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%'e study a generalized Hubbard Hamiltonian which is closed within the framework of a quantum
real-space renormalization group, which replaces the d-dimensional hypercubic lattice by a diamondlike
lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled-band

case for d =2 and d =3. Some evidence for superconductivity is presented.

I. INTRODUCTION

The Hubbard model' describes a single s band in a
tight-binding basis, with local (intrasite) electron-electron
interaction. It provides the most simple model to study
correlation effects in narrow energy bands, such as metal-
lic magnetism and the metal-insulator transition. It has
been often used to describe real materials exhibiting such
phenomena. Moreover, in the last years there was an in-
creasing interest in this model and other related ones,
mainly because of its applications to the study of high-T,
oxide superconductors. ' In spite of its simplicity, only
the one-dimensional case has been solved exactly. '

Above one dimension different approximate techniques
has been applied to obtain partial information about the
behavior of the model, both for zero and finite tempera-
ture and for various occupations of the band. Among
other approximate techniques let us mention mean-field
theory, ' the Green function, variational approaches, '

and Monte Carlo calculations. ' ' In particular, for finite
temperature, a few works have been done by using a
real-space renormalization-group method [for d = 1 Refs.
(20 and 21) and d =2 Ref. (22)].

We have recently reported preliminary results on this
model by using a quantum real-space renormalization-
group (RG) method. Here we discuss the approach in
detail and present additional results. Our approximation
consists in replacing Bravais lattices by diamondlike
hierarchical lattices. This method has proved to be a
powerful tool to study critical properties of quantum spin
systems. ' In order to apply this RG scheme to the
Hubbard Hamiltonian, we derive a new Hamiltonian
which generalizes the standard one in such way that it
remains invariant under the RG transformation. The
present procedure is based on an exact calculation per-
formed for a two-terminal cluster whose iterations yield a
hierarchical lattice. It is worthy stressing that the results
are not exact for the hierarchical lattice because of the

noncommutativity of the involved operators. ' Never-
theless, they are asymptotically exact at high temperature
and are believed to be a good approximation for all tern-
peratures. Here we calculate the full d=2 and 3 phase
diagram for the half-filled-band case.

In Sec. II we briefly review some of the basic properties
of the Hubbard Hamiltonian. In Sec. III we discuss the
RG formalism and derive the generalized Hamiltonian.
A numerical calculation of the phase diagram for the
half-filled generalized Hamiltonian is presented for d =2
and 3 in Sec. IV. We finally conclude in Sec. V.

II. HUBBARD MODEL

In this section we review some basic properties of the
Hubbard Hamiltonian that will be used later on. Let us
introduce the dimensionless Hubbard Hamiltonian .PH
defined as follows

—U g n; &n; i+p, g n;

where P—= 1/k&T, c, (c, ) is the creation (annihilation)
operator for an electron with spin cr =1, $ in a Wannier
state centered at the site E of the lattice; n,- —=c,- c,- is
the corresponding occupation number; t, U, and p are,
respectively, the dimensionless hopping constant, in-

trasite electron-electron interaction, and chemical poten-
tial; and (i,j ) runs over all pairs of first-neighboring sites
on a d-dimensional hypercubic lattice (with unitary crys-
talline parameter). The half-filled-band case [i.e.,

(X)=A; where A' is the number of sites of the lattice
and N—:g, (n, &+n, &)] corresponds to p= U/2. Then
(1) takes the form
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H= PHH The fermionic character of the c operators imposes the
relations

(ij ),o

+—,
' U g (n; t

—n, &.)

As usual, we define the spin operators as

(2)

(S;") +(p,' ) =1,
S;"p,". '=S;"p,"'=0 (v, v'=x, y, z},

where

S;—:S;++S; X—+Pi=pi +Pi

Si ci yci g

+—

Si =c;$ci f

and the charge operators as

Sf: t —(S—;+'—S; ), p,". =— t—(p';+ —
p,. ) .

Let us introduce the unitary transformation

c; &
=exp(iQ R;)b; &, c; &

=b; &,

c; ~=exp( —iQ R;)b, &, c, &=b, &,
(7)

+
pi ~i )~i $

pi c; gc

(4) where Q is the wave vector associated with points which
belongs to the corners of the first Brillouin zone [e.g.,
Q = (m, n, . . ., n. )] such that

+ 1 when i and j belong to the same sublattice,
—1 when i and j belong to different sublattices,

where the hypercubic lattice has been decomposed into
two interpenetrating first-neighboring hypercubic sublat-
tices. Consequently, the spin operators S;" are
transformed as

S;+=exp( —iQ R;)p,+.

S,'=pi,
where

—+ —yf gtpi = i)i&~

(8)

n; =b;~b; (cr=—l, J) .

Also, the charge operators are transformed as

p,
+ =exp(iQ R;)S;+,

p';=S

where

S,+—=b; )b,- ),

(10)

Applying transformation (7) to the Hamiltonian (2) it is
easy to see that &H(t, U) =&H(t, —U), where &H is ob-
tained from Eq. (2) by replacing the c operators by the b
operators. This relation allows a simple mapping of the
U & 0 region of the phase diagram for the half-filled-band
case into the U &0 region. The transformation (7) gives,
in fact, a correspondence between charge and magnetic
order in such regions (this point will be discussed in detail
in Sec. IVB).

We can verify the important properties

[&H,S]=0,
[&H,N] =0,

(12)

where S—=g;S;. We now introduce a unitary transforma-
tion '9 defined as (see Ref. 28):

'M—:g exp(iy;q; p;), (14)

III. RENORMALIZATION GROUP

In order to study the thermodynamics of the model, at
least as far as criticality is concerned, we can use real-

where the [q;] are arbitrarily chosen unit vectors and the

[ y; ] are parameters of the transformation. If q; =q for
every site i and q lies in the x-y plane, this transformation
generalizes the particle-hole exchange transformation.

We want to stress the following important symmetries
of the Hamiltonian (2): (a) invariance under Q~ when

q, =q is in the z direction and y; =y for all sites i; in this
case 'M corresponds to a trivial phase change of the
Wannier representation [ p(x)~e 'p(x), where q&(x) is
the Wannier orbital located at site i]; (b) rotational invari-
ance associated with Eq. (12); and (c) invariance under Q
when q; =q lies in the x-y plane, provided that we choose
y; = —y, where i, j are nearest-neighboring sites (there
are cases, for instance frustrated lattices, for which such
a choice is not possible). In the non-half-filled-band case,
i.e., p&U/2, the Hamiltonian (1) loses symmetry (c), but
it still preserves symmetries (a) and (b}. Let us mention
here another symmetry [noted as (d)] which is satisfied
neither by Hamiltonian (1) nor (2), but which we shall Use
later on: (d) invariance under Vl with q in the x-y plane
and y; =y for all sites i.
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space renormalization-group approaches. For instance,
the lattice could be divided in two sublattices A and B.
Then we can define, by decimating the B sublattice, a
Hamiltonian &' on A which satisfies

exp(&'+ C ) =Trtt [exp(&)], (15)

o

i 4

L'

02

L'

