)

n —
&—n —2—n —2 —n —2—n —2 (A3)

The matrix Dn can be eliminated from the above equality
with the help of the last identity from (A2) and we obtain

Cn —) =Bn 2 An —2Cn (A4)

The recurrence formula (2.8) is proved if we first elimi-
nate all C„'s from (A4} by making use of the third identi-
ty appearing in (A2) and then eliminating from the result-
ing equation all B„'s with the help of the second equality
from (A2). Equation (2.9) is the straightforward conse-
quence of (A4) and the first relation from (Al).

In the derivation of the recurrence relation satisfied by
traces (2.10), we make use of the following identity which
holds for the traces of any pair X and Y of unimodular
matrices or order 2:

tr(XY+XY ') =trXtr Y . (AS)

Then, if one takes the trace in the first two equations
from (2.6) and apply Eq. (AS), we can write, using the no-
tation introduced in Sec. II,

tr(B„A„')=a„b„—a„+i,
tr(A„'C„)=a„c„b„+,. — (A6)

By reasons of symmetry, the same equation holds if we
replace the A„'s by D„'s, the B„'s by C„'s, and the C„'s
by B„'s. So we can write

tr(D„'B„)=b„d„—c„+, ,

tr(C„D„')=c„d„—d„+, .
(A7)

Equation (2.10) is the immediate consequence of (Al),
(A6), and (A7).

In order to prove formula (3.4), we assume first that
the total transfer matrices corresponding to the even gen-
erations have the expression

f 1 EF- —
J J F.

~21+G. +EF.J J
A2. = (A8)X

where the polynomials 6 are given by the recurrence re-
lation

and

a =B-'Z—n —n —n+1 —n —n+1& —n —n+1—n —n+1—n

(A2}

C =B A '=D D ' D =B 'C—n —n+1—n —n+1—n & —n —n —n+1 —n —n+1 ~

Then, by combining the first and the fourth identity of
(Al}, we get
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G.+~=2 fj+~GJ —(f +.
&

—2 ~ ), j &2,

G~= —8V (3V —1),
(A9)

plus two more products obtained from the previous ones
by replacing each A with B and vice versa. In the case at
hand, a simple computation gives

and X can be derived from the unimodularity condition
det( Az, ) = 1. Then it can be shown by making use of the
recurrence relation (2.8) and applying mathematical in-
duction that Eqs. (3.4) and (AS) really hold for any j.

The existence of the periodic subsequence of sites m~
discussed in Sec. III can be proven if we observe first
that, according to the substitution relation (2.1), the RS
sequence is built of four difFerent words only containing
16 letters each arranged in a nonperiodic way. The
transfer matrices associated to these words read

M~ M~M~ =M~ M~Mg MgMg M~M~

= —M~M~M~M~MqM~ =

(Al 1)

Mq M~Mq M~M„M~M~ M

M~ M~M~ M~M~ M~M~ M~M~,

(A 10)

and the symmetric relation obtained from (Al 1) with the
exchange A~8 and changing the sign of —&2. Equa-
tion (Al 1) shows that, when successively applying the
above matrices to the initial vector U&, the amplitude P&
is reproduced (up to the sign) on the sites m~
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