0
2

0
L'

0 2

FIG. 1. Renormalization-group cell transformation. L
stands for the set of parameters of the Hamiltonian [e.g. ,

(U, t, p)for yi'H]. (a) d,= 1, (b) d=2, and (c) d=3.

where & is given by (2) and where Trtt represents a par-
tial trace over all the degrees of freedom associated to
sites of the sublattice B. As is well known, the decima-
tion transformation defined by Eq. (15) cannot be carried
out exactly on a Bravais lattice. This is due either to the
infinite proliferation of couplings constants through suc-
cessive decimations or to the noncommutativity among
the various terms of the Hamiltonian. In order to avoid
the infinite coupling proliferation, we use a quantum
real-space renormalization-group (RG) method in which
the Bravais lattices are replaced by diamondlike hierarch-
ical lattices, namely, those associated with the clusters
shown in Fig. 1. Such lattices are defined through infinite
iterations of a two-rooted cluster which consists in an ar-
ray of b" ' strings in parallel, each string being consti-
tuted by b bonds in series. Then the hierarchical lattice
contains an infinite number of clusters such as those of
Fig. 1. With each of these clusters, a Hamiltonian
(denoted by &k) can be associated. Consequently, the to-
tal Hamiltonian can be expressed as

For classical systems it is, of course, true that
exp(&)=gkexp(&„), and therefore, if A„ is exactly
tractable, the present approach will enable the exact solu-
tion of the hierarchical lattice. This is not so for a quan-
tum system because of noncommutativity. We then work
within the approximation

exp g Ak = g exp(&„) .
k k

(17)

This equation reduces the problem to the proper renor-
malization of a finite (relatively small) cluster. It is clear
that Eq. (17) becomes asymptotically exact in the T~ oc

limit, even if the problem is a quantum one (this fact
has already been verified for the Hubbard model ' and for
spin models ). It is, or course, possible in principle to
work within approximations systematically better than
Eq. (17), but this is not the aim of the present work. It is
worthy to mention also that the present procedure is be-
lieved to preserve the two-body correlation function (this
is already proved for the classical case). To perform the
renormalization within the present scheme, we would like
to satisfy

exp(AI, . +C ) = Tr [exp(%t, )],
internal sites

(18)

where &k denotes the Hamiltonian associated to the
cluster under consideration and &'k denotes the renor-
malized Hamiltonian of the two-site chain (see Fig. 1). In
fact, this is not possible for the Hamiltonian (2). Indeed,
if &k is the standard Hubbard Hamiltonian, proliferation
occurs and the resulting &I, contains new terms that
were not present in &k', however, the proliferation does
not go indefinitely, and a generalized Hamiltonian exists
which contains aconite number of terms and which exact
ly satisfies Eq. (18). Therefore we have to search for a
generalization of the Hubbard Hamiltonian (2) which
might satisfy this relation. As we shall see, the form of
the new Hamiltonian depends strongly on the choice of
the cluster. Some choices yield a new Hamiltonian which
does not reproduce all the symmetries of the Hubbard
Hamiltonian; in such situation the extended Hamiltonian
will not recover the initial one as a particular case.
Therefore our next task is to choose a suitable cluster.
For simplicity let us start by considering the one-
dimensional case. We ask for the smallest one-
dimensional cluster for which the decimation transforma-
tion (18) preserves all the Hubbard Hamiltonian sym-
metries we are interested in [namely, symmetries (a), (b),
and (c) of Sec. II]. If a three-site cluster was used, the re-
sulting Hamiltonian through Eq. (18) would satisfy sym-
metries (a) and (b) but not (c); it would instead satisfy (d).
Clearly, this Hamiltonian mill not contain the original
Hubbard Hamiltonian as a particular case. In order to
avoid this inconvenience, we choose a four-site cluster,
for which the resulting Hamiltonian through Eq. (18)
satisfies all symmetries (a), (b), and (c). To be more expli-
cit, if we attribute alternating y and —y for each site of
the chain, the four-site cluster leaves under decimation
y, = +y and yz= —y for the two-site renormalized clus-
ter [see Fig. 1(a)], whereas the three-site cluster yields
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y, =y2=+y. The above argument not only applies to a
linear chain, but to all two-terminal clusters whose topol-
ogy enables them to satisfy the invariance property (c).
The cluster used by Castellani et a/. is the three-site
one and, consequently, suffers from this inconvenience.
This point is rather subtle and will hopefully become
clear through the discussion of a sequence of extensions
of Hamiltonian (1).

The next step is then to find a generalized half-filled-

band Hamiltonian [denote by %G Ref. (23)] which ex-
tends Hamiltonian (2) while preserving symmetries (a),
(b), and (c). By following along the lines introduced in
Ref. 28, we obtain the structure of &G without explicitly
performing the calculations involved in Eq. (18). More
precisely, we look for all the one- and two-site operators
which satisfy the just mentioned symmetries: A linear
combination of such terms yields the desired Hamiltoni-
an, namely,

&G=t g (c; c~ +c~ c; )+—,'Ug(S, ') —J g S, SJ
—K g (S,') (S')

&i j &o i &ij & &ij &

I g—
[p;'p& (p;"P—J"+pp )]+D Q (c; c +c c; )(n; —n, )

&i,j &, o.
(19)

This is the minimal Hamiltonian which satisfies Eq. (18)
and contains Hamiltonian (2) as a particular case. It is
worthy to point out here that, although we have followed
the method introduced by Castellani et al. , our general-
ized Hamiltonian is not the same they found. As already
mentioned, this difference is due to the different clusters
they and we have used.

We note the following properties.
(i) For J=K=I=D=0, we recover the half-filled-

band Hubbard Hamiltonian (2), as expected.
(ii) If we use the transformation (14) with q; =q for all

sites i, q being along the z direction and (y; —yj. ) =~ (i,j
nearest-neighbor sites), we can show that the grand parti-
tion function Z =Tr exp(&~G ) associated with the Hamil-
tonian (19) satisfies Z(t, D) =Z( —t, D). This poi—nt
greatly generalizes the one established in Ref. 28.

(iii) Using the standard particle-hole exchange transfor-
mation, it can be shown that Hamiltonian (19) preserves
the half-filled-band character of (2).

(iv) Applying the transformation (7), it can be seen that
the Hamiltonian (19) is transformed as

&G( U, K,J,I, t, D)~gf G(2(zK —,' U), K, I,J, t, D )—, (20)

where z equals the coordination number of a Bravais lat-
tice and equals 2 for the simple hierarchical lattices we
are using here; %G is obtained from &G by replacing the
c operators by the b operators [see Eqs. (7)—(11)]. Conse-
quently, for K=U/2 and J=I, the Hamiltonian (19)
remains invariant under transformation (7). We can veri-
fy that this symmetry is preserved by Eq. (18); conse-
quently, the subspace (E,J)=(U/2, I) is invariant under
the RG transformation in the (U, K,J,I, t, D) parameter
space.

(v) For t=D =I=0, the Hamiltonian (19) becomes a
simple J-K-U model characterized by the Hamiltonian

J g S;'SJ K g (S;) (S ) + —Ug(S;)
&ij& &ij& i

(21)

This Hamiltonian looks like a quantum analog of the
Blume-Emery-Griffiths (BEG) Hamiltonian. ' In fact
the situation is more complex than that. This is due to
the fact that the S; operators cannot be interpreted as
standard spin-1 operators (see Ref. 28). It can be seen
that %'z x z satisfies symmetries (a), (b), (c), and (d) men-
tioned above. Therefore it also constitutes an invariant
subspace under the RG transformation.

(vi) The J=0 case of &J x z is isomorphic to the spin-
Ising model in the presence of an external field.

Indeed, by defining a new variable

r; =2(S ) —1, i; =+1, (22)

and by taking into account the double degeneracy of the
S =0 states, %&x ~ equals (K/4)g&, J)t, tj+H, g, t, ,
where

H, =
—,'( —,'U —K) . (23)

J=O constitutes an invariant subspace under the RG
transformation; it contains an even smaller subspace,
namely, K = U/2, i.e., H, =0.

Let us now focus on the case of non-half-filled band.
As we have seen in Sec. II, the Hamiltonian (1) does not
have symmetry (c). By repeating the procedure which
leads us from Hamiltonian (2) to Hamiltonian (19), we
can now generalize Hamiltonian (1) by only demanding
the preservation of symmetries (a) and (b). We obtain

&~G=t g (c; c +cj c, )+ ,' gU(S ) +P—,gn; Jg S; S —K g—(S ) (SJ')
io &ij& &ij &

+I gp'p Ig [pp (pp+p'p)]+& X l(p)p+(p)p]
&i,j&

(24)
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&~G =&~G+&s, (25)

where p=p —U/2. This Hamiltonian contains the fol-
lowing models as particular cases.

(i) For J=K=I=Y=R =D=E=O, we recover the
standard Hubbard model (1).

(ii) For P, =R =E=Y=O, we recover Hamiltonian
(19)

(iii) For P, =R =I=0, D = —t, and E =2D, we precise-
ly recover the Hamiltonian (here denoted by &cD) ob-
tained by Castellani et al. for the three-site cluster and
half-filled band. Hamiltonian &cD satisfies symmetries

(a), (b), and (d) [whereas Hamiltonian &G satisfies sym-

metries (a), (b), and (c)].
(iv) For K=R =I= Y=O, D =E=—t, and taking the

limit U~~ while keeping p finite, we obtain the t-J
model. ' A generalized version of this model will be dis-
cussed elsewhere.

(v) For K =I= Y=R =D =E=0, we obtain the
Hubbard-Heisenberg model.

Next, we consider the non-half-filled-band model with
an external magnetic field B in the z direction. In this
case the symmetry (b) must be replaced by the more re-
stricted one [AH, S']=0. By following the same pro-
cedure as before, we obtain that the Hamiltonian which is
invariant under the RG transformation is

If we consider B=R =R2=p, =t=D=E=I= Y=O
and U~ cc, &~& becomes the spin- —,

' anisotropic Heisen-

berg Hamiltonian, which in turns contains, for J2 =0, the
isotropic Heisenberg model as a particular case.

Finally, the most general one- and two-body single-
band fermionic Hamiltonian & can be obtained as a
generalization of the Hamiltonian &~& . Such Hamiltoni-
an will satisfy in principle none of the above-mentioned
symmetries. The general form of %g can be obtained by
the same procedure used to generate the sequence of
Hamiltonians we have analyzed. For instance, the term

Y g p, p I g—[p',p' (p', p—'+p,"p' )]., .

(, )
''

in Hamiltonian (24), will be replaced by the more general
one

g (I,p;'p'+I„p;"p" +Imp;p, ) .
(i,j )

The complete sequence of symmetries we have analyzed
in this section is summarized in Fig. 2.

IV. PHASE DIAGRAM:
HALF-FILLED-BAND CASE

where

=B gS —J g [S S' (S,"S"+SOS,~—)]
i (ij)

+R~ g [(S ) S'+(SJ') S ] .'(,, )

(26) exp(&G+ C ) = Tr [exp(&G ) ],
internal sites

(27)

In this section we calculate numerically the phase dia-
gram of the generalized Hamiltonian for the half-filled-
band case (19). The RG recurrence equations are ob-
tained by explicitly computing the partial trace

Rg
~pB

G

QG

&n;U
'Hggpt (J = 0)%

[Eq (2H

FIG. 2. Hierarchical sequence of the present Hamiltonians.
The rectangular blocks refer to sequences of symmetries (which

do not always coincide with sequences of particular values of
Ag). The circle indicates the position of the Hubbard Hamil-
tonian /IH [Eq. (2)]; note that it is contained in &o but not in

CD'

where .&6 denotes the generalized Hamiltonian associat-
ed with the cluster being considered and %G denotes the
renormalized Hamiltonian of the two-site chain (see Fig.
I). Let us first consider the d= 1 four-site cluster [Fig.
1(a)]. In this case the partial trace (27) is calculated by
summing the matrix elements of exp (%G ) over the set of
occupation numbers In3, n4 I. In order to compute
such matrix elements, we must diagonalize AG. The
Fock space

~ In; ] ) associated with the four-site chain is

of dimension 2; in such space &G is represented by a
256X256 matrix. As we have seen, the total number of
particles and z component of the total spin are good
quantum numbers for this problem [Eqs. (12) and (13)].
So, using the fact that the basis vectors are simultaneous-

ly eigenvectors of N and S', we can present %G in a
block-diagonal structure by simply rearranging the order
of these vectors according to the eigenvalues of X and S'.
The largest block (corresponding to the eigenvalues
N =4, S'=0) is a 36X 36 matrix. It is possible to further
reduce the size of the blocks by using some supplementa-

ry symmetries. However, the blocks do not become small

enough to be analytically tractable. So we have not per-
formed this further reduction, and excepting for a few
special cases, the calculation has been done numerically.
Using Eq. (27), we obtain the recurrence relations
between the set of parameters L =(U, K,J,I, t, D) of

and the set of renormalized parameters
L'=(U', J', K', I', t', D') of&G.
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L'=L
t (L ), (28)

L'=Ld(L)=b 'Lt(L), (29)

where b =3 is the length scale of the RG transformation.
Using Eq. (29), we analyzed the RG flow in the parameter
space (U, K,J,I, t, D) for d= 1, 2, and 3. This flow pro-
vides the corresponding phase diagram. We have numer-
ically studied the most relevant sections of this complex
phase diagram. Most of the attractors (fully stable fixed
points) and many of the relevant fixed points (semistable
or fully unstable) are located at the invariant subspace
t=D=O, which has been analyzed in Secs. IVA and
IVB. The tAO region has been explored in Secs. IVC
and IV D. Most of the DAO region is driven, under the
RG transformation, onto the D =0 case; consequently,
no critical novelties are expected in the DAO region.
The few exceptions which are observed are discussed in
Secs. IV C and IV D.

where the subindex 1 stands for d =1. In order properly
to take into account the weights of the single-site terms,
we associated U with every internal site and U/2 with
each of the two-terminal sites.

Now consider a more general diamondlike cluster of
the type shown in Figs. 1(a), 1(b), and 1(c). The fractal
dimensionalities df of the hierarchical lattices generated
by these clusters, respectively, are df =ln3/ln3 = 1,
df =ln9/ln3=2, and df =ln27/ln3=3, and hence, in
general, df =d. Every cluster of this kind consists in a
parallel array of 3" ' four-site chains, and so the corre-
sponding Hamiltonian is given by the sum of linear-chain
Hamiltonians. Therefore, within the approximation indi-
cated in Eq. (17},we obtain

sense it is a symmetry line of the phase diagram, since the
RG flow is topologically equivalent on both sides of it.
The relationship of this symmetry with the complete
Hamiltonian (19) was already pointed out in Eq. (20).
The flow diagram in the ( U, K) plane is shown in Fig. 3
for d=2 (the d=3 flow diagram is completely analog).
Along the line K = U/2, we find two fully unstable fixed
points labeled a, a', in Fig. 2. We find three fully stable
fixed points, namely; ( U, K)= ( k 00,0) and
(U, K)=(+ ao, + ao )~x U&2. Using the magnetic analog
expressed in Eq. (22), we distinguish three phases in the
(U, K) plane. The region enclosed by the line eaf is the
basin of attraction of the fixed point
(U, K)=(+ ao, + ~ )~x U&2. This fixed point character-
izes a phase with antiferromagneticlike order, i.e.,
( t, ) & 0 for all sites of one sublattice and (t; ) &0 for the
other one. In other words, the sites of one sublattice are
predominantly in the state S =0, whereas the sites of the
other are in the states S =+1. Consistently, one sublat-
tice has single electronic occupation, while in the other
sublattice each site can be either doubly occupied or not
occupied at all with equal probability. There is no mag-
netic order in either of these sublattices. So this phase is
a paramagnetic dimerized charge i-nsulating (PDCI} one.

All points belonging to the region K & U/2 and outside
the line eaf are attracted by the fixed point (+ ac, 0),
which is associated with a phase with ( t; ) &0 for all sites
i. In other words, most of the sites are in the S =+1
states indistinctly, thus describing a paramagnetic
uniform charge insu-lating (PUCI} phase. All points be-
longing to the region K & U/2 and outside the line eaf

10

A. J-K-Umodel(I=t=D=O)

We now consider the section I=t=D=O of the full
phase diagram; i.e., we analyze the phase diagram associ-
ated with the Hamiltonian (21) (we recall this Hamiltoni-
an is closed under the RG transformation). We are main-
ly interested in the antiferromagnetic case (J & 0},because
its fixed-point structure determines to some extent the
Hubbard model phase diagram (see Sec. IVC). The fer-
romagnetic case (J &0) presents results which are analo-
gous to those of the J&0 one. More precisely, to each
fixed point at J)0, it is associated a similar one at J (0,
which exhibits the same stability; in fact, this is true for
the entire RG flow topology. Therefore it suSces to con-
sider the J~O case. The analogy between the J)0 and
J&0 cases is physically expected, and it is correctly
reproduced by the present RG because of the odd number
of bonds appearing in all minimal paths between the two
terminals of the clusters we are using. It is worthy men-
tioning that the RG recurrence equations for the J-E-U
model have been analytically obtained.

First of all, we shall treat the invariant subspace J=0.
Note that in this case flipping any spin (S ~—S ) does
not change the energy of an arbitrary configuration, and
so the (spontaneous) magnetization is zero for J=0. The
line K= U/2 corresponds to H, =O [see Eq. (23)] and
therefore also constitutes an invariant subspace. In some

PM

(uncor related pairs
of electrons)

/

J I
/

pUGI

-10
-20 -15 -10 -5 0 5 10 15 20

FIG. 3. Flow diagram in the plane (U, K) for d=2. The
relevant fixed points are labeled a, a', c, and d. The paramag-
netic dimerized-charge insulating (PDCI) phase is characterized
by the attractor (U, K)=(+ ~, + 00 ) ~» = U~z, while the paramag-
netic uniform-charge insulating (PUCI) and the paramagnetic
metal (PM) (with uncorrelated pairs of electrons) phases are
characterized, respectively, by the attractors (+ 00,0) and
( —~,O). The line eaf is a second-order critical line, while the
line K= U/2 for K &K, is a first-order one. The dashed line
between points a' and a corresponds to a smooth continuation
between the PM and PUCI phases.
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K'- f~(J),
J'-f (J)

(30)

are attracted by the fixed point ( —~,0). This fixed point
is associated with a phase with (t, ) &0 for all sites i, or
equivalently [see Eq. (22)], most of the sites are in the
S =0 state. In such situation the electrons are bounded
in pairs and one-half of the sites are doubly occupied
while the rest of them are empty. Such situation corre-
sponds to a paramagnetic metallic (PM) phase in which
the carriers are uncorrelated pairs of electrons.

The line af is a second-order transition line between the
PUCI and PDCI phases; all points belonging to this line
are attracted by the semiunstable fixed point d. The line
oe is a second-order line between the PUCI and PM
phases; all points belonging to this line are attracted by
the semiunstable fixed point c. Both lines join at the criti-
cal fixed point a. The fixed points c and d are connected
through the unitary transformation (K,H, )~(K, H, ). —
Therefore the eigenvalues of the linearized recurrence
equations in both fixed points are the same, and conse-
quently the correlation-length critical exponent
v, =inb/ink, , (Refs. 34 and 35) is the same for both tran-
sition lines; A,, =A,d & 1 is the relevant eigenvalue at the
fixed point c (d). Along the line K=U/2 and K &K, ,
the ground state of the system is degenerated and we
have a first-order transition (two-phase coexistence) be-
tween the PM and PUCI phases. This line ends at the
critical point a'. Along the line aa' (dashed line in Fig.
2), we have (t; ) =0, i.e., (S ) =

—,
' for all sites i All.

points belonging to this line are attracted by the fixed
point (0,0). Such line does not correspond to any phase
transition, thus constituting a smooth continuation be-
tween the PM and PUCI phases. If we move along the
line K= U/2 from the PDCI phase, the system under-
goes a second-order phase transition at the point a. The
correlation-length exponent v, =v, in this case is given
by v, =lnb/ink, ,'", where A,,"' is the eigenvalue of the
linearized equations at the point a corresponding to the
eigenvector direction K = U/2. The crossover exponent
is given by P, =ink. ,' '/ink, ',", where A, ', ' is the eigenvalue
corresponding to the eigenvector direction tangential to
the line eaf at the point a. The values of the critical ex-
ponents, as well as the location of the fixed points a, c,
and d, are listed in Table I for d =2 and 3.

Let us now consider the case J & 0. We are particular-
ly interested in the limit U~ ~ of the phase diagram be-
cause, as we shall see later on, it is closely related to the
strong interaction limit of the half-filled-band Hubbard
model. For U »1 the recurrence relations decouple and
we find the asymptotic behaviors

U'-b"- 'U,

C!

0

FIG. 4. Asymptotic recurrence relation J'=f, (J) for the
J-K-U model (21) in the limit U~ ~, for dimensionalities d =2
and 3.

and so the only nontrivial recurrence equation is that of
the exchange coupling J. This fact can be easily under-
stood if we note that, for U »1, the states with S =+1
for all sites i predominate over all the other states. When
we restrict the Hamiltonian (21) to this subspace, the
second and third terms become just additive constants
which do not affect further ordering, and the Hamiltoni-
an is equivalent to

(31)

where 0.;, v=x, y, z, are the Pauli matrices at the site i.
The Hamiltonian (31) describes a spin- —, antiferromagnet-
ic Heisenberg model. The function f, (J) is depicted in

Fig. 4 for d=2 and 3.
For d =2 the recurrence equations (30) only have trivi-

al fixed points. So the system does not exhibit any phase
transition to an ordered state, as expected from (31). For
d =3 two new fixed points appear, namely, (i) a relevant
(critical) fixed point at J, =0.353 and (ii) a stable fixed
point at J& =2.457. The critical point J, corresponds to
a second-order phase transition from a paramagnetic
phase, characterized by the fixed point J=O, to an anti-
ferromagnetic ordered phase J & J„which is mapped
into a finite temperature J, fixed point, instead of a zero-
temperature (J= ~) one (usual case). Since this shifted
fixed point is related to the behavior of the system at zero

TABLE I. Location of the relevant fixed points and critical exponents for J=0 and K & 0. The loca-
tion of the fixed point a ' is U, = —U, K, = —K„and the corresponding critical exponent is v, =v, .

U,

5.77
2.83

2.89
1.42

U,

4.38
2.61

3.48
8.68

Ud

9.54
32.10

1.35
1.08

1.22
0.55

0.17
1.54
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temperature, such shift is probably due to the approxima-
tion (17). At zero temperature such approximation
might be a rough one, and therefore spurious results
could appear at very temperatures. In fact, very good re-
sults have been found in other models for a wide range of
temperatures.

As the dimensionality d decreases, the fixed points J,
and J, approach each other and merge into a marginal
fixed point at the lower critical dimension d, =2.41 [at
d =d„ f, (J) becomes tangential to J' =Jj. The
correlation-length exponent for this transition is given by
v, =lnb/ink, z, where

d ]
ArJ dJ

In Table II we compare our d=3 results for J, and vJ
with those obtained by high-temperature series expan-
sions for the antiferromagnetic Heisenberg model in some
Bravais lattices.

For lower values of U, the d =3 phase diagram is very
similar to the RG phase diagram of the d =2 ferromag-
netic BEG model, with and appropriate change of signs
in the coupling parameters and the magnetic order pa-
rameter replaced by the z component of the staggered
magnetization. ' Since in the present work we are mainly
interested in those characteristics of the complete phase
diagram ( U, K,J,I, t, D) related to the t-hopping term and
since the fixed points which determine such features are
those located in the U ))1 region (see Sec. IV C), we will

give here only a brief description of the phase diagram
(U, K,J) for intermediate values of U.

We find a second-order transition surface from a
paramagnetic (PUCI) to an antiferrornagnetic insulating
(AFI) phase. For U ))1 this surface becomes parallel to
the J=O plane at a height J, . This critical surface is as-
sociated to the fixed point (U,E,J)=(+~,K„J,), where

K, =f2(J, ) = —0.001. For U(0 the PM and AFI
phases are separated by a first-order transition surface.
Such surface is associated with the first-order fixed point
(
—~, —~,Ji ) ~tt v&2. The relevant eigenvalue for such

a fixed point fulfills the Nienhuis condition A, =b .
Both surfaces (first and second order) join smoothly
at a line of tricritical points. Such line is asso-
ciated with the tricritical fixed point (Ur, Kr, JT }

TABLE II. Critical coupling and critical exponent for the
antiferromagnetic J-E-U model (21) in a hierarchical lattice
( U » 1), compared with those obtained through high-
temperature series expansions for the antiferromagnetic Heisen-
berg model in the face-centered (fcc), body-centered (bcc), and
simple cubic (sc) lattices (Ref. 37).

=(—2.27, —0. 16,0.79). For this tricritical point we
find two relevant eigenvalues A, 'z" and A, 'T', with

A,'T") A, 'T'& 1, and a third eigenvalue A, 'T'& 1. The eigen-
vector directions associated with A, 'T ' and A, 'T ' are tangen-
tial to the transition surface, while that corresponding to
A, 'T" is transversal to the transition surface. The eigenvec-
tor direction associated with A, '„' is tangential to the tri-
critical line. The tricritical exponents are given by
vT =lnb/ink'T" and Pr =ink'r'/ink'T". We find vT=0.40
and Jr=0.21 (no other numbers are available in the
literature for comparison}. Besides these two magnetic
transition surfaces, there is a first-order surface associat-
ed with the fixed point (U, K,J)=(—~, 00, 0)lx=vy2
which constitutes an extension of the first-order line be-
tween the PM and PUCI phases shown in Fig. 3. This
fixed point also satisfies the Nienhuis conditions for a
first-order one. The first-order surface between the PM
and PUCI phases ends at an isolated critical line whose
points are all attracted by the critical fixed point a (see
Fig. 3}. The three transition surfaces join along a
critical-end line associated with the fixed point
(U, E,J)=(—00, —~,J, )~» v&2. This fixed point has

VJ
two relevant eigenvalues: k& =b and A,z=b". More-
over, the two first-order surfaces have the same slope at
such a line. This features provide the RG characteriza-
tion of critical-end point behavior. The three critical
lines (critical end, tricritical, and isolated critical) join at
a fully unstable multicritical fixed point
(U, K,J)=(—2.66, —0.75,0.59).

As an example, we show the section of the phase dia-
gram with the E=0 plane in Fig. 5. The location of the
tricritical point To for K =0 is (U,J)=(—2.22, 0.86).

Another feature which appears for K & 0 and U )0 is
the paraboloidlike extension of the critical line (eaf line)
appearing in Fig. 3. Most of the points of this surface are
attracted either by point c or by point d of Fig. 3; at the
frontier of these two sets of points, a critical line exists
whose points are attracted by point a of Fig. 3.

B. I K-Umodel (t=D-=J=O)

The Hamiltonian (19) reduces in this case to

—,
' U~2EC ——'U

I~J .
(33)

t x vI X [p -pj-(p p~+ppj) j
(ij &

Eg (S') (S')—+—,'Ug (S )
(ij) i

By using the canonical transformation (7), the Hamiltoni-
an (32) can be mapped into the Hamiltonian (21) with a
new set of coupling constants, namely [see Eq. (20)],

J-E-U model (U»1)
(RG)
Heisenberg model (series)

1.241

0.753 fcc
bcc
sc

0.353

0.232
0.357
0.520

Consequently, the phase diagram corresponding to the
Hamiltonian (32) can be obtained from the phase diagrain
of the J K Umodel by mean-s o-f the transformation (33).
This correspondence between the two phase diagrams is
exactly recovered by our recurrence equation (29). Since
(S ) =1—(p';), the Hamiltonian (32) can be easily ex-
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1.0—

K = 0

antiferromagnetic

correlation-length exponent is vl=vz (J, and vJ were
defined in Sec. IV A). The mixed phase is associated with
the fixed point ( —~,K&,I&), with I& =J, , and the PM
phase is associated with the fixed point ( —oo, 0,0). The
rest of the phase diagram can be similarly obtained from
the results of Sec. IV A.

C. Half-filled-band Hubbard model

0.5—

p ar am agn e tie

0.0
T I I T—5 —4 —3 —2 —1 0 1 2 3 4 5

FIG. 5. Phase diagram of the J-K-U model (J&0) for K=O
and in d =3. The solid line is a second-order critical line, while
the dashed line is a first-order one. Both lines join at the tricrit-
ical point To.

1 g f 1

~ X &c', Tc",i ) = ~ X &c', Tc'-k, T»
! k

(35)

which corresponds to singlet superconductivity (SS). If
both order parameters (34) and (35) are zero, then the
pairs are completely uncorrelated (PM phase) if U is neg-
ative enough or there are no pairs (PUCI phase) if U is
high enough. In the second case the states with p';=0
predominate, while in the former the states which
predominate are the p';=+1 ones. By using Eq. (33) we
obtain for the d =3 phase diagram corresponding to the
Hamiltonian (32), in the region U« —1 and I&0, a
second-order critical surface; on one side of it we have
the PM phase, while on the other side we have the mixed
CD%-SS phase. This surface is associated with the fixed
point ( U, K, I)= (

—oo, K„I,), where I, =J, and the

pressed only in terms of charge operators. In particular,
for U« —1 electron-pair formation is favored and the
Hamiltonian (32) can be seen as a gas of bosons with hard
cores and long-range interactions. Such bosons are (on
site) bounded pairs of electrons. In the limit U~ —00,
which is mapped through (33) into the U~+ oo limit of
the J-K-U model (21), the only term that contributes in
the Hamiltonian (32) is the first one. This term can be
obtained by perturbation theory from the original Hub-
bard Hamiltonian in the limit U~ —~. ' From Eqs. (10)
we see that in this case the antiferromagnetic order in the
z direction of the J-K-U model is associated with the
nonvanishing order parameter1, . 1—g &p')exp(iQ R)= g &ck ck+O ), (34)

I k, (r

where the sum over k runs over the first Brillouin zone.
Such state corresponds to a charge-density-wave (CD~)
ordered phase. A nonvanishing x-y plane antiferromag-
netic order parameter will imply a nonvanishing value for

We now consider the section of the phase diagram with
the (U, t) plane (which is not invariant under the RG
transformation), i.e., I=J=K=D=0, for both signs of
U (see Ref. 23). This case corresponds to the half-filled-
band Hubbard model (2).

In d=1 our RG yields no phase transition for any
value of UWO, as expected. ' All points in the (U, t)
plane are attracted by the t=0 line, which is a line of
fixed points. Points with U) 0 are attracted by points in
the positive-U axis with U))1, which characterizes an
insulating phase. Points with U&0 are attracted by
points in the negative-U axis with

~ U~ &&1. In this situa-
tion the electrons are bounded in pairs; for d = 1 there is
no correlation between such pairs. So the system behaves
as a meta1 whose charge carriers are bounded pairs. All
points in the t axis are attracted by the fixed point
(U, K,J,I, t, D)=(0,0,0,0,0,0). For U=O we have a pure
tight-binding system (free particles), and in this case the
rescaling involved in the decimation procedure reduces,
at every RG step, the bandwidth (proportional to the
hopping parameter t), because it eliminates the short-
wavelength states. Consequently, t~O, and the fixed
point (0,0,0,0,0,0) characterizes, in this case, a normal
metallic phase.

For d ) 1 and U) 0, all points are attracted into the
parameter subspace t =D =I=0 with U~ &x). This sub-
space was already analyzed in Sec. IV A, and we saw that
in the U~~ limit the thermodynamical properties of
the system are entirely determined by the Heisenberg
Hamiltonian (31). Therefore we conclude that the
ground state of the half-filled-band Hubbard model is al-

ways insulating and antiferromagnetic; i.e., no Mott tran-
sition is observed for the ground state at UAO. This re-
sults satisfy Lieb's theorem. For d ) 1 and U&0, all
points are attracted into the subspace t =D =J=O with
U&& —1. Therefore, for U&0, the ground state of the
system is composed by a gas of bosons (bounded pairs of
electrons) with hard cores and long-range interactions
(see Sec. IV B).

In d=2 we find, for the phase diagram, structure
which is similar to that for d =1. All points in the U=O
axis are attracted by the fixed point (0,0,0,0,0,0). Hence,
for U=O, the system is a normal meta/. For U) 0 all
points are attracted by the fixed point (+ ~,0, 0,0,0,0),
which corresponds to a PUCI phase, as we have seen in

Sec. IV A. Since, for U~ ~, the electrons are localized,
the system is a paramagnetic insulator for any value of
U) 0 and finite temperatures. These results are in agree-
ment with previous ones obtained by a diferent RG tech-
nique and by Monte Carlo calculations. ' For U &0 a11

points are attracted by the fixed point {—~,0,0,0,0,0).
As we have seen in Sec. IV B, in this case there is neither



45 GENERALIZED HUBBARD HAMILTONIAN: 10 505

superconductivity nor charge-density waves, and the sys-
tem is in a PM phase (uncorrelated pairs of electrons).

For d=3 the calculated phase diagram is shown in
Fig. 6, where, instead of the ( U, t) variables, we have used
the more appropriate ones, nainely; 1/t (dimensionless
temperature) and U/t. For U/t &0 the system is always
an insulator and there is a second-order transition line.
Points below this line are associated with the antiferro-
magnetic fixed point (U, K,J,I, t, D) =(+~,Ki,Ji,0,0,0),
while points above this line are associated with the
paramagnetic fixed point (+00,0,0, 0,0,0). The critical
line is associated with the critical fixed point
(+ oo, K„J„O,O, O), and so it describes a second-order
para-antiferromagnetic phase transition; the correspond-
ing correlation-length exponent vJ is given in Table II.

For U/t &0 there is a second-order phase transition
from the PM phase at high temperature to the mixed
phase CDW-SS (see Sec. IV B). The coexistence of CDW
and SS in the negative-U Hubbard model is a particular
degeneracy of the half-filled-band case. The degeneracy
is removed in the non-half-filled-band case. ' The cor-
responding transition line is associated with the critical
fixed point (U, K,J,I, t, D)=( —ao, K„O,I„O,O), and the
correlation-length exponent for such transition is vl =vJ.
The two critical lines for U/r & 0 and U/t &0 meet at a
point 1/t, 40 in the U/t =0 axis (pure tight-binding lim-

it). For U/t =0 and 1/t & 1/t„all the points are attract-
ed by the (0,0,0,0,0,0) fixed point; i.e., that region corre-
sponds to a normal metallic phase. For I/t &1/t, we

found an anomalous behavior in the renormalization
How. All the points are attracted by limit cycles of order
2 rather than being attracted by normal fixed points.
More precisely, the points are attracted by one or the
other of two different cycles related among them through
the transformation (t,D)~( t, D) Th—e—basi.ns of at-
traction of these two cycles alternatively appear along the
U/t =0 axis in the region 0& 1/t & 1/t, At the t.ime the
physical meaning (if it exists) of these limit cycles is not
clear, but they might be related to the fractal character of
the hierarchical lattice. The general structure of the limit

cycles and its possible relation with fractality is discussed
in Ref. 23. This anomalous behavior disappears
(I/t, —+0), for dimensionalities d &d„where d, -2.41,
which is the same value found in Sec. IV A for the lower
critical dimension of the para-antiferromagnetic transi-
tion for U/t))1. This suggests that the whole critical
line disappears at d =d, .

+ ,' U g —(n, t n, i ) —K —g (S )2(S')2 .
l (i,j)

(36)

We first consider the d=2 case. The sections of this
phase diagram with the planes t=O and E=O were al-
ready analyzed in Secs. IV A and IV B, respectively. We
now discuss the section of this phase diagram with the
plane K = U/2. As we have seen in Sec. III, the subspace
I=J and K = U/2 of the complete (U, K,J,I, t, D) param-
eter space is invariant under the RG transformation. In
particular, the I=J=O points fiow into I=JAO ones.
The phase diagram we obtain for K= U/2 is shown in
Fig. 7. The normal metallic phase is associated with the
fixed point ( U, K,J,I, t, D) =(0,0, 0,0,0,0). For U &0
there is a coexistence region of the PUCI phase [associat-
ed with the fixed point (+ ~,0,0,0,0,0)], and the PM
phase [associated with the fixed point ( —ao, 0,0,0, 0,0)].
This region is attracted by the first-order fixed point
(
—~, —ao, 0,0, 0,0)~x z&z and ends at the critical line

a'b' (Fig. 7), which is associated with the fixed point
( U, ,K, ,O, O, O, O). For U & 0 there is a PDCI phase,
which is associated with the fixed point

D. Hubbard model with biquadratic interactions

We now consider the section I=J=D =0 of the phase
diagram in d =2 and 3 (the d = 1 case presents no novelty
with respect to the d =1 case of Sec. IVC). In this case
the Hamiltonian (19) describes a half-filled-band Hubbard
model with biquadratic interactions between electrons in
nearest-neighboring sites:

&=t g (c; c~ +c~ c; )
(ij ),o

0,8

0.7—
PM

(uncorreiated pairs)

.,L
PUCI

I

8.0—

NORMAL METAL

1.0—

0.5
CDW/SS AFI

0.5—

0.0
a'

0.4-2.0
I

-1.0 0.0
U/t

I

1.0 2.0

FIG. 6. Phase diagram of the half-filled-band Hubbard model
in d = 3 (1/t is the dimensionless temperature).

—15 —10 0
U

10 15

FIG. 7. Phase diagram for the d =2 half-filled-band Hubbard
model with biquadratic interactions for E= U/2. There is a
coexistence region of the PUCI and PM phases (uncorrelated
pairs of electrons).
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3.0

15-

normal
metal

PUCI

(uncorr elated
pairs)

In Fig. 8 we show a section of the phase diagram for
K & 0 with a constant-U plane (U=8).

For E (0 and U(0, the PUCI and PM phases are
separated by the first-order surface shown in Fig. 7,
where the system undergoes a discontinuous metal-
insulator transition. This surface ends at the isolated
critical line a'O'. Outside this surface and for E= U/2,

1.0

0.5—

PDCI 4

limit cycles

0.0

FIG. 8. Phase diagram for the d =2 half-filled-band Hubbard
model with biquadratic interactions for constant U =8.

PUCI

uncor related
pairs)

(+ oo, + oo, 0,0,0,0)~z U&2. The line ab (Fig. 7) corre-
sponds to a second-order metal-insulator phase transi-
tion, and it is associated with the relevant fixed point
(U„K„0,0,0,0) (see Table I for the location of the
relevant fixed points).

Let us now consider the rest of the phase diagram in
the space (U, K, t), i.e., for KWU/2. For K&0 and
U &0, there is a critical surface whose sections with the
planes t =0 and K = U/2 are shown in Figs. 3 and 7, re-
spectively. For E) U/2 this surface is associated with
the fixed point ( Ud, Kd, 0,0,0,0), while for K & U/2 it is
associated with the fixed point (U„K„O,O, O, O). For
K & U/2 this surface describes a second-order metal-
insulator phase transition separating the PDCI and PM
phases. The PM phase extends over the whole region
K & U/2, outside the region enclosed by the critical sur-
face. For K & U/2 the surface corresponds to a second-
order phase transition separating the PDCI and PUCI
phases. All points with K ( U/2, outside the region en-
closed by the critical surface, belong to the PUCI phase.

(b)
limit cycles

CDW/SS

PUCI

—5 —4 —3 —2 —1
I

0
K

(uncorrelated
pairs)

I

normal
~metal

I I I I

1 2 3 .4 5

coexistence
region

—5 —4 —3 —2 —1 0 1 2 3 4 5
K

:3.0 (c)
limit cycles~ CDW/SS

".0

PUCI

normal
met. a~I

(uncorrelated
pairs)

0.0
10

I I I I I I

—4 —3 —2 —1 0 1 2 3 4 5

FIG. 9. Phase diagram for the d = 3 half-filled-band Hubbard
model with biquadratic interactions for K= U/2. See text for
details.

FIG. 10. Phase diagram for the d=3 half-filled-band Hub-
bard model with biquadratic interactions for constant U. See
text for details. (a) U= —4, (b) U=2, and (c) U=4.
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the system changes smoothly (i.e., without a phase transi-
tion) from the PM phase (K & U/2) to the PUCI phase
(K & U/2), passing through a norinal metallic state at
K = U/2, where the pairs break.

Finally, we consider the phase diagram for d=3,
whose section with the plane E = U/2 is shown in Fig. 9.
For low values of the parameter t, the phase diagram
shows the same qualitative structure as the d=2. For
higher values of t, new features appear. First, we find

that the limit cycles already observed for U=E=O ex-
tend over the plane K = U/2 for t above the line hb'b
The basins of attraction of the two cycles appear as alter-
nated fringes of complex shape. The appearance of limit
cycles occurs only for K=U/2. Second, between the
coexistence region of the PUCI and PM phases and the
limit cycles region, a new region appears; two ordered
phases (namely, AFI and CDW-SS) coexist. Such region
is associated with the fixed point (

—~,Ki,Ji,I„O,O).

This coexistence can be understood if we note that for
K= U/2 the second and third terms of the Hamiltonian
(36) can be rewritten for the hierarchical lattice as

1 U y [(gz)2 (gz)2]2
&,J)

For U&( —1 the configurations that predominate are
those for which S =0 or those for which S =+1 for all

sites i Both .types of configurations (i.e., S =0 or
S;*=+I} are degenerate, and so they have the same oc-
currence probability. For low values of t, this degeneracy
leads to the coexistence of the two disordered phases (PM
+ PUCI) that we have already seen for d =2. As the pa-
rameter t increases, each one these phases undergoes a
second-order phase transition to the corresponding or-
dered phase at the line gb'. This degeneracy could also
be related to the occurrence of the fixed cycles for
K= U/2.

For E & U/2 there is a second-order transition surface
separating the PUCI phase (low values of t) and the AFI
phase (high values of t); this surface is associated with the
fixed point (U, K,J,I, t, D)=(+ ~,K„J„O,O, O). For
K & U/2 there is a second-order surface separating the
PM phase (low values of t) and the CDW-SS mixed phase
(high values of t); this surface is associated with the fixed
point ( —~,K„O,I„O,O). Both K& U/2 and K& U/2
second-order surfaces join at the line gb'b of the plane
K= U/2 (see Fig. 9). The AFI and CDW-SS phases are
separated, on the E= U/2 plane, by limit cycles except-
ing a small region (enclosed by gb'h in Fig. 9) where
these two phases coexist. In Fig. 10 we show some sec-
tions of the phase diagram with constant-U planes for
typical values of U.

V. CONCLUSIONS AND REMARKS

We have discussed a very general Hamiltonian [Eq.
(24)] which contains the Hubbard one as a particular

case. The general Hamiltonian remains invariant under a
specific real-space RG scheme in which the d-
dimensional Bravais lattices are replaced by d-
dimensional hierarchical ones. This Hamiltonian, besides
including the Hubbard Hamiltonian as a particular case,
contains several interaction terms that allow the study of
the critical properties of a great variety of interacting fer-
mionic systems; indeed, these terms account for charge
Auctuation and magnetic order, as well as hopping. The
complete phase diagram presented in Sec. IV for the
half-filled-band Hamiltonian (19) shows the richness of
this model. Among other applications of the general
Hamiltonian (24), the most interesting seems to be the
study of high- T, superconducting compounds. This
Hamiltonian contains many of the basic interactions that
have been proposed to explain this phenomenon. Indeed,
we have shown that adding a nearest-neighbor interac-
tion term to the half-filled-band Hubbard Hamiltonian
[like the biquadratic term in Hamiltonian (36}]can cause
a superconducting phase to appear, even for repulsive in
trasite interactions (see Fig. 10). The use of the general-
ized Hubbard Hamiltonian [Eq. (24)] together with the
RG formalism appears as a powerful tool to analyze the
combined effects of different types of interactions. The
numerical results in d =1 and 2 for the Hubbard model
are encouraging in this sense, since they reproduce the
expected qualitative aspects of the corresponding phase
diagrams. In d =3 the method works well in the strong
interaction region ) U/t~ &&1. For

~
U/t~ && 1 the appear-

ance of limit cycles makes the applicability of this
method questionable in the sense that the results for Bra-
vais lattices might be quite different from those in
hierarchical lattices (see also Ref. 23). The fact that this
phenomenon occurs only for some region of the K = U/2
subspace suggests that it could be due to a particular de-
generacy of the ground state of the hierarchical lattice.
Indeed, limit cycles of order 2 in the RG Aow have been
encountered for Ising systems with competing interac-
tions, where such behavior rejects certain degeneracies
of the ground state of the model. Excepting for this

~ U/t~ &&1 region, the results herein obtained seem to be
encouraging toward the final understanding of this corn-
plex quantum many-body problem. Further develop-
ments, in particular the non-half-filled-band case, are
planned to be presented elsewhere.

ACKNOWLEDGMENTS

We wish to thank D. Prato, E. M. F. Curado, R. May-
nard, and L. M. Falicov for fruitful discussions and sug-
gestions. Two of us (S.A.C. and F.A.T.) thank CNPq
(Brazil) for financial support.

J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).
2Y. Nagaoka, Phys. Rev. 147, 392 (1966).
3W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
4M. Cyrot, J. Phys. (Paris) 33, 125 (1972).

5Electron Correlations and Magnetism in 1Varrom Band Systems,
edited by T. Moriya (Springer, New York, 1981).

F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
P. W. Anderson, Science 235, 1196 (1987).



10 508 CANNAS, TAMARIT, AND TSALLIS 45

~V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
9M. Cyrot, Solid State Commun. 62, 821 (1987);63, 1015 (1987).
' C. R. Proetto and L. M. Falicov, Phys. Rev. B 15, 1754 (1988).

J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. Lett.
60, 944 (1988).

'2Wei-ming Que and G. Kirczenow, Z. Phys. B 73, 425 (1989).
' B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 60, 740

{1988).
' R. Micnas, J. Ranninger, and S. Robaszkiewicz, J. Phys. C 21,

L145 (1988).
E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 {1968).
D. Penn, Phys. Rev. 142, 350 (1966).
M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

' J. Hirsch, Phys. Rev. B 31, 4403 (1985).
' J. Hirsch, Phys. Rev. B 35, 1851 (1987).
2 C. Vanderzande and A. L. Stella, J. Phys. C 17, 2075 (1984).
'H. Takano and M. Suzuki, Physica 109A, 618 (1981).
C. Vanderzande, J. Phys. A 18, 889 {1985).

2~S. A. Cannas, F. A. Tamarit, and C. Tsallis, Solid State Com-
mun. 78, 685 (1991).

2~A. O. Caride, C. Tsallis, and S. I. Zanette, Phys. Rev. Lett. 51,
145 (1983);51, 616 (1983).

A. M. Mariz, C. Tsallis, and A. O. Caride, J. Phys. C 18, 4189
(1985).
H. Takano and M. Suzuki, J. Stat. Phys. 26, 635 (1981).

~~H. Shiba, Prog. Theor. Phys. 48, 2171 (1972).
~C. Castellani, C. DiCastro, D. Feinberg, and J. Ranninger,

Phys. Rev. Lett. 43, 1957 (1979).
~ J. W. Essam and C. Tsallis, J. Phys. A 19, 409 (1986). A. C.

N. de Magalhaes and J. W. Essam, ibid. 19, 1955 (1986); 22,
2549 (1988).
B. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4,
1071 (1971).

~'A. N. Berker and M. Wortis, Phys. Rev. B 14, 4946 (1976).
J. B. Marston and I. Aleck, Phys. Rev. B 39, 11 538 (1989).

~R. B.Griffiths, Physica 33, 689 (1967).
~Th. Niemeijer and J. M. J van Leeuwen, in Phase Transitions

and Critical Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1976), Vol. 6.

~sS. Ma, hfodern Theory of Critical Phenomena (Benjamin, New
York, 1976).
The appearance of shifted fixed points of this kind was en-
countered by other authors, in the same approximation ap-
plied to the anisotropic (ferromagnetic) Heisenberg model in
d = 3 (see Ref. 26).
G. S. Rushbrooke, G. A. Baker, Jr., and P. J. Wood, in Phase
Transitions and Critical Phenomena (Ref. 34), Vol. 3.

B. Nienhuis and M. Nauenberg, Phys. Rev. Lett. 35, 477
(1975).
B. Nienhuis and M. Nauenberg, Phys. Rev. B 13, 2021 (1976).
P. Pfeuty and G. Toulouse, Introduction to the Renormaliza-
tion Group and to Critical Phenomena (Wiley, New York,
1977).

4IV. J. Emery, Phys. Rev. B 14, 2989 (1976).
42E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
4~R. Micnas et al. , Phys. Rev. B 37, 9410 (1988).
44P. M. C. Oliveira, J. Phys. (Paris) 47, 1107 (1986).